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MOLECULAR ION WITH THE FREE COMPLEMENT METHOD. II. HIGHLY ACCURATE

ELECTRONIC, VIBRATIONAL, AND ROTATIONAL EXCITED STATES

Hiroyuki Nakashima1,3, Yuh Hijikata2, and Hiroshi Nakatsuji1,3
1 Quantum Chemistry Research Institute, JST, CREST, Kyodai Katsura Venture Plaza 107, Goryo Oohara 1-36, Nishikyo-ku,

Kyoto 615-8245, Japan; h.nakashima@qcri.or.jp, h.nakatsuji@qcri.or.jp
2 Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan

Received 2013 March 22; accepted 2013 April 29; published 2013 June 5

ABSTRACT

Highly accurate wave functions of the ground and electronic (1s σg and 3d σg), vibrational (v = 0–15 for 1s σg and v
= 0–8 for 3d σg), and rotational (L = 0–6: 1S, 3P, 1D, 3F, 1G, 3H, and 1I) excited states of the hydrogen molecular ion
were obtained by solving the non-Born–Oppenheimer (non-BO) Schrödinger equation using the free complement
(FC) method. The vibronic states belonging to the electronic excited state 3d σg are embedded in the continuum of
the dissociation, H(1s) + H+. Nevertheless, they exist as physical bound states that have negligible coupling with the
continuum. The complex scaled Hamiltonian was employed to analyze the bound and/or resonance natures of the
obtained eigenstates, and a new resonance state appeared between the above two electronic states. We numerically
proved that the FC method is a reliable theoretical tool for investigating non-BO quantum effects, and it should be
available for various studies of hydrogen-related space chemistry and low-temperature physics.
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1. INTRODUCTION

The Born–Oppenheimer (BO) approximation (Born &
Oppenheimer 1927) provides information that makes it easier
to understand chemical problems with potential energy curves.
The quantum effect of nuclear motion, however, cannot be ig-
nored for physical phenomena such as proton transfers, sys-
tems in time-dependent external fields, or very cold molecules
(Fukui 1981; Thomas 1969; Bandrauk et al. 2008; Ospelkaus
et al. 2010; Fioretti et al. 2004; Dulieu et al. 2011; Carr et al.
2009; Chin et al. 2010; Kuma & Momose 2009; Enomoto &
Momose 2005). In space chemistry, hydrogen is the most dom-
inant species in interstellar molecules, and hydrogen-related
compounds (such as H2

+, H3
+, H3, H5

+, and CH+) are key to the
investigation of the material composition in interstellar clouds
(Oka 1980, 1992; McCall et al. 1998; Kumada et al. 2006;
Cheng et al. 2010; Kumagai et al. 2007; Crabtree et al. 2011,
2011; Dohnal et al. 2012; Kirchner & Bowers 1987; Beuhler &
Friedman 1982). Fine infrared and radio spectroscopy, in which
the wavelength corresponds to vibrational and/or rotational ex-
citations, is quite important in the identification of interstellar
molecules in dense and sparse interstellar clouds, and it is used
to study astronomical problems where the quantum non-BO
(non-adiabatic) effect is indispensable. However, since most of
the important interstellar molecules are ionic and/or unstable
on Earth, experimental studies are generally difficult to per-
form. Recently, experimental techniques in cryogenic science
have been extensively developed resulting in a new field of sci-
ence related to space chemistry (Ospelkaus et al. 2010; Fioretti
et al. 2004; Dulieu et al. 2011; Carr et al. 2009; Chin et al.
2010; Kuma & Momose 2009; Enomoto & Momose 2005). Var-
ious quantum-mechanical effects clearly occur at an extremely
low temperature and precise quantum-mechanical theoretical
studies are required to understand these astronomical
observations and low-temperature experiments.

3 Author to whom any correspondence should be addressed.

Of the above interstellar species, the hydrogen molecular ion
H2

+ is the simplest and is a good candidate for establishing a
theoretical method to solve the non-BO Schrödinger equation.
H2

+ is considered to be an intermediate highly reactive molecule
in the generation of H3

+ from H2 in interstellar reactions (Oka
1980, 1992; McCall et al. 1998), and the non-BO effect should
be significant. In our first paper (Paper I; Hijikata et al. 2009)
of this series, we performed very accurate non-BO calculations
of H2

+ and its isotopomers (D2
+, T2

+, HD+, HT+, and DT+)
by the free complement (FC) method. The FC method was
proposed by one of the present authors to very accurately solve
the Schrödinger equation of atoms and molecules (Hijikata et al.
2009; Nakatsuji & Davidson 2001; Nakatsuji 2000, 2002, 2004,
2005, 2012; Nakatsuji et al. 2007; Nakashima & Nakatsuji
2008; Ishikawa et al. 2012; Nakatsuji & Nakashima 2005).
It is applicable not only to the Schrödinger equation in the
BO framework, but also to the relativistic Dirac equation and
to the non-BO calculation (Hijikata et al. 2009; Nakatsuji &
Nakashima 2005). Our theoretical background was summarized
in a review article (Nakatsuji 2012), which is a recommended
starting point for understanding the FC method that is a key
theory of this paper. In current quantum chemistry in which the
BO calculations have been extensively studied, there have only
been a few theoretical studies for general atoms and molecules
based on the non-BO framework (Tachikawa et al. 1998;
Nakai 2002; Nakai et al. 2001, 2005; Bochevarov et al. 2004;
Viswanathan et al. 2007; Tachikawa 2002; Shigeta et al. 1998;
Dufey & Fischer 2001; Jasper et al. 2006; Webb et al. 2002;
Kozlowski & Adamowicz 1991, 1993). In contrast, the FC
method is based on the Hamiltonian of the given system
and can generate a suitable function space even for non-BO
systems.

There have been several theoretical studies performed of
non-BO H2

+ systems (Li et al. 2007; Cassar & Drake 2004;
Hilico et al. 2000; Taylor et al. 1999; Bishop & Cheung 1977;
Bubin et al. 2005; Bednarz et al. 2005). Extremely accurate
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wave functions of the ground and low-lying vibrational excited
states were recently reported by Li et al. (2007) and Cassar
& Drake (2004), but at present the most accurate solutions
in a variational sense have been described in our first paper
of this series (Hijikata et al. 2009), in which the Gaussian
harmonic function was employed to represent the vibrational
motion efficiently. The higher-level vibrational excited states
were also reported by various authors (Hilico et al. 2000; Taylor
et al. 1999; Bishop & Cheung 1977; Bubin et al. 2005; Bednarz
et al. 2005), and studies with the adiabatic approximation were
performed up to the dissociation limit (Handy & Lee 1996;
Wind 1965; Beckel & Hansen 1970). However, there have only
been a very few studies about the higher rotational excited
states and the electronic excited states using the fully non-BO
calculations. In the present paper, which follows the first paper
in this series (Hijikata et al. 2009), we further compute the
electronic excitation, higher vibrational, and rotational excited
states of the hydrogen molecular ion with the FC method. All of
these states are quite significant for fully understanding the fine
spectra of the hydrogen molecular ion (Carrington et al. 1989a,
1989b; Leach & Moss 1995; Koelemeij et al. 2007; Critchley
et al. 2003).

The vibronic states belonging to the electronic excited states
may be embedded in the continuum of free particles followed by
the vibrational levels of the electronic ground state. The question
arises whether such embedded bound states are accurately
computable. A second question would be whether any useful
information corresponding to the potential energy curve can be
obtained from the non-BO wave function. In this series, we not
only perform highly accurate non-BO calculations with the FC
method, we also attempt to answer the above questions and to
develop the theory of non-BO calculations so we can apply it to
various fields of science. Topics regarding the non-BO potential
energy curve will be discussed in a subsequent paper III in this
series (Nakashima & Nakatsuji 2013).

2. FREE COMPLEMENT WAVE FUNCTION

Since the theoretical feature of the FC method has been
discussed in our previous papers with various applications
(Hijikata et al. 2009; Nakatsuji 2000, 2002, 2004, 2005, 2012;
Nakatsuji & Davidson 2001; Nakatsuji et al. 2007; Nakashima
& Nakatsuji 2008; Ishikawa et al. 2012; Nakatsuji & Nakashima
2005), we only very briefly introduce the essential part of
the theory here. This theory is based on the concept that the
system’s Hamiltonian should contain all of the information for
the solutions, both the energy and wave function. Therefore, the
exact wave function should be representable as a functional of
the Hamiltonian. The iterative complement (IC) wave function,
defined as

ψn+1 = [1 + Cng(H − En)]ψn, (1)

is one of the concrete expressions of such a functional of
the Hamiltonian H,4 which is included explicitly in the wave
function. It is a recursion formula that is guaranteed to converge
to the exact wave function, where Cn and En are the variational
coefficient and energy at iteration cycle n. In Equation (1), the
scaling function g is introduced to avoid the singularity problem
associated with the Coulomb potential. The FC method was
proposed to accelerate convergence of the IC method. The FC

4 Atomic units (a.u.) were employed everywhere in this paper.

wave function is defined by

ψn+1 =
Mn∑
i=1

c
(n)
i φ

(n)
i , (2)

where the right-hand side of Equation (1) is expanded into the
independent functions {φ(n)

i }, called the complement functions.
The independent coefficients {c(n)

i } are assigned to each comple-
ment function. Here, the iteration number n in the IC method is
recalled by “order” in the FC method, and the number of func-
tions is called the “dimension” Mn. The unknown coefficients
{c(n)

i } are variationally determined if the analytical integrations
of the matrix elements are possible. An alternative method to de-
termine {c(n)

i } is the local Schrödinger equation method, which is
based on a sampling procedure and in principle is applicable to
any system and function without encountering integration diffi-
culty (Nakatsuji et al. 2007). In the present paper, we employed
the first, variational method with the analytical integrations.

Thus, one of the remarkable features of the FC method
is that the Hamiltonian can generate an appropriate set of
complement functions for the given system, using the initial
function satisfying the symmetries and the boundary conditions,
and note that the non-BO Hamiltonian contains the nuclear
coordinates as an explicit variable as well as the electron
coordinates. In the present H2

+ case, we employed the initial
function given by

ψ0 = (1 ± P12)

[[
J∑

j=1

exp(−α(j )s) exp
( − γ (j )

(
R − R(j )

e

)2)]

· Y
l1,l2
L,M (r1, r2)

]
, (3)

where the Hylleraas-like coordinates s = r1 + r2, t = r1 − r2,
and R = r12 are employed in the same manner as in our previous
paper (Hijikata et al. 2009). Here, r1 is the distance from the
electron to the first nucleus, r2 is the distance from the electron
to the second nucleus, and R is the internuclear distance. J is
the number of different exponent sets. Y l1,l2

L,M (r1, r2) are the solid
spherical harmonics (Schwartz 1961) used to represent a total
spatial angular momentum, given by

Y
l1,l2
L,M (r1, r2) = (−1)l2−l1−M

√
2L + 1 · r

l1
1 r

l2
2

·
min(l1,M+l2)∑

m=− max(−l1,M−l2)

(
l1 l2 L
m M − m −M

)
× Yl1,m(r̂1)Yl2,M−m(r̂2), (4)

where L is the quantum number of total angular momentum
and M is its z element. L and M are conserved as a quantum
number. Although l1 and l2 are not quantum numbers, l1+l2 is
conserved. 1 ±P12 describes the nuclear spin statics originating
from fermion or boson particles. Since the proton is a fermion,
we use a plus sign for the singlet and a minus sign for the
triplet in Equation (3). The rotational mode relates to the
nuclear spin statics. For the angular momentum states with
even parity (S, D, G, I, . . .), the bound (stable) states should
be singlets because the spatial wave function is symmetric and
the spin state must be antisymmetric. For odd parity states (P, F,
H, . . .), the stable states should be triplets. Otherwise, the states
would become mostly dissociative. We employed the Gaussian
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function exp(−γ (j )(R−R
(j )
e )2) for the R coordinate to represent

the lower harmonic vibrational motions efficiently, where R
(j )
e

is another nonlinear parameter.
We also employed the same g function as in the previous

paper (Hijikata et al. 2009),

g = − 1

VNe

+
1

VNN

= s2 − t2

4s
+ R, (5)

where VNe represents the nucleus–electron attraction potential
(with nuclear charge Z = 1) and VNN is the nucleus–nucleus
repulsive potential. The generated wave function has the form

ψ = (1 ± P12)

[ ∑
(a,b,c,j,l1,l2)

C(a,b,c,j,l1,l2) · satbRc· exp(−α(j )s)

× exp
( − γ (j )

(
R − R(j )

e

)2) · Y
l1,l2
L,M (r1, r2)

]
, (6)

where both a and c have the values of integers including negative
integers. For the present system, however, the functions using
negative integers of a are not very significant because the
three-particle coalescence is very rare and their functions were
neglected. However, negative integers of c would contribute to
the representation of the flexibility of the vibrational motion.
As for increasing the order, Rc for highly vibrational excited
states is automatically generated by Equation (1). Index b
only runs over positive (even or odd) integers, including zero.
C(a,b,c,j,l1,l2) is the unknown coefficient determined with the
variational method. Since the Hamiltonian is totally symmetric,
the IC process of Equation (1) does not change the angular
quantum numbers L, M, and l1+l2 in Y

l1,l2
L,M (r1, r2) from the initial

function. For highly angular momentum (rotational) excited
states, therefore, we can independently perform the calculations
with the different sets of L, M, and l1+l2.

3. BORN–OPPENHEIMER REFERENCE CALCULATIONS

Before proceeding to the fully non-BO calculations, it is
worthwhile to draw the BO potential energy curves to aid in
understanding the non-BO results. The formal exact solution of
the BO H2

+ system was previously proposed many years ago
(Baber & Hasse 1935), but it is necessary to obtain numerically
accurate results at the various nuclear coordinates R, both for the
electronic ground and excited states. We also performed the FC
calculations for the BO case (Ishikawa et al. 2012). The initial
and g functions used here for σg symmetry are given by

ψ0 = (1 + P12)
4∑

i=1

exp(−αir1) (7)

and
g = r1 + r2, (8)

respectively, where four different exponents (α1 = 1, α2 =
1/2, α3 = 1/3, α4 = 1/4) are employed to represent both the
electronic ground and excited states. Figure 1 shows the BO
potential energy curves for 1s σg , 2s σg , and 3d σg , whose as-
signments are derived from the united atom He+ at the limit R
= 0. The potential energy curves were described at 0.1 atomic
units (a.u., see footnote 4) intervals, from 0.5 to 40 a.u., with
n = 6 and Mn = 112. The 1s σg state has a total energy of

Figure 1. BO potential energy curves of 1s σg , 2s σg , and 3d σg with R = 0.5–40
a.u., calculated by the FC method at n = 6 with Mn = 112. The equilibrium
distance of 1s σg was Re = 2.0 a.u. with the energy E = −0.602 634 214 a.u.,
and that of 3d σg was Re = 8.8 a.u. with the energy E = −0.175 046 890 a.u.

(A color version of this figure is available in the online journal.)

−0.602 634 214 a.u. (binding energy 2.79 electron volt (eV))
at the equilibrium distance Re = 2.0 a.u. Throughout this paper,
the figure that should be correct is shown in bold. Furthermore
the precise equilibrium distance was reported as Re = 1.997
193 320 a.u. with the total energy of −0.602 634 619
107 a.u. (Bishop 1970). The intersystem crossing appears be-
tween 2s σg and 3d σg , around R = 4.0 a.u. The 2s σg state
shows a dissociative curve, but 3d σg has a minimum with a
total energy of −0.175 046 890 a.u. (binding energy 1.36 eV) at
Re = 8.8 a.u. Therefore, the first bound electronic excited state
in the σg symmetry can be assigned to 3d σg .

4. 1S (L = 0, M = 0) STATES BELONGING TO
THE ELECTRONIC GROUND STATE: 1s σg

Let us begin the fully non-BO calculations of the totally
symmetric 1S (L = 0, M = 0) states. This paper uses the mass
of the proton nucleus, mp = 1836.152 672 47 a.u., from NIST
2006.5 The ψ0 and g functions of Equations (3) and (5) were used
with (L, M, l1, l2) = (0, 0, 0, 0) and even parity. To describe both
the electronic ground and excited states belonging to the BO
states 1s σg , 2s σg , and 3d σg , three different sets of exponents
(J = 3) were employed,

α(1) = 1.0, γ (1) = 4.0, R(1)
e = 2.0

α(2) = 0.5, γ (2) = 1.0, R(2)
e = 8.8

α(3) = 1/3, γ (3) = 1.0, R(3)
e = 8.8.

(9)

These were estimated by referring to the BO potential energy
curves obtained in Section 3. The first set in Equation (9) is for
the states belonging to 1s σg , and the second and third sets are
for 2s σg and 3d σg , respectively. These diffuse exponents also
help us efficiently describe the highly vibrational excited states.

We performed the calculations up to the order of n = 15.
Table 1 summarizes the calculated energies of the lowest 16
states corresponding to the vibrational levels v = 0–15 (11S to
161S), at n = 13, 14, and 15 with Mn = 15117, 18648, and 22689,
respectively. Their vibronic states were simultaneously obtained

5 NIST 2006, see http://physics.nist.gov/cuu/Constants/.
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Table 1
The Calculated Energies (a.u.) of the Lowest 16 states (11S to 161S, v = 0 –15) for 1S (L = 0, M = 0) Belonging to the Electronic Ground State

1s σg , with the FC Wave Functions at n = 13, 14, and 15 with Mn = 15117, 18648, and 22689

State v n = 13, Mn = 15117 n = 14, Mn = 18648 n = 15, Mn = 22689 Ref. (1)a

11S 0 −0.597 139 063 079 175 256 939 258 −0.597 139 063 079 175 256 939 364 −0.597 139 063 079 175 256 939 379 108 −0.597 139 063 123 40
21S 1 −0.587 155 679 095 614 799 299 648 −0.587 155 679 095 614 799 300 529 −0.587 155 679 095 614 799 300 613 −0.587 155 679 212 75
31S 2 −0.577 751 904 414 194 306 813 623 −0.577 751 904 414 194 306 819 170 −0.577 751 904 414 194 306 819 493 −0.577 751 904 595 47
41S 3 −0.568 908 498 729 701 336 431 −0.568 908 498 729 701 336 462 119 −−0.568 908 498 729 701 336 463 186 −0.568 908 498 966 77
51S 4 −0.560 609 220 848 267 607 687 −0.560 609 220 848 267 608 097 029 −0.560 609 220 848 267 608 100 762 −0.560 609 221 133 07
61S 5 −0.552 840 749 894 956 888 −0.552 840 749 894 956 906 668 −0.552 840 749 894 956 906 711 321 −0.552 840 750 219 66
71S 6 −0.545 592 650 992 074 840 −0.545 592 650 992 075 298 125 −0.545 592 650 992 075 299 018 080 −0.545 592 651 349 00
81S 7 −0.538 857 386 965 534 819 −0.538 857 386 965 538 784 −0.538 857 386 965 538 791 946 918 −0.538 857 387 347 02
91S 8 −0.532 630 379 354 314 −0.532 630 379 354 320 118 −0.532 630 379 354 320 125 314 701 −0.532 630 379 752 64
101S 9 −0.526 910 124 014 298 −0.526 910 124 014 318 412 −0.526 910 124 014 318 467 486 −0.526 910 124 421 61
111S 10 −0.521 698 369 012 168 −0.521 698 369 012 238 530 −0.521 698 369 012 238 639 855 −0.521 698 369 420 35
121S 11 −0.517 000 365 276 605 −0.517 000 365 276 788 323 −0.517 000 365 276 788 882 957 −0.517 000 365 677 16
131S 12 −0.512 825 203 143 532 −0.512 825 203 143 678 712 −0.512 825 203 143 678 957 245 −0.512 825 203 527 19
141S 13 −0.509 186 248 365 407 −0.509 186 248 366 536 726 −0.509 186 248 366 539 253 249 −0.509 186 248 723 35
151S 14 −0.506 101 680 965 848 −0.506 101 680 967 187 952 −0.506 101 680 967 192 772 233 −0.506 101 681 286 51
161S 15 −0.503 595 084 997 274 −0.503 595 084 997 889 840 −0.503 595 084 997 892 902 790 −0.503 595 085 267 77
Dis.b −0.499 727 839 −0.499 727 839 −0.499 727 839

Notes.
a Proton mass: mp = 1836. 152 701 a.u. was used in this reference. This value is different from the value used in the present work.
b Dissociation limit (H(1s) + H+) with the finite nuclei.
Reference. (1) Hilico et al. 2000.

by a single diagonalization of the same secular equation. As
the orders increased, the energies of all of the vibrational
states converged to their exact values and extremely accurate
solutions were obtained. However, the ground-state energy was
a little worse than the value we reported in our first paper
(Hijikata et al. 2009), since the order of the FC method is
smaller than the previous one that did not employ diffuse sets
of exponents. For the first three vibrational states, the previous
results (Hijikata et al. 2009) were variationally the best, even
though the ground-state energy has almost 22 digits accuracy
at n = 15 in the present work. In contrast, the most accurate
solutions for the higher vibrational excited states were obtained
in the published literature. However, the convergent rates for the
higher vibrational states become a little slower than those for the
lower states, since the higher order Rc terms, which contribute to
the higher vibrational wave functions, are gradually introduced
as the order increases.

The electronic ground state of H2
+ dissociates to H(1S) +

H+ with the internal total energy −0.499 727 839 a.u. while
considering the finite nucleus mass effect, where H+ is consid-
ered to be just a free particle. The number of the bound vibronic
states lower than the dissociation limit should be finite (Hilico
et al. 2000; Wind 1965; Beckel & Hansen 1970). Unfortunately,
the present form of the wave function still lacks diffuse functions
that sufficiently describe the higher levels very near dissociation.
In our subsequent paper in this series (Nakashima & Nakatsuji
2013), we further focus on the more highly vibronic states close
to dissociation that have levels experimentally investigated using
fine spectroscopy. Their importance is known as an elementary
step for capturing the electrons for cold molecules (Critchley
et al. 2003).

5. 1S (L = 0, M = 0) STATES BELONGING TO
THE ELECTRONIC EXCITED STATE: 3d σg

5.1. Diagonalization of the Real Hamiltonian

In the diagonalization on the symmetry 1S (L = 0,
M = 0), the vibronic solutions corresponding to the electronic

excited states of 3d σg are simultaneously obtained with the vi-
bronic states of the electronic ground state. Since the diffuse
nonlinear exponents were employed in our initial function (see
Equation (9)), the complement functions for the 3d σg elec-
tronic excited state can be generated efficiently. These states,
however, are embedded in the continuum because their energies
are higher than the dissociation H(1S) + H+. In the diagonal-
ization of the real Hamiltonian, unphysical roots that mimic the
continuum would appear around the bound physical states. For-
tunately, the bound solutions are distinguishable by checking
the convergences of the FC wave functions. The energies of
the physical bound states correctly converge to some constants
(exact values), but the unphysical roots do not converge even if
the complement function space becomes enlarged.

Table 2 shows the nine eigenstates, v = 0 to 8, denoted by e11S
to e91S, with n = 13, 14, and 15. Their total energies were located
above the minimum of the BO 3d σg potential curve at Re =
8.8 a.u. All the vibronic states (e11S to e91S) smoothly converged
and maintained the variational upper bound while the orders
increased. Therefore, these vibronic states should be physical
and have bounded natures. The energy of the e11S state was
very precise with 27 correct digits. Interestingly, this accuracy
was better than that of the 1S state belonging to the electronic
ground state, since double diffuse exponents were used. The
other vibronic excited states were also quite accurately obtained.
The eigenvalues just below e11S were −0.187 278, −0.203 513,
and −0.175 924 a.u. at n = 13, 14, and 15, respectively. This
value does not converge at all and should be an unphysical root.
Thus, the vibronic states belonging to the electronic excited
states embedded in the continuum could be obtained without
any practical difficulty using the FC method. The electronic
0–0 excitation energy between the vibrational ground states of
1s σg and 3d σg (between 11S and e11S) was 0.423 172 869 452
689 322 665 212 272 352 250 a.u. (11.515 eV), which can be
accurately compatible with the experiments. There are almost
no reports in the literature about the fully non-BO vibronic levels
of the electronic excited states, and the present study provides
the first accurate calculations for these states. Figure 2 plots all
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Figure 2. All the eigenvalues calculated at n = 8–15 plotted in the region E = −0.6 to 0.0 a.u. Each cross point represents the eigenstates of the real Hamiltonian
matrix.

(A color version of this figure is available in the online journal.)

Table 2
The Calculated Energies (a.u.) of the Lowest Nine States (e11S to e91S, v = 0–8) for 1S (L = 0, M = 0) Belonging to the Electronic Excited State 3d σg ,

with the FC Wave Functions at n = 13, 14, and 15 with Mn = 15117, 18648, and 22689

State v n = 13, Mn = 15117 n = 14, Mn = 18648 n = 15, Mn = 22689
e11S 0 −0.173 966 193 626 485 934 274 166 787 −0.173 966 193 626 485 934 274 166 834 277 −0.173 966 193 626 485 934 274 166 835 647 750
e21S 1 −0.172 021 711 736 949 357 358 625 −0.172 021 711 736 949 357 358 666 630 −0.172 021 711 736 949 357 358 668 041 064
e31S 2 −0.170 123 562 006 598 368 208 −0.170 123 562 006 598 368 223 974 −0.170 123 562 006 598 368 224 587 711
e41S 3 −0.168 270 818 426 609 797 −0.168 270 818 426 609 800 391 −0.168 270 818 426 609 800 541 653
e51S 4 −0.166 462 611 337 971 602 −0.166 462 611 337 972 034 −0.166 462 611 337 972 057 730
e61S 5 −0.164 698 126 883 212 −0.164 698 126 883 250 016 −0.164 698 126 883 252 368
e71S 6 −0.162 976 606 662 685 −0.162 976 606 664 906 −0.162 976 606 665 071 427
e81S 7 −0.161 297 347 514 −0.161 297 347 605 595 −0.161 297 347 613 689
e91S 8 −0.159 659 699 167 −0.159 659 701 760 −0.159 659 702 040 901
Dis.a −0.124 931 959 −0.124 931 959 −0.124 931 959

Note. a Dissociation limit (H(2s) + H+) with the finite nuclei.

the eigenvalues in the region, E = −0.6 to 0.0 a.u. at n = 8–15.
As shown above, the physical solutions corresponding to the
electronic excited state are distinguishable but the number of
unphysical roots rather increases as n becomes large.

5.2. Diagonalization of the Complex-scaled Hamiltonian

To examine the amplitude of the state coupling between the
bound states and the continuum, we performed complex scaled
calculations (Aguilar & Combes 1971; Balslev & Combes 1971;
Simon 1972; Moiseyev 1998; Ehara & Sommerfield 2012;
Morita & Yabushita 2008). The complex scaled Hamiltonian
for the nonrelativistic Schrödinger equation is generally given
by

H (θ ) = e−2iθ T + e−iθV , (10)

where T and V are the real kinetic and potential operators,
respectively, and θ is a rotational angle to the complex plane.
The secular equation for the complex Hamiltonian is given by

H(θ )C(θ ) = SC(θ )E(θ ), (11)

where H(θ ) and S are the complex Hamiltonian and overlap
matrices defined as

Hij (θ ) = 〈φi |H (θ )|φj 〉, Sij (θ ) = 〈φi |φj 〉, (12)

and C(θ ) and E(θ ) correspond to the complex eigenvectors and
eigenvalues which are obtained by solving the complex eigen-
value secular equation, Equation (11). Here, we assume that the
basis set (complement function in our case) is independent of θ .

With this formalism, the bound or resonance energies are
independent of θ if a complete space is provided. In the actual
calculation, however, since a truly complete space cannot be
provided, the solutions, even those corresponding to the bound
or resonance states, slightly depend on θ . Nevertheless, one can
distinguish the bound and resonance states from the continuum
and unphysical states, which strongly depend on θ , where the
complex eigenvalues rotate according to θ . Table 3 summarizes
the complex eigenvalues of the lowest three vibronic states for
both the electronic ground and excited states, with n = 8 and
Mn = 3918 at θ = 0.04, 0.08, 0.12, 0.16, and 0.20. Figure 3
plots all the complex eigenvalues in the range Re(E(θ )) =
[−0.6, 0.0] and Im(E(θ )) = [−0.08, 0.0].

The imaginary eigenvalues of the lower three vibronic states
of the 1s σg electronic ground state are located in the region
10−10 to 10−16 at θ = 0.04–0.20, and their real parts were
almost independent of θ . As shown in Figure 3, although the
lower vibrational excited states are almost located on the real
axis, the higher vibronic states rotate to the complex plane
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Figure 3. All the complex eigenvalues with n = 8 and Mn = 3918 at θ = 0.04, 0.08, 0.12, 0.16, and 0.20, plotted to the complex plane in the range Re(E(θ )) = [−0.6, 0.0]
and Im(E(θ )) = [−0.08, 0.0]. The left graph shows the states belonging to the electronic ground state, unphysical roots, and a resonance state. The right graph shows
the states belonging to the electronic excited state and other unphysical roots.

(A color version of this figure is available in the online journal.)

Table 3
Complex Eigenvalues (a.u.) of the Theta Dependence of the Low-lying Vibrational States (v = 0, 1, and 2) at n = 8 with Mn = 3918

θ ν = 0 ν = 1 ν = 2

Re(E) Im(E) Re(E) Im(E) Re(E) Im(E)

1s σ g 11S 21S 31S

0.04 −0.597 139 063 079 175 1.56966 × 10−16 −0.587 155 679 095 629 1.06985 × 10−14 −0.577 751 904 416 486 1.13922 × 10−12

0.08 −0.597 139 063 079 173 −7.58710 × 10−16 −0.587 155 679 095 600 −4.79625 × 10−14 −0.577 751 904 411 646 −3.05514 × 10−12

0.12 −0.597 139 063 079 176 6.90623 × 10−15 −0.587 155 679 095 546 1.43139 × 10−13 −0.577 751 904 415 469 1.05927 × 10−11

0.16 −0.597 139 063 079 197 −2.57912 × 10−14 −0.587 155 679 096 479 −1.34969 × 10−13 −0.577 751 904 418 212 −2.77567 × 10−11

0.20 −0.597 139 063 078 998 −1.85329 × 10−14 −0.587 155 679 092 597 −2.58942 × 10−12 −0.577 751 904 319 432 1.00687 × 10−10

3d σ g
e11S e21S e31S

0.04 −0.173 966 193 626 485 −2.60878 × 10−18 −0.172 021 711 736 948 −5.32022 × 10−16 −0.170 123 562 006 371 1.92688 × 10−14

0.08 −0.173 966 193 626 485 −1.24321 × 10−17 −0.172 021 711 736 945 −3.83656 × 10−15 −0.170 123 562 005 711 1.93559 × 10−13

0.12 −0.173 966 193 626 485 −9.06976 × 10−17 −0.172 021 711 736 925 −4.69229 × 10−14 −0.170 123 561 998 005 3.75342 × 10−12

0.16 −0.173 966 193 626 488 −2.79179 × 10−15 −0.172 021 711 736 582 −7.36512 × 10−13 −0.170 123 561 813 252 1.32840 × 10−10

0.20 −0.173 966 193 626 717 −5.06931 × 10−13 −0.172 021 711 658 792 −3.48238 × 10−11 −0.170 123 558 367 653 8.02755 × 10−9

depending on θ due to the insufficient basis space. From
Re(E(θ )) = −0.499 727 a.u. (i.e., the exact dissociation limit of
H(1s) + H+), the eigenstates appear on the complex plane with
the rotation proportional to θ . Their states should be considered
to mimic the continuum, but they are unphysical because there
are no continuum basis functions in the present calculations (all
of the complement functions have the L2 boundary condition).

Also, for the lower vibronic states belonging to the 3d σg

electronic excited state, the imaginary eigenvalues are located
in the range 10−9 to 10−18 at θ = 0.04–0.20, and their real
parts were almost independent of θ (see Table 3). At θ =
0.02, the complex eigenvalues of the e11S state for n =
6, Mn = 1806 and n = 8, Mn = 3918 were −0.173 966
193 626 + 2.207 052×10−17 i and −0.173 966 193 626 +
1.018 484 × 10−18 i a.u., respectively. These imaginary parts
decrease as the order n increases. In Figure 3, one can also
confirm that several lower vibronic states are almost located
on the real axis from Re(E(θ )) ≈ −0.17 a.u. Therefore,

their states can be considered as bounded states, and there is
negligible coupling with the continuum in spite of their being
embedded in the continuum. Therefore, the results obtained
from the diagonalization of the real Hamiltonian should be
sufficiently reliable. In the FC method, we can check the
solution convergences with order by order. Only physical roots
are independent of the enlargement of the bound complement
function space, and the Ritz variational property should hold
even for the excited states. The real eigenvalues embedded in
the continuum, however, completely mix with the unphysical
roots on the real axis. The complex scaled calculation can
be used to distinguish the physical states from the unphysical
states. Further higher energy solutions shown in Figure 3 are
not reliable due to the lack of quality of the wave function.

In Figure 3, one can also notice that a single state exists
around Re(E(θ )) = −0.3 a.u., which is apart from any other
unphysical states. This state is not easily recognized in the real
Hamiltonian energy spectra because it is completely embedded
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Figure 4. Spectra of the calculated non-BO states of the angular momentum L = 0–6 (1S, 3P, 1D, 3F, 1G, 3H, and 1I states) and vibrational level v = 0–2 belonging
to the 1s σg (left) and 3d σg (right) electronic states.

(A color version of this figure is available in the online journal.)

in the continuum and/or unphysical states. However, with the
complex scaled Hamiltonian, it is clearly distinguishable with a
different nature from the unphysical roots. This state is slightly
dependent on θ but that dependency is comparably smaller
than those of the other unphysical states. We examined the θ
trajectory of the complex eigenvalue at n = 8, Mn = 3918 and
found a single kink point at −0.307 − 8.80 × 10−3 i a.u., with an
imaginary part non-negligibly larger than any other bound states.
Therefore, this state might be a resonance state assigned to the
superposition state H(1s) + H+ ↔ H+ + H(1s) in the dissociation
process. To discuss this state in detail, however, more accurate
calculations are necessary that have a more diffuse basis and/
or optimization of the complex exponents (Morita & Yabushita
2008). Since that is not the main purpose of the present paper,
we do not discuss this state in depth.

6. HIGHER ANGULAR MOMENTUM (ROTATIONAL
EXCITED) VIBRONIC STATES

We also performed calculations for the higher angular mo-
mentum vibronic states corresponding to the rotational excita-
tions of L = 0–6 (1S, 3P, 1D, 3F, 1G, 3H, and 1I states). The
nuclear spin states are selected as singlets for even L and triplets
for odd L; otherwise, they belong to the dissociative σu electronic
state. In ψ0 of Equation (3), Y

l1,l2
L,M (r1, r2) with (L, M, l1, l2) =

(L, L, 0, L) was employed. The calculations were performed
with n = 6, except for 1S, whose calculations were discussed
in the above sections. The order n = 6 is sufficiently accurate
for a direct comparison with experimental data, since even the
experimental nuclear mass is only reported up to about 12 digits
(see footnote 5).

Table 4 summarizes the total energies of the higher angular
momentum states (L = 0–6) of the low-lying vibrational states
(v = 0–2) of both the 1s σg and 3d σg electronic states. The
energy differences ΔE between the two states and the rotational
spectra ΔEr of the rigid body model with the inertia moment I

are given by

ΔEr = 1

2I
[L(L + 1) − (L − 1)L] (13)

and are also listed with units cm−1 in Table 4, where I = μR2
e

(μ is the reduced mass between two nuclei). Figure 4 illustrates
the calculated energy levels for 1s σg and 3d σg electronic states,
respectively, on the BO potential curves.

The energy spacing among the angular momentum states
11S–13P, 13P–11D, 11D–13F, 13F–11G, 11G–13H, and
13H–11I, belonging to the 1s σg electronic state and the vi-
brational level v = 0, were 58.232, 116.000, 172.851, 228.257,
282.122, and 333.791 cm−1, respectively. The rotational energy
intervals with the rigid body model at Re = 2.0 a.u. were 59.765,
119.530, 179.294, 239.059, 298.824, and 358.589 cm−1, respec-
tively. The former become small as the angular momentum L
increases, due to the anharmonicity and non-BO effect. In the
rigid body model, the rotational energy intervals are indepen-
dent of the vibrational level, but in the non-BO calculations,
their rotational intervals also become small as the vibrational
level increases. The vibrational energy intervals of 11S(v =
0)–21S(v = 1) and 21S(v = 1)–31S(v = 2) were 2191.100 and
2063.890 cm−1, respectively. Due to the anharmonicity, their
difference becomes small for higher vibrational levels.

As already shown in the above section, the electronic 0–0
excitation was 11.515 eV. The energy spacing among the an-
gular momentum states e11S−e13P, e13P−e11D, e11D−e13F,
e13F−e11G, e11G−e13H, and e13H−e11I, belonging to the elec-
tronic excited state 3d σg and the vibrational level v = 0, were
3.207, 6.052, 9.074, 12.090, 15.099, and 18.100 cm−1, respec-
tively. Their corresponding rotational energy intervals from the
rigid body model were 3.087, 6.174, 9.261, 12.348, 15.435, and
18.522 cm−1 with Re = 8.8 a.u. Since Re is large, their rotational
excitation energies are much smaller than those of the electronic
ground states. Nevertheless, our non-BO calculations were suc-
cessful in describing even their small energy differences.
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Table 4
Summary of the Non-BO Total Energies at n = 15 with Mn = 22689 for 1S and n = 6 with Mn = 2757, 4167, 5118, 6204, 6915,

and 7713 for the 3P, 1D, 3F, 1G, 3H, and 1I States, Respectively

State Electronic state v Energy ΔEa ΔEr

(a.u.) (cm−1) (cm−1)

11S 1s σ g 0 −0.597 139 063 079 175 . . . . . .

13P −0.596 873 738 784 279 [11S–13P: R] 58.232 59.765
11D −0.596 345 205 488 434 [13P–11D: R] 116.000 119.530
13F −0.595 557 638 979 107 [11D–13F: R] 172.851 179.294
11G −0.594 517 169 232 902 [13F–11G: R] 228.357 239.059
13H −0.593 231 728 887 000 [11G–13H: R] 282.122 298.824
11I −0.591 710 864 888 091 [13H–11I: R] 333.791 358.589
21S 1 −0.587 155 679 095 614 [11S–21S: V] 2191.100 . . .

23P −0.586 904 320 912 623 [21S–23P: R] 55.167 59.765
21D −0.586 403 631 504 762 [23P–21D: R] 109.889 119.530
23F −0.585 657 611 848 892 [21D–23F: R] 163.732 179.294
21G −0.584 672 134 090 403 [23F–21G: R] 216.287 239.059
23H −0.583 454 795 822 121 [21G–23H: R] 267.175 298.824
21I −0.582 014 736 829 357 [23H–21I: R] 316.056 358.589
31S 2 −0.577 751 904 414 194 [21S–31S: V] 2063.890 . . .

33P −0.577 514 033 166 [31S–33P: R] 52.207 59.765
31D −0.577 040 234 350 [33P–31D: R] 103.987 119.530
33F −0.576 334 348 352 [31D–33F: R] 154.924 179.294
31G −0.575 401 996 775 [33F–31G: R] 204.628 239.059
33H −0.574 250 472 910 [31G–33H: R] 252.730 298.824
31I −0.572 888 507 609 [33H–31I: R] 298.917 358.589
e11S 3d σ g 0 −0.173 966 193 626 485 [11S–e11S: E] 11.515 eV . . .
e13P −0.173 952 401 595 976 [e11S–e13P: R] 3.027 3.087
e11D −0.173 924 825 667 454 [e13P–e11D: R] 6.052 6.174
e13F −0.173 883 482 093 825 [e11D–e13F: R] 9.074 9.261
e11G −0.173 828 395 223 351 [e13F–e11G: R] 12.090 12.348
e13H −0.173 759 597 462 912 [e11G–e13H: R] 15.099 15.435
e11I −0.173 677 129 223 016 [e13H–e11I: R] 18.100 18.522
e21S 1 −0.172 021 711 736 949 [e11S–e21S: V] 426.764 . . .
e23P −0.172 008 199 400 784 [e21S–e23P: R] 2.966 3.087
e21D −0.171 981 182 770 821 [e23P–e21D: R] 5.929 6.174
e23F −0.171 940 677 923 521 [e21D–e23F: R] 8.890 9.261
e21G −0.171 886 708 928 938 [e23F–e21G: R] 11.845 12.348
e23H −0.171 819 307 850 269 [e21G–e23H: R] 14.793 15.435
e21I −0.171 738 514 603 855 [e23H–e21I: R] 17.732 18.522
e31S 2 −0.170 123 562 006 598 [e21S–e31S: V] 416.596 . . .
e33P −0.170 110 324 629 [e31S–e33P: R] 2.905 3.087
e31D −0.170 083 857 930 [e33P–e31D: R] 5.809 6.174
e33F −0.170 044 177 637 [e31D–e33F: R] 8.709 9.261
e31G −0.169 991 307 230 [e33F–e31G: R] 11.604 12.348
e33H −0.169 925 279 535 [e31G–e33H: R] 14.491 15.435
e31I −0.169 846 130 566 [e33H–e31I: R] 17.371 18.522

Notes. The energy differences ΔE between two states and the rotational energy spectra of the rigid model, ΔEr , are also listed.
a E, V, and R denote that the main features of excitation are electronic, vibrational, and rotational excitations, respectively.

Thus, we numerically showed that the present FC method
could produce very accurate non-BO wave functions corre-
sponding to all types of the electronic, vibrational, and rota-
tional excited states. Their solutions are considered as the non-
relativistic limit including any coupling of motions. The present
theoretical quantum-mechanical study would help in the under-
standing of the experimental fine spectra of hydrogen molecular
ions.

7. CONCLUSION

We performed the fully non-BO calculations of the hydrogen
molecular ion as the simplest application of the FC method.
The non-BO Hamiltonian includes the electronic, vibrational,
and rotational motions, and the exact wave function retains
the symmetry of the nuclear spin statics. Accurately solving

the non-BO Schrödinger equation is the subject that has not
been studied so much as solving the electronic Schrödinger
equation within the BO approximation. The FC method can
easily handle this subject, since an appropriate potentially exact
non-BO wave function is automatically constructed by using the
Hamiltonian of the system. This has been numerically proven
here by applying it to hydrogen molecular ion.

In the present calculations, accurate electronic, vibrational,
and rotational excited states together with the ground state were
obtained successfully. The vibronic states belonging to the elec-
tronic excited states would be embedded in the continuum. If the
state coupling is very small between the physical bound states
and the continuum and/or undesired unphysical roots, then the
direct diagonalization of the real Hamiltonian is sufficient to ob-
tain their embedded bound solutions. To distinguish the bound

8
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states from the continuum, one may examine the convergent be-
haviors by increasing the order. An alternative method is to use
the complex scaled Hamiltonian, where the undesired contin-
uum and/or unphysical roots rotate in the complex plane with a
strong dependence on θ .

The present theoretical study could be used for a direct com-
parison of experimental studies and astronomical observations.
It was also numerically proved that the FC method is a reli-
able theoretical tool for the precise quantum-mechanical study
of the non-BO system. In the subsequent papers in this series
(Nakashima & Nakatsuji 2013), we will discuss the potential
energy analysis from the non-BO wave function, and we focus
on the more highly vibronic or dissociative states close to H + H+

dissociation; this should also be important for fine spectroscopy
and low-temperature physics.

This work was supported by JSPS KAKENHI grant No.
24654184. The computations were partially performed in the
Research Center for Computational Science, Okazaki, Japan.
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