特定非営利活動法人 量子化学研究協会研究所 Quantum Chemistry Research Institute

Hiroyuki Nakashima

Head of Division four (Research leader)

(More private page)

E-mail h.nakashimaqcri.or.jp
Hobby Playing with cats

Author of

26 General coalescence conditions for the exact wave functions: Higher-order relations for two-particle systems,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. , in press.
25 Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement – local Schrödinger equation method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. , in press.
24 Solving the non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion with the free complement method II: Highly-accurate electronic, vibrational, and rotational excited states,
H. Nakashima, Y. Hijikata, and H. Nakatsuji,
Astrophys. J. 770, 144-1-9 (2013).
23 Solving the Schrödinger and Dirac equations of atoms and molecules with massively parallel super-computer,
H. Nakashima, A. Ishikawa, Y. I. Kurokawa, and H. Nakatsuji,
Proceedings of the 2012 Companion on High Performance Computing Networking, Storage and Analysis Companion (SC12) , in press.
22 Electronic excitation spectra of radical anions of cyanoethylenes and cyanobenzenes: Symmetry adapted cluster-configuration interaction study,
H. Nakashima, T. Shida, and H. Nakatsuji,
J. Chem. Phys. 136, 214306-1-13 (2012).
21 SAC-CI methodology applied to molecular spectroscopy and photo-biology,
J. Hasegawa, T. Miyahara, H. Nakashima, and H. Nakatsuji,
AIP Conf. Proc. Theory and Applications of Computational Chemistry (TACC) 1456, 101-108 (2012).
20 Solving the Schrödinger equation of hydrogen molecular ion in the magnetic field with the free complement method,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
Progress in Theoretical Chemistry and Physics (Proceedings of QSCP-XVI), “Quantum Systems in Chemistry and Physics” 26, 255-274 (2012).
19 Analytical evaluations of exponentially correlated unlinked one-center, three- and four-electron integrals,
C. Wang, P. Mei, Y. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Rev. A 85, 042512-1-14 (2012).
18 Accurate solutions of the Schrödinger and Dirac equations of H2+, HD+, and HT+: With and without Born-Oppenheimer approximation and under magnetic field,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
Chem. Phys. 401, 62-72 (2012). (Special issue for Prof. D. Mukherjee)
17 Relativistic free complement method for correctly solving the Dirac equation with the applications to hydrogen isoelectronic atoms,
H. Nakashima and H. Nakatsuji,
Theor. Chem. Acc. 725, 567-574 (2011). (Special issue for Prof. P. Pyykkö)
16 Solving the Schrödinger and Dirac equations for a hydrogen atom in the universe’s strongest magnetic fields with the free complement method,
H. Nakashima and H. Nakatsuji,
Astrophys. J. 725, 528-533 (2010).
15 LiH potential energy curves for ground and excited states with the free complement local Schrödinger equation method,
A. Bande, H. Nakashima, and H. Nakatsuji,
Chem. Phys. Lett. 496, 347-350 (2010).
14 Free complement method for solving the Schrödinger equation: how accurately can we solve the Schrödinger equation,
H. Nakatsuji and H. Nakashima,
Progress in Theoretical Chemistry and Physics dedicated to the proceedings of the 13th International Workshop on Qunatum Systems in Chemistry and Physics (QSCP-XIII), “Advances in the Theory of Atomic and Molecular Systems” 47-60 (2009). (Special issue for Prof. P. Piecuch)
13 How does the free complement wave function become accurate and finally exact starting from the Slater and Gaussian initial functions for hydrogen atom?,
H. Nakatsuji and H. Nakashima,
Int. J. Quantum Chem. 109, 2248-2262 (2009). (Special issue for Prof. K. Hirao)
12 Solving non-Born Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method,
Y. Hijikata, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 130, 024102-1-11 (2009).
11 How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?,
H. Nakashima and H. Nakatsuji,
Phys. Rev. Lett. 101, 240406-1-4 (2008).
10 Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Chem. Chem. Phys. 10, 4486-4494 (2008).
9 Solving the electron and electron-nuclear Schrödinger equations for the excited states of helium atom with the free iterative-complement-interaction method,
H. Nakashima, Y. Hijikata, and H. Nakatsuji,
J. Chem. Phys. 128, 154108-1-10 (2008).
8 Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 128, 154107-1-7 (2008).
7 Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 128, 124103-1-12 (2008).
6 Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function,
H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa,
Phys. Rev. Lett. 99, 240402-1-4 (2007).
5 Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 127, 224104-1-14 (2007).
4 On the O2 binding of Fe-porphyrin, Fe-porphycene, and Fe-corrphycene complexes,
H. Nakashima, J. Hasegawa, and H. Nakatsuji,
J. Comput. Chem. 27, 1363-1372 (2006).
3 On the reversible O2 binding of Fe-porphyrin complex,
H. Nakashima, J. Hasegawa, and H. Nakatsuji,
J. Comput. Chem. 27, 426-433 (2006).
2 Free iterative-complement-interaction calculations of the hydrogen molecule,
Y. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Rev. A 72, 062502-1-11 (2005).
1 Analytically solving the relativistic Dirac-Coulomb equation for atoms and molecules,
H. Nakatsuji and H. Nakashima,
Phys. Rev. Lett. 95, 050407-1-4 (2005).

Page Top

Invited lectures

6 Solving the Schrödinger equation of general molecule with the from atom to molecule method,
The 17th Malaysian Chemical Congress (17th MCC),
Kuala Lumpur, Malaysia,
Oct. 15-17 2012.
5 Solving the Schrödinger and Dirac-Coulomb equations: Applications to a few-electron atoms and molecules,
The 14th Asian Chemical Congress (14th ACC),
Bangkok, Thailand,
Sep. 5-7 2011.
4 Recent progress in accurately solving the Schrödinger equations of general atoms and molecules,
Asian International Symposium – Theoretical and Computational Chemistry,
Osaka, Japan,
Mar. 28 2010.
3 Recent progress in accurately solving the Schrödinger equations of general atoms and molecules,
Of Molecules and Materials (A Survey of Recent Concepts),
Kolkata, India,
Dec. 28-29 2009.
2 Recent development in accurately solving the Schrödinger equations of general atoms and molecules,
The 13th Asian Chemical Congress (13th ACC),
Shanghai, China,
Sep. 14-16 2009.
1 Toward accurate and predictive quantum chemistry – Solving the Schrödinger equations of a few electron atoms and molecules,
QCRI JST-CREST Symposium,
Kyoto, Japan,
May 31 2008 (In Japanese).

Page Top

Contributed talk (International)

2 Solving the Schrödinger and Dirac-Coulomb equations with and without magnetic fields,
XVIth International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XVI),
Kanazawa, Japan,
Sep. 11-17 2011.
1 Solving the Schrödinger and Dirac-Coulomb equations,
Pacifichem 2010 (Symposium #10 Computational Quantum Chemistry: Theory and Interactions with Experiment in honor of Hiroshi Nakatsuji, Kimihiko Hirao, and Shigeru Nagase),
Hawaii, USA,
Dec. 15-20 2010.

↑ Page Top