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Higher-order relations for many-particle systems
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Nishikyo-ku, Kyoto 615-8245, Japan

(Received 31 December 2013; accepted 12 May 2014; published online 3 June 2014)

We derived the necessary conditions that must be satisfied by the non-relativistic time-independent
exact wave functions for many-particle systems at a two-particle coalescence (or cusp) point. Some
simple conditions are known to be Kato’s cusp condition (CC) and Rassolov and Chipman’s CC.
In a previous study, we derived an infinite number of necessary conditions that two-particle wave
functions must satisfy at a coalescence point. In the present study, we extend these conditions to
many-particle systems. They are called general coalescence conditions (GCCs), and Kato’s CC and
Rassolov and Chipman’s CC are included as special conditions. GCCs can be applied not only to
Coulombic systems but also to any system in which the interaction between two particles is repre-
sented in a power series of inter-particle distances. We confirmed the correctness of our derivation
of the GCCs by applying the exact wave function of a harmonium in electron-electron and electron-
nucleus coalescence situations. In addition, we applied the free complement (FC) wave functions of
a helium atom to the GCCs to examine the accuracy of the FC wave function in the context of a
coalescence situation. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879266]

I. INTRODUCTION

The behavior of particles can be described by a wave
function which is the solution of the Schrödinger equation
(SE): (Ĥ − E)ψ = 0. If we can solve the SE exactly, then it
will be perfectly possible to understand and predict the behav-
ior of particles from a chemistry perspective. We studied the
“structure” of the exact wave function1 and used it as a free
complement (FC) wave function.2–5 It is guaranteed that the
total energy of the FC wave function converges to the exact
solution of the SE.2–5 The converging speed of the FC wave
function itself is much slower in coalescence (or cusp) points
than in other regions.6

A coalescence point is a singular point where two
charged particles come very near each other and where the
Coulomb potential V̂ in the Hamiltonian diverges to plus or
minus infinity. However, the local energy defined by the sum
of the potential and kinetic terms, i.e., EL ≡ V̂ + K̂ψ/ψ , be-
comes a constant everywhere, even at the singular points, if
the wave function ψ is the exact solution of the SE. This oc-
curs because the kinetic term K̂ψ/ψ exactly cancels the di-
vergence of the Coulomb potential.

The divergence of the local energy does not occur if the
wave function satisfies a coalescence condition (CC). The co-
alescence condition is derived as follows: the SE of N-particle
system can be written using the relative coordinate and the
center of mass coordinate of particle 1 and 2, namely r12 ≡ r2

− r1 and G ≡ (m1r1 + m2r2)/(m1 + m2)where mi is the mass
of particle i, respectively, instead of the coordinates of r1 and
r2. If we integrate out the angular coordinates (θ12 and φ12)
of r12 from the SE with a weighting factor Y ∗

LM (the complex

a)Electronic addresses: y_kurokawa@qcri.or.jp and h.nakatsuji@qcri.or.jp.

conjugate of the spherical harmonics), only the radial coor-
dinate (r12) remains. The integrated SE can be expressed in
a power series with respect to the r12 coordinate when r12 is
very small as∫

dθ12dφ12Y
∗
LM (θ12, φ12)(Ĥ − E) ψ

= c−1r
−1
12 + c0 + c1r12 + c2r

2
12 + · · · , (1)

where the L and M are arbitrary integers (L = 0, 1, 2, · · · and
−L ≤ M ≤ L) and the cns are the expansion coefficients de-
pending on the coordinates of G, 3, 4, . . . , N, L and M, and E.
If the ψ is the exact, the left hand side (lhs) of Eq. (1) is zero.
This is realized only when

cn = 0 (−1 ≤ n < ∞). (2)

These equations are equivalent to what we call “primitive gen-
eral coalescence conditions (pGCCs),” and will play impor-
tant roles in this study, as shown later.

The first equation, c−1 = 0, is equivalent to the Pack and
Byers-Brown’s form7 of Kato’s CC,8

(L + 1)f (1)
LM = ζf

(0)
LM, (3)

where f
(k)
lm is the kth derivative of the lm-component of the

wave function defined by

f
(k)
lm ≡ 1

(k + l)!
lim

r12→0

∂k+l

∂r12
k+l

∫
dθ12dφ12Y

∗
lm(θ12, φ12)ψ.

(4)
ζ ≡ Z1Z2μ12, μ12 is the reduced mass of coalescence particles
1 and 2, and Zi is the charge of particle i. Other necessary
conditions at the coalescence point have been examined in
some situations.9–14

0021-9606/2014/140(21)/214103/11/$30.00 © 2014 AIP Publishing LLC140, 214103-1
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Recently, the cusp-condition-constrained wave functions
have been proposed and used in quantum chemistry; examples
include the R12 method,15–18 the F12 method,18, 19 the Quan-
tum Monte Carlo method,20 and Gaussian functions with a
linear r term.21 The local energies calculated with these wave
functions, at least, do not diverge at the coalescence point.
However, this is not enough since the local energy must be
equal to the total energy E at the coalescence point. There-
fore, other necessary conditions must exist for exact wave
functions.

The next equations, c0 = 0 and c1 = 0 in Eq. (2), were
solved simultaneously, and Rassolov and Chipman’s (RC’s)
CC,9

f
(3)
00 = 2ζ

3
f

(2)
00 − ζ 3

6
f

(0)
00 , (5)

was derived. Generally, the coefficients cn (0 ≤ n) include an
unknown term E and the coordinates of G, 3, 4, . . . , N, but
Rassolov and Chipman eliminated them and derived the RC’s
CC (5) without any unknown terms. This condition states the
relation between the third, second, and zeroth order deriva-
tives of wavefunctions.

There must be other necessary conditions that are derived
from the equations cn = 0 for n = 2, 3, . . . (see Eq. (2)). Based
on this idea, we studied the necessary conditions that the ex-
act wave function of two-particle systems must satisfy at the
coalescence point and derived an infinite number of general
coalescence conditions (GCCs) for two-particle systems in a
previous paper.22

In the previous and present studies, the potential be-
tween coalescence particles 1 and 2 assumes a general form,
V̂12 ≡∑ A

a=−1 C(a)ra
12 (see Sec. II for details). The GCC equa-

tions for two-particle systems are22

2μ12

A∑
a=−1

C(a)f
(n−a−1)
LM − (n + 1)(n + 2 + 2L)f (n+1)

LM

2μ12

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2)(n + 3 + 2L)f (n+2)

LM

= f
(n−1)
LM

f
(n)
LM

(n = 0, 1, 2, . . .). (6)

In general, Eq. (6) states the relations between the (n
−1)th, nth, (n +1)th, (n +2)th, (n – a)th, and (n − a − 1)th
derivatives of the wave function (a = −1,0, . . . , A). Equation
(6) includes every reported CC. For example, for a Coulombic
system (A = −1 and C(−1) = Z1Z2), when n = 0 the equations
reduce to Kato’s CC (3), and when n = 1 they reduce to RC’s
CC (5). The GCCs (6) are valid only for two-particle systems.

In the present paper, we derive the general coalescence
conditions for many-particle systems. The paper is orga-
nized as follows. In Sec. II, we define some quantities in the
Schrödinger equation. In Sec. III A, we derive the “primitive
general coalescence conditions” (pGCCs). These include an
unknown term E. We explain how to eliminate the known
terms and then derive the GCCs in Sec. III B. In Sec. IV, the
GCCs of a Coulombic system are provided as examples, and
in Sec. V, we confirm the correctness of the GCC derivation
by applying the exact wave function of a harmonium;23, 24 in

addition, we apply the free complement (FC) wave functions
of a helium atom.25 A summary is provided in Sec. VI.

II. BASIC FORMULATION

We consider the non-relativistic time-independent
Schrödinger equation of an N-particle system,
(Ĥ − E)ψ = 0. The Hamiltonian can be written as

Ĥ ≡ −
N∑

i=1

1

2mi

∇2
i + V̂ , (7)

where mi is the mass of particle i, and V̂ is the potential writ-
ten generally as

V̂ ≡
N−1∑
i=1

N∑
j>i

Aij∑
a=−1

C
(a)
ij ra

ij , (8)

with integer Aij. Equation (8) can express any potential that
is written in a power series of the inter-particle distance rij;
for example, the Coulomb, harmonic, and V = r potentials.
A combination of different kinds of potentials in a system is
allowed; e.g., Sec. VI shows an example in which the po-
tentials of a harmonium consist of the Coulomb and har-
monic potentials. Note that there is no “cusp” in the ex-
act wave function of the harmonic oscillator, which is why
we use the term “coalescence condition” instead of “cusp
condition.”

We investigate the situation in which particles 1 and 2
come near each other (r12 → 0) and coalesce, while any other
particles i (i ≥ 3) are well separated from the coalescence re-
gion and all the other particles, and fixed at given positions.
Using the relative coordinate, r12, and the center of mass co-
ordinate, G, the SE can be written as[

− 1

2μ12
∇2

r12
+ V12 + W (1, 2 : 3, 4, . . . , N) + Ô − E

]
ψ = 0,

(9)

where V12 is the potential acting between particles 1 and 2 and
is written as

V12 ≡
A12∑

a=−1

C
(a)
12 ra

12, (10)

W is the remaining part of the potentials acting on particles 1
and 2 and is written as

W (1, 2 : 3, 4, . . . , N ) ≡
N∑

i=3

(
A1i∑

a=−1

C
(a)
1i ra

1i +
A2i∑

a=−1

C
(a)
2i ra

2i

)
.

(11)

E is the solution of the SE so generally unknown and the
fourth term is the remaining part of the Hamiltonian and is
written as

Ô ≡ − 1

2m12
∇2

G −
N∑

i=3

1

2mi

∇2
i +

N∑
i=3

N∑
j>i

Aij∑
a=−1

C
(a)
ij ra

ij . (12)

The Ô includes all the variables except for r12. The total en-
ergy E is generally unknown. The W and the second and third
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terms of Ô vanish in two-particle systems (N = 2), leading to
rather simple GCCs.22

Since rIi (i = 3, 4, . . . , N, I = 1 and 2 ) are related by the

cosine theorem to r12 by rI i =
√

r2
GI + r2

Gi + 2rGI rGi , with
rG1 = −r12 m2/m12, rG2 = r12 m1/m12, and m12 ≡ m1 + m2, the
rIi in Eq. (11) can be expressed using r12. The W, therefore,
can be expressed with the radial and angular parts of r12, as

W =
∞∑

q=0

r12
q

q∑
q ′=−q

⎛
⎝ ∞∑

q ′′=0

R
(q ′′)
qq ′ r12

q ′′

⎞
⎠Yqq ′ (θ12, φ12), (13)

where R
(q ′′)
qq ′ is the expansion coefficient depending on the co-

ordinates of G, 3, 4, . . . , N, and θ12 and φ12 represent angles
pointing to the r12 ≡ r2 − r1 direction. Now we can assume
that G, where particles 1 and 2 coalesce, is fixed since the
center of mass of the whole system is fixed, and, as previ-
ously assumed, the coordinates of 3, 4, . . . , N are fixed; there-
fore, the center of mass coordinate of the remaining particles
(i.e., 1 and 2) should be fixed. Consequently, R

(q ′′)
qq ′ is a con-

stant. If W is given in the form of Eq. (11), R(q ′′)
qq ′ is determined

by

R
(q ′′)
qq ′ ≡ lim

r12→0

1

(q + q ′′)

(
∂

∂r12

)q+q ′′ ∫
Y ∗

qq ′ (θ12, φ12)Wd�.

(14)
Some examples of R

(q ′′)
qq ′ s are provided in Appendix B.

The most general bounded solution of Eq. (9) can be ex-
panded around r12 = 0 as

ψ ≡
∞∑
l=0

r12
l

l∑
m=−l

( ∞∑
k=0

f
(k)
lm rk

12

)
Ylm(θ12, φ12), (15)

where f
(k)
lm is the expansion coefficient depending on the co-

ordinate of G, 3, 4, . . . , N. The f
(k)
lm is associated with the

wave functions by Eq. (4). There is no possibility that the
wave function exists in the logarithmic form.26

Consequently, the SE can be expressed using the relative
and the center of mass coordinates.

III. DERIVATION OF THE GENERAL
COALESCENCE CONDITION

A. Primitive general coalescence condition

Using the quantities defend in Sec. II, we can derive
primitive general coalescence conditions (pGCCs), i.e., the
explicit expressions for Eq. (2). The derivations are given
in Appendix A. The final expressions of pGCCs are written
as

−(n + 2)(n + 3 + 2L)f (n+2)
LM + 2μ

A∑
a=−1

C(a)f
(n−a)
LM

+ 2μ

n+L∑
q=0

n+L−q∑
q ′′=0

n+L−q−q ′′∑
l=0

q∑
q ′=−q

×R
(q ′′)
qq ′ ILM

qq ′l,M−q ′′f
(n+L−q−q ′′−l)
l,M−q ′ + 2μÔf

(n)
LM

= 2 μEf
(n)
LM (−1 ≤ n < ∞). (16)

In Eq. (16), the f
(k)
lm s and R

(q ′′)
qq ′ s are associated to the wave

function and potentials in the SE, respectively (see Eqs. (4)
and (14)). The I is a constant defined by Eq. (A3). The pGCCs
are series of necessary conditions which must be satisfied by
the exact wave function at the coalescence point, otherwise
the SE does not hold true. However, the pGCCs for n ≥ 0 are
not useful since they contain the unknown term E. (The “prim-
itive” included in pGCCs implies the presence of an unknown
term). The way of eliminating it from pGGCs is mentioned in
Sec. III B.

In the special case of n = −1, the unknown term vanishes
and Eq. (16) is simplified to

−(1 + L)f (1)
LM + μ

A∑
a=−1

C(a)f
(−1−a)
LM = 0. (17)

This equation represents Kato’s CCs (Eq. (3)) when the po-
tential is Coulombic (A = −1, C(−1) = Z1Z2).

B. Elimination of the unknown terms

In the two-particle case, the unknown term E can be elim-
inated by dividing Eq. (16) for n = n − 1 by the equation
for n = n; this yields Eq. (6).22 In many-particle cases, if we
eliminate the unknown term in the same way, f

(n)
lm appears

in the denominator. However, we cannot tell, in general, in
which case the denominator becomes zero since the f

(n)
lm is

a function of the coordinates of 3, 4, . . . , N. Instead, we can
eliminate the unknown term E in an inductive way as follows.
First, we confirm that Eq. (17) holds even for many-particle
systems with arbitrary L and M (L = 0, 1, 2, . . . and −L
≤ M ≤ L), and it is a zeroth-order GCC. Note that Eq. (17)
is linear with respect to {f

(n)
lm } and it does not include the un-

known term E. Next, we assume that the nth-order GCC for
arbitrary n is given in the linear form with respect to {f

(n)
lm }

as

S∑
s=0

T∑
t=0

t∑
u=−t

a
(s)
tu f

(s)
tu = 0, (18)

where {a
(s)
tu } are the linear combination coefficients or opera-

tors acting on f
(n)
lm , and that all the terms are known (or given).

We further assume without loss of generality that one of the
coefficients, which we call “leading” coefficient, is unity, be-
cause we can always divide Eq. (18) by the leading coeffi-
cient. The definition of the “leading” term is arbitrary. We
employ here a useful definition by choosing the coefficient
with the maximum s value. If there are many such terms,
then the coefficient with the maximum t value should be
chosen.

Operating 2 μE from the left in Eq. (18), we obtain

S∑
s=0

T∑
t=0

t∑
u=−t

a
(s)
tu

(
2 μEf

(s)
tu

) = 0. (19)

We can obtain all the 2 μEf
(s)
tu terms in Eq. (19) from Eq.

(16) by substituting (n, L, M) in Eq. (16) for (s, t, u). Then, we
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obtain
S∑

s=0

T∑
t=0

t∑
u=−t

a
(s)
tu

(
2 μEf

(s)
tu

)

=
S∑

s=0

T∑
t=0

t∑
u=−t

a
(s)
tu

[
− (s + 2)(s + 3 + 2t)f (s+2)

tu

+ 2 μ

A∑
a=−1

C(a)f
(s−a)
tu + 2 μ

s+t∑
q=0

s+t−q∑
q ′′=0

s+t−q−q ′′∑
l=0

q∑
q ′=−q

×R
(q ′′)
qq ′ I tu

qq ′l,u−q ′′f
(s+t−q−q ′′−l)
l,u−q ′ + 2 μÔf

(s)
tu

]
= 0. (20)

The equality to zero comes from Eq. (19). Equation (20) is
a new linear relation among {f

(n)
lm }, which is regarded as the

(n + 1)th-order GCC. Actually, we can rewrite Eq. (20) to
be in the same form as Eq. (18). Note that Eq. (20) always
differs from Eq. (18), because the maximum superscript of
ftu included in Eq. (20) is S + 2, whereas that of Eq. (18) is
S. By performing the same manipulation of Eq. (18) to the
form of Eq. (20) repeatedly, we can generate new GCCs in-
ductively. Consequently, we can obtain an infinite number of
GCCs without unknown terms.

IV. GCCS OF MANY-PARTICLES
FOR COULOMBIC SYSTEMS

In this section, we apply the recursion process described
above to the Coulombic system (Aij = −1, C

(−1)
ij = ZiZj for

all i and j) to obtain a new coalescence condition, as we have
high interest in the Coulombic system. We omit the super-
script (q′′) from R

(q ′′)
qq ′ for simplicity in this section because

only R
(0)
qq ′ (≡ Rqq ′ ) is nonzero in the Coulombic system, as ex-

plained in Appendix B.
First, let us start from Kato’s CC (zeroth-order GCC),

which corresponds to the case of n = −1 and L = M = 0
in Eq. (17),

f
(1)
00 − ζf

(0)
00 = 0, (21)

with ζ ≡ Z1Z2μ12. This corresponds to Eq. (18) with S = 1, T
= 0, a

(1)
00 = 1, and a

(0)
00 = −ζ , and it involves {f

(n)
LM} with (n,

L, M) = (0, 0, 0) and (1, 0, 0). The pGCC (Eq. (16)) for (n, L,
M) = (0, 0, 0) reads

2ζf
(1)
00 − 6f

(2)
00 + μR00√

π
f

(0)
00 + 2 μÔf

(0)
00 = 2 μEf

(0)
00 , (22)

and that for (n, L, M) = (1, 0, 0) reads

2ζf
(2)
00 − 12f

(3)
00 + μR00√

π
f

(1)
00 + 2 μÔf

(1)
00 = 2 μEf

(1)
00 . (23)

Taking the sum of Eq. (23) – ζ × Eq. (22) and using Eq. (21)
yields a new relation,

f
(3)
00 − 2ζ

3
f

(2)
00 + ζ 2

6
f

(1)
00 = 0, (24)

which corresponds to Eq. (20) at the first recurrence. The
“leading term” is f

(3)
00 . Equation (24) is equivalent to the RC’s

CC (Eq. (5)). We call Eq. (24) the first-order GCC for the
L = 0 component.

Next, we start from Eq. (24) and perform a recursion pro-
cess to increase the maximum superscript of f by two. Then,
we obtain

f
(5)
00 − 23

45
ζf

(4)
00 + ζ 2

9
f

(3)
00 − ζ 3

90
f

(2)
00

− μ

30
√

π

1∑
M=−1

(−1)MR1Mf
(1)
1,−M + ζμ

45
√

π

×
1∑

M=−1

(−1)MR1Mf
(0)
1,−M = 0, (25)

which is what we call the second-order GCC for L = 0. The
fifth and sixth terms are the coupling terms between the p-
component of the wave function and the p-component of the
geometry of non-coalescence particles. Thus, the second- and
higher-order GCCs depend on the geometry information for
non-coalescence particles, while the zeroth- and first-order
GCCs do not. Next, we can perform the same process from
Eq. (25) and obtain the third-order GCC. In the third- and
higher-order GCCs, a term of Ôf

(n)
lm appears. This term con-

tains the derivatives of the wave function with respect to the
non-coalescence particles.

It is also possible to start from the zeroth-order GCC with
arbitrary L and M and to generate another series of GCCs. As
an example, here we show a new GCC series starting from L
= 1 and M = 0. First, in this case Eq. (17) becomes

f
(1)
10 − ζ

2 f
(0)
10 = 0, (26)

which is the zeroth-order GCC. The first- and second-order
GCCs are written as

f
(3)
10 − 7ζ

18 f
(2)
10 + ζ 3

36f
(0)
10 − μζ

36
√

π
R10f

(0)
00 = 0 (27)

and

f
(5)
10 − 29

90
ζf

(4)
10 +

(
7

360
ζ 2 − μR00

40
√

π

)
f

(3)
10 +

(
ζ 3

144
+ 7μζ

720
R00

)
f

(2)
10 −

(
ζ 5

1440
+ μζ 3

1440
√

π
R00

)
f

(0)
10

− μ

40
√

π
R10f

(3)
00 + μζ

180
√

π
R10f

(2)
00 +

(
μζ 3

1440
√

π
R10 + μ2ζ

1440π
R10R00

)
f

(0)
00 − μ

20
Ôf

(3)
10 + 7μζ

360
Ôf

(2)
10

−μζ 3

720
Ôf

(0)
10 + μ2ζ

720
√

π
R10Ôf

(0)
00 + 7

√
5μζ

3600
√

π

1∑
M=−1

(−1)M
√

4 − |M|R1Mf
(0)
2M

−
√

5μ

200
√

π

1∑
M=−1

(−1)M
√

4 − |M|R1Mf
(1)
2M −

√
5μζ

1800
√

π

1∑
M=−1

√
4 − |M|R2Mf

(0)
1M = 0, (28)
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respectively. These are the GCCs for L = 1.
Finally, let us investigate the GCCs for a triplet pair of

electrons (ζ = 1
2 ). In this case, the spatial part of the wave

function must be anti-symmetric under permutations of elec-
trons, which means that only odd l values survive the expan-
sion of Eq. (15). Therefore, f

(n)
LM with only odd L values are

nonzero from the definition of Eq. (4), so that the GCC equa-
tions starting from L = 0 are nonsense, i.e., the lhs of Eq. (21)
is always zero and also is the higher order.

The zeroth-order GCC for a triplet pair of electrons be-
comes

f
(1)
10 − 1

4f
(0)
10 = 0 (29)

(see Eq. (26)). Coupling this with Eq. (27) gives

f
(3)
10 − 7

36f
(2)
10 + 1

288f
(0)
10 = 0, (30)

which is equivalent to RC’s CC for the triplet pair of
electrons.9

Thus, the present GCCs for a many-particle system au-
tomatically include Kato’s and RC’s CCs as the zeroth- and
first-order GCCs, respectively. It is possible to derive higher-
order GCC equations for any L and M values.

V. EXAMINATION OF GCCS FOR HARMONIUM
AND HELIUM ATOMS

In this section, we apply the exact wave functions of
a harmonium to the GCCs to check the correctness of the
GCCs’ derivation. Also, we apply the FC wave function of a
helium atom to examine how accurately the FC wave function
is calculated. The harmonium is a special system because it
consists of three particles and the exact wave function is writ-
ten in closed form.23, 24 The FC method is proposed by one
of the authors for obtaining the exact wave function of any
system.2–5 The FC wave function of a helium atom used here
is not written in closed form, but its energy has more than 42
digits of accuracy.25

A. Nucleus-electron coalescence of a harmonium

First, we check the nucleus-electron (n-e) coalescence of
a harmonium, numbering the nucleus as 1, the coalescence
electron as 2, and the other electron as 3, and we assume the
Born-Oppenheimer approximation as shown in Fig. 1. We de-
fine the variables r12 = r2, r13 = r3, θ12 = θ2, and φ12 = φ2.
One of the Hamiltonians whose solution is written in closed
form is24

Ĥ = −1

2

(∇2
2 + ∇2

3

)+ 1

8

(
r2

2 + r2
3

)+ 1

r23
, (31)

and its eigenfunction is

ψ = Nnorm exp
(− 1

4 r2
2

)
exp

(− 1
4 r2

3

) (
1 + 1

2 r23
)
, (32)

where Nnorm is the normalization constant. Now we investi-
gate the situation that electron 2 comes close to nucleus 1.
The parameters in Eq. (9) are V12 = 1

8 r2
2 and W = 1

8 r2
3 + 1

r23
.

We assume that electron 3 is fixed at (r3, θ3, φ3) = (G, 0, 0).
Then, W is written as

W = 1

8
G2 +

∞∑
q=0

√
4π

2q + 1

q∑
q ′=−q

(−1)q
′ (q − |q ′|)!
(q + |q ′|)!

×Yqq ′ (θ2, φ2)
r

q

2

Gq+1
, (33)

where we used the Perkins expansion to express 1/r23 with r2
(see Eq. (B2) in Appendix B).27

Comparing Eq. (33) with Eq. (13), we get

R
(q ′′)
qq ′ = 0 (for q ′′ �= 0),

(34)

R
(0)
qq ′ =

√
4π

2q + 1

[
1

8
G2δq,0 + (−1)q

′ 1

Gq+1

(q − |q ′|)!
(q + |q ′|)!

]
.

It is also possible to directly calculate these terms from
Eq. (14).

Using these quantities in Eq. (16), we obtain the pGCCs
for the (L,M) = (0,0) component as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(1)
00 = 0 (n = −1)

8 + G3

4G
f

(0)
00 − 6f

(2)
00 + 2Ôf

(0)
00 = 2Ef

(0)
00 (n = 0)

8 + G3

4G
f

(1)
00 − 12f

(3)
00 + 2Ôf

(1)
00 = 2Ef

(1)
00 (n = 1)

1

4
f

(0)
00 + 3G3 + 24

12G
f

(2)
00 − 20f

(4)
00 + 2

√
3

3G2
f

(0)
10 + 2Ôf

(2)
00 = 2Ef

(2)
00 (n = 2) ,

1

4
f

(1)
00 + 3G3 + 24

12G
f

(3)
00 − 30f

(5)
00 + 2

√
3

3G2
f

(1)
10 + 2Ôf

(3)
00 = 2Ef

(3)
00 (n = 3)

...

(35)

and for the (L,M) = (1,0) component as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(1)
10 = 0 (n = −1)

2
√

3

3G2
f

(0)
00 + 24 + 3G3

12G
f

(0)
10 − 10f

(2)
10 + 2Ôf

(0)
10 = 2Ef

(0)
10 (n = 0)

2
√

3

3G2
f

(1)
00 + 24 + 3G3

12G
f

(1)
10 − 18f

(3)
10 + 2Ôf

(1)
10 = 2Ef

(1)
10 (n = 1)

2
√

3

3G2
f

(2)
00 + 48 + 15G3

60G3
f

(0)
10 + 15G3 + 120

60G
f

(2)
10 − 28f

(4)
10 + 4√

15G2
f

(0)
20 + 2Ôf

(2)
10 = 2Ef

(2)
10 (n = 2)

2
√

3

3G2
f

(3)
00 + 48 + 15G3

60G3
f

(1)
10 + 15G3 + 120

60G
f

(3)
10 − 40f

(5)
10 + 4√

15G2
f

(1)
20 + 2Ôf

(3)
10 = 2Ef

(3)
10 (n = 3)

...

. (36)

The pGCCs for (n,L,M) = (−1,0,0) and (−1,1,0) read f
(1)
00 = 0 and f

(1)
10 = 0, respectively, which do not include the unknown

terms. These are the zeroth-order GCCs for the (L,M) = (0,0) and (1,0) components, respectively. Substituting them for the
pGCCs for (n,L,M) = (1,0,0) and (1,1,0) leads to f

(3)
00 = 0 and f

(3)
10 = 0, which are the first-order GCCs. Similarly, we can

obtain pGCCs for other sets of Ls, and use them successively to yield

f
(k)
L0 = 0 (k : odd, L = 0, 1, 2, . . . .). (37)

These equations do not include any unknown terms and do not depend on the position of the non-coalescence electron. Equation
(37) is the [(k − 1)/2]th-order GCCs of the (L,0) components for the n-e coalescence of harmonium. In brief, these equations
state that the odd derivatives of the wave function are zero at the coalescence point. Unfortunately, we could not derive any
useful information about the even derivatives of the wave function.

Next, we verified whether or not the exact wave function, Eq. (32), satisfies these GCCs. The wave function can be written
using the r2 and r3 coordinates as

ψ =Nnorm exp
(− 1

4 r2
2

)
exp

(− 1
4 r2

3

)⎧⎨⎩1+ 1

2

∞∑
q=0

⎡
⎣ 4π

2q + 1

q∑
q ′=−q

(−1)qYq,−q ′ (θ3, φ3)Yqq ′ (θ2, φ2)

(
C1q0

r
q

2

r
q+1
3

+ C1q1
r

q+2
2

r
q+3
3

)⎤⎦
⎫⎬
⎭ ,

(38)

where we used the Perkins expansion to express r23 with r2 and r3 (see Eq. (B2) in Appendix B). Substituting Eq. (38)
for Eq. (4) for odd k gives Eq. (37). Thus, we could verify that the exact wave function of the harmonium satisfies the
n-e GCCs.

B. Electron-electron coalescence of a harmonium

In this subsection, we discuss the e-e coalescence of a harmonium: electrons 1 and 2 coalesce with each other at the origin g =
(0,0,0), r13 = r1, r13 = r2, and μ = 1 / 2 (see Fig. 2). We assume that nucleus 3 is fixed at (r3, θ3, φ3) = (G, 0, 0). The parameters
in the Hamiltonian becomes V12 = 1/r12 and W = 1

8 (r2
1 + r2

2 ) = 1
4G2 + 1

16 r2
12. Comparing these with Eqs. (10) and (13) gives

A12 = −1, C(−1) = 1, R
(0)
00 = G2√π/2, R

(2)
00 = √

π/8, and R
(q ′′)
qq ′ = 0(otherwise). Using these parameters in Eq. (17), we get

the pGCCs for the (L,M) = (0,0) component as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(1)
00 − 1

2f
(0)
00 = 0 (n = −1)

1
4G2f

(0)
00 − 6f

(2)
00 + f

(1)
00 + Ôf

(0)
00 = Ef

(0)
00 (n = 0)

1
4G2f

(1)
00 − 12f

(3)
00 + f

(2)
00 + Ôf

(1)
00 = Ef

(1)
00 (n = 1)

1
4G2f

(2)
00 + 1

16f
(0)
00 − 20f

(4)
00 + f

(3)
00 + Ôf

(2)
00 = Ef

(2)
00 (n = 2)

...

1
4G2f

(n)
00 + 1

16f
(n−2)
00 − (n + 2) (n + 3) f

(n+2)
00 + f

(n+1)
00 + Ôf

(n)
00 = Ef

(n)
00 (n = n)

. (39)
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The GCCs are provided after eliminating the unknown terms along with the way, as mentioned in Sec. IV. For example, the
zeroth- to third-order GCCs are

f
(1)
00 − 1

2
f

(0)
00 = 0, (40)

f
(3)
00 − 1

3
f

(2)
00 −

(
1

48
G2 − 1

24

)
f

(1)
00 + 1

96
G2f

(0)
00 = 0, (41)

f
(5)
00 − 23

90
f

(4)
00 +

(
− 1

60
G2 + 1

36

)
f

(3)
00 +

(
1

180
G2 − 1

720

)
f

(2)
00

+
(

1

5760
G4 − 1

1440
G2 − 1

480

)
f

(1)
00 +

(
− 1

11520
G4 + 1

1440

)
f

(0)
00 = 0, (42)

and

f
(7)
00 − 22

105
f

(6)
00 +

(
7

360
− 3

224
G2

)
f

(5)
00 +

(
− 1

1008
+ 23

6720
G2

)
f

(4)
00

+
(

− 1

2688
G2 + 1

8960
G4 − 31

20160

)
f

(3)
00 +

(
1

53760
G2 + 1

2520
− 1

26880
G4

)
f

(2)
00

+
(

1

215040
G4 − 1

23040
− 1

1290240
G6 + 1

35840
G2

)
f

(1)
00

+
(

− 1

107520
G2 + 1

2580480
G6 + 1

645120

)
f

(0)
00 = 0, (43)

respectively.

The exact wave function of the harmonium can be written
using the r12 coordinate as

ψ = Nnorm exp
(− 1

2G2
)

exp
(− 1

8 r2
12

) (
1 + 1

2 r12
)
. (44)

The f
(k)
lm values are calculated from Eq. (4) to be

f
(0)
00 =4πNnorm exp

(− 1
2G2

)
,

f
(k)
00 =f

(0)
00

(−1

8

)(k / 2) 1

(k/2)!
(f or k = 2, 4, 6, . . .), (45)

f
(k)
00 =f

(0)
00

1

2

(−1

8

)(k−1)/2 1[
(k−1)/2

]
!

(f or k=1, 3, 5, . . .).

FIG. 1. Nucleus-electron coalescence of a harmonium. Bold lines indicate
the harmonic potentials.

It is possible to verify that the exact wave function satisfies
the GCCs if Eq. (45) is substituted for Eqs. (40)–(43).

We can obtain the GCCs for the L = 1, 2, 3,. . . compo-
nents similarly to the L = 0 case. However, they are automat-
ically satisfied by the exact wave functions because Eq. (44)
has no L = 1, 2, 3, . . . components; thus, f

(k)
LM = 0 for L = 1,

2, 3, . . . .
Consequently, we could verify that the exact wave

function of the harmonium satisfies both the n-e and e-e
GCCs.

FIG. 2. Electron-electron coalescence of a harmonium. Bold lines indicate
the harmonic potentials.
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C. Nucleus-electron coalescence values
of a helium atom

In this section, we apply the FC wave functions of a he-
lium atom to the GCCs. The wave function has an accuracy
of more than 42 digits in energy.25

We fixed the positions of nucleus 1 and electron 3 at
(r1, θ1, φ1) = (0, 0, 0) and (r3, θ3, φ3) = (1, 0, 0) , respec-
tively, and assumed that electron 2 approaches the nucleus, as
shown in Fig. 3. The parameters are set as μ = 1, A = −1,

C(−1) = −2, R
(0)
q0 =

√
4π

2q+1

(
2δq0 − 1

)
, and R

(q ′′)
qq ′ = 0 (for q′

�= 0 or q′′ = 0).

We define the nth-order coalescence values, F
(n)
LM , to be

the lhs of the nth-order GCCs. The low-order n-e coalescence
values of the helium atom for the (L, M) = (0,0) and (L, M) =
(1,0) components are as follows:

F
(0)
00 ≡ f

(1)
00 + 2f

(0)
00 , (46)

F
(1)
00 ≡ f

(3)
00 + 4

3f
(2)
00 − 4

3f
(0)
00 , (47)

F
(2)
00 ≡ f

(5)
00 + 46

45f
(4)
00 − 68

135f
(2)
00 + 16

27f
(0)
00 −

√
3

45 f
(1)
10 − 4

√
3

135 f
(0)
10 ,

(48)

F
(3)
00 ≡ f

(7)
00 + 88

105f
(6)
00 + 137

1260f
(5)
00 − 271

1890f
(4)
00 − 34

945f
(3)
00 + 43

945f
(2)
00 − 121

1890f
(0)
00

− 1
28 Ôf

(5)
00 − 23

630 Ôf
(4)
00 + 17

945 Ôf
(2)
00 − 4

189 Ôf
(0)
00 − 2

√
3

105 f
(3)
10 − 2

√
3

105 f
(2)
10

− 11
√

3
3780 f

(1)
10 − 2

√
3

405 f
(0)
10 +

√
3

1260 Ôf
(1)
10 +

√
3

945 Ôf
(0)
10 − 23

√
5

3150 f
(0)
20 −

√
5

140f
(1)
20 = 0, (49)

F
(0)
10 ≡ f

(1)
10 + f

(0)
10 , (50)

F
(1)
10 ≡ f

(3)
10 + 7

9f
(2)
10 − 2

9f
(0)
10 +

√
3

27 f
(0)
00 , (51)

F
(2)
10 ≡ f

(5)
10 + 29

45f
(4)
10 + 23

180f
(3)
10 − 1

60f
(2)
10 + 7

450f
(0)
10

− 1
20 Ôf

(3)
10 − 7

180 Ôf
(2)
10 + 1

90 Ôf
(0)
10 −

√
3

540 Ôf
(0)
00

−
√

3
60 f

(3)
00 −

√
3

135f
(2)
00 −

√
15

150 f
(1)
20 − 7

√
15

1350 f
(0)
20 −

√
3

540f
(0)
00 ,

(52)

FIG. 3. Nucleus-electron coalescence of a helium atom.

and so on. All of the F values should be zero if they are cal-
culated with the exact wave function.

Fig. 4 shows the coalescence values of the FC wave func-
tions of the helium atom in the ground state for the L = 0 and
L = 1 components, where the x-axis represents the order of
the FC wave function; i.e., the accuracy of the wave function
and the y-axis represents ln |F (n)

LM |. It is observed that as the
wave function becomes more accurate, the coalescence val-
ues of n = 0, 1, 2, and 3 for the (L, M) = (0,0) component and
those of n = 0, 1, and 2 for the (L, M) = (1,0) component con-
verge to zero. In other words, the FC wave function satisfies
those GCCs. The convergence speed of the low-order coales-
cence values is faster than that of the high-order coalescence
values.

FIG. 4. Logarithmic plot of the nucleus-electron coalescence values of the
FC wave functions of the helium atom in the ground state for the (a) (L,M)
= (0,0) and (b) (L,M) = (1,0) components. “n” represents the order of the
coalescence values. The x-axis represents the order of the FC wave function,
i.e., the accuracy of the wave function.
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FIG. 5. Electron-electron coalescence of a helium atom.

D. Electron-electron coalescence values
of a helium atom

Finally, in this subsection we check the e-e coalescence
of the FC wave functions of a helium atom. We fixed the po-
sition of nucleus 3 at (r3, θ3, φ3) = (1, 0, 0), and assumed
that electrons 1 and 2 come near each other and coalesce at
g = (0,0,0), as shown in Fig. 5. The parameters are set at μ

= 1 / 2, A = −1, C(−1) = 1, R(0)
q0 = −4

√
π

2q+1 [(−1)q + 1] / 2q ,

and R
(q ′′)
qq ′ = 0 (for q′ �= 0 or q′′ = 0).

We define the nth-order coalescence values, F
(n)
LM , to be

the lhs of the nth-order GCCs, similar to the n-e case. Low-
order e-e coalescence values of the helium atom for the (L, M)
= (0,0) components are as follows:

F
(0)
00 ≡ f

(1)
00 − 1

2f
(0)
00 , (53)

F
(1)
00 ≡ f

(3)
00 − 1

3f
(2)
00 + 3

8f
(1)
00 − 1

6f
(0)
00 , (54)

F
(2)
00 ≡ f

(5)
00 − 23

90f
(4)
00 + 53

180f
(3)
00 − 13

144f
(2)
00 + 1

18f
(1)
00 − 1

45f
(0)
00 ,

(55)

F
(3)
00 ≡f

(7)
00 − 22

105f
(6)
00 + 589

2520f
(5)
00 − 281

5040f
(4)
00 + 199

5760f
(3)
00

− 11
1120f

(2)
00 + 11

2520f
(1)
00 − 1

630f
(0)
00 +

√
5

280f
(1)
20 − 23

√
5

25200f
(0)
20 ,

(56)

and so on. All of the F values should be zero if they are cal-
culated with the exact wave function.

Figure 6 shows the coalescence values of the FC wave
functions of the helium atom in the ground state for the L = 0
component. The wave functions in the singlet spin state have
no L = 1 component. It is observed that the FC wave function
satisfies the GCCs of order 0, 1, 2, and 3 as it becomes more
accurate. The convergence speed of the low-order e-e coales-
cence values is faster than that of the high-order coalescence
values. This tendency is similar to the n-e case.

FIG. 6. Logarithmic plot of the electron-electron coalescence values of the
FC wave functions of the helium atom in the ground state for the (L,M) =
(0,0) component. “n” represents the order of the coalescence values. The x-
axis represents the order of the FC wave function, i.e., the accuracy of the
wave function.

VI. SUMMARY

In this study, we have formulated the general coales-
cence conditions for the exact wave functions focusing on the
higher-order relations for many-particle systems. We first rep-
resented the Schrödinger equation with respect to the r12 co-
ordinate. Then, we derived the primitive general coalescence
conditions (pGCCs) for many-particle systems. The pGCCs
include an unknown term such as the total energy E of the
system. We proposed an inductive way to eliminate the un-
known term, allowing us to derive the general coalescence
conditions (GCCs) for many-particle systems without any un-
known terms. The GCC equations state the relations between
the {f

(n)
lm }, which are the coefficients of power expansion of a

wave function around the coalescence point. The zeroth- and
first-order GCCs for the Coulombic system are the same as
Kato’s and Rassolov and Chipman’s cusp conditions, respec-
tively. The second- and higher-order GCCs are newly derived
in the present study. The GCCs can be applied not only to
Coulombic systems but also to any systems with potentials
between the coalescence particles that are written as a power
series of inter-particle distances. By applying the exact wave
function of a harmonium to the nucleus-electron (n-e) and
electron-electron (e-e) coalescence situations, we confirmed
that our derivation of the GCCs is correct. Also, we observed
that the Free Complement wave function of a helium atom
satisfies better the n-e and e-e GCCs as the wave function be-
comes more and more accurate.
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APPENDIX A: DERIVATION OF THE PRIMITIVE
GENERAL COALESCENCE CONDITION

In Appendix A, we derive the explicit expression for
Eq. (2), i.e., pGCCs. Using the quantities defined in Sec. II,
the SE can be written as
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⎡
⎣− ∇2

r + 2 μ

A∑
a=−1

C(a)ra + 2 μ

∞∑
q=0

rq

q∑
q ′=−q

⎛
⎝ ∞∑

q ′′=0

R
(q ′′)
qq ′ rq ′′

⎞
⎠Yqq ′ (θ, φ)

+2 μÔ − 2 μE

⎤
⎦ [ ∞∑

l=0

rl

l∑
m=−l

∞∑
k=0

f
(k)
lm rkYlm (θ, φ)

]
= 0. (A1)

For simplicity in the following discussion, we remove the subscript “12” from A12, C12, μ12, θ12, φ12, and r12 if it is
not specifically mentioned. Note that ∇2

r ≡ 2
r

∂
∂r

+ ∂2

∂r2 + 1
r2 


2 and 
2 operate only on the angular part as 
2Ylm(θ , φ)
= −l(l + 1)Ylm(θ , φ).

Operating Y ∗
LM (θ, φ) d� with arbitrary non-negative integers L and M (L = 0, 1, 2, . . . and −L ≤ M ≤ L) in Eq. (A1) from

the left and integrating over the angles, we obtain the equation for the radial part as

∞∑
k=0

[
−k (1 + k + 2L) f

(k)
LMrL+k−2 + 2 μ

A∑
a=−1

C(a)f
(k)
LMrk+L+a

+2 μ

∞∑
q=0

q∑
q ′=−q

∞∑
q ′′=0

R
(q ′′)
qq ′

∞∑
l=0

f
(k)
l,M−q ′I

LM
qq ′l,M−q ′r

q+q ′′+l+k + 2 μrL+k
(
Ô − E

)
f

(k)
LM

⎤
⎦ = 0, (A2)

where I is defined by

ILM
l1m1l2m2

≡
∫ π

θ=0
sin θdθ

∫ π

φ=−π

dφ Y ∗
LM (θ, φ) Yl1m1 (θ, φ) Yl2m2 (θ, φ)

= (−1)M
√

(2l1 + 1) (2l2 + 1) (2L + 1)

4π

(
l1 l2 L

0 0 0

)(
l1 l2 L

m1 m2 M

)
, (A3)

and (
l1 l2 L

m1 m2 M
) is Wigner’s 3-j symbol.

The terms in Eq. (A2) are ordered by k. Instead, let us reorder and collect terms with the same power of r. Then we get

∞∑
n=−1

[
− (n + 2) (n + 3 + 2L) f

(n+2)
LM + 2 μ

A∑
a=−1

C(a)f
(n−a)
LM + 2 μ(Ô − E)f (n)

LM

+2 μ

n+L∑
q=0

n+L−q∑
q ′′=0

n+L−q−q ′′∑
l=0

q∑
q ′=−q

R
(q ′′)
qq ′ ILM

qq ′l,M−q ′′f
(n+L−q−q ′′−l)
l,M−q ′

⎤
⎦ rn = 0. (A4)

Summations whose upper bound is smaller than the lower bound should be ignored in Eq. (A4). We define f
(p)
lm ≡ 0 when p ≤

−1 for all l and m. The [ ] part in front of rn in Eq. (A4) equals to cn in Eq. (1). Because the [ ] part is independent of small r, it
must be zero for all n so that the SE holds true at the coalescence point. Therefore, {f

(k)
lm } must satisfy

− (n + 2) (n + 3 + 2L) f
(n+2)
LM + 2 μ

A∑
a=−1

C(a)f
(n−a)
LM

+ 2 μ

n+L∑
q=0

n+L−q∑
q ′′=0

n+L−q−q ′′∑
l=0

q∑
q ′=−q

R
(q ′′)
qq ′ ILM

qq ′l,M−q ′′f
(n+L−q−q ′′−l)
l,M−q ′ + 2 μÔf

(n)
LM = 2 μEf

(n)
LM, (A5)

for arbitrary n ≥ −1. We call Eq. (A5) “primitive general co-
alescence conditions(pGCCs).” This is the same as Eq. (16)
in the main text.

APPENDIX B: R(q′′)
qq′ VALUES FOR THE COULOMBIC

SYSTEM

We describe R
(q ′′)
qq ′ (see Eq. (13)) of the Coulombic sys-

tem, in which all of the potentials between any two particles

are Coulombic, and we assume that particles 1 and 2 come
near each other. We set the origin G at their center of mass, as
shown in Fig. 7.

In this system, W is written as

W (1, 2 : 3, 4, . . . , N ) ≡
N∑

i=3

(
C

(−1)
1i

r1i

+ C
(−1)
2i

r2i

)
, (B1)
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FIG. 7. Coalescence of particles 1 and 2 at G.

with C
(−1)
1i = Z1Zi and C

(−1)
2i = Z2Zi . Now, 1 / r1i can be ex-

pressed using the Perkins expansion27 as

rν
1i =

∞∑
q=0

Pq (cos θ1Gi)
(ν+1) / 2∑

k=0

Cνqks
q+2k

1i g
ν−q−2k

1i

× (ν = −1, 1, 3, · · ·) , (B2)

where s1i = min (rG1, rGi) = rG1 , g1i = max (rG1, rGi) = rGi

because rG1 � rGi from the definition, and the Cνqk are con-
stants given by

Cνqk ≡ 2q+1

ν+2

(
ν + 2
2k + 1

) min[q−1,(ν+1)/2]∏
j=0

2k+2j−ν

2k+2q−2j+1
.

(B3)
From the addition theorem, the Legendre function in Eq. (B2)
is decomposed into two spherical harmonics as

Pq (cos θ1Gi)= 4π

2q + 1

q∑
q ′=−q

(−1)qYq,−q ′ (θi, φi)Yqq ′ (θ1, φ1).

(B4)
Substituting these quantities for Eq. (B2) yields

1

r1i

=
∞∑

q=0

4π

2q + 1

q∑
q ′=−q

(−1)q
′
Yq,−q ′ (θi, φi)

×Yqq ′ (θ1, φ1) r
q

G1r
−1−q

Gi , (B5)

and then Eq. (B1) is written as

W =
∞∑

q=0

4π

2q + 1

q∑
q ′=−q

(−1)q
′
[

N∑
i=3

Zi

r
1+q

Gi

Yq,−q ′ (θi, φi)

]

× [
Z1Yqq ′ (θ1, φ1) r

q

G1 + Z2Yqq ′ (θ2, φ2) r
q

G2

]
. (B6)

Noting rG1 = − r12m2 / m12, rG2 = r12m1 / m12, θ1 = π − θ2,
φ1 = π + φ2, θ12 = θ2, φ12 = φ2, and Yqq′ (π − θ , π + φ)

= (−1)qYqq′ (θ , φ), W becomes

W =
∞∑

q=0

4π

2q + 1

q∑
q ′=−q

(−1)q
′
[

N∑
i=3

Zi

r
1+q

Gi

Yq,−q ′ (θi, φi)

]

× (−1)qZ1m
q

2 + Z2m
q

1

m
q

12

r
q

12Yqq ′ (θ12, φ12) . (B7)

Comparing Eq. (B7) with Eq. (13), R
(q ′′)
qq ′ is determined as

R
(0)
qq ′ = 4π

2q + 1
(−1)q

′
[

N∑
i=3

Zi

r
1+q

Gi

Yq,−q ′ (θi, φi)

]
R(q),

R
(q ′′)
qq ′ = 0 (f or q ′′ �= 0),

(B8)

with R(q) ≡ [(−1)qZ1m
q

2 + Z2m
q

1] /m
q

12. These are the R
(q ′′)
qq ′

values for Coulombic systems.
The [ ] part in Eq. (B8) is a constant because it depends

only on the position and charge of particle i. If particle 1 is a
nucleus, particle 2 is an electron, and the Born-Oppenheimer
approximation is employed, then R(0) = Z1 − 1 and R(q) =
−1 (for q �= 0). If both particles 1 and 2 are electrons, then
R(q) = −[(−1)q + 1] / 2q.

If particle i (i ≥ 3) comes near the coalescence region,

i.e., three particles coalesce, the R
(q ′′)
qq ′ values diverges be-

cause the rGi in Eq. (B8) becomes zero. Therefore, the coa-
lescence conditions we derive in this article are valid only for
two-particle coalescence situation.
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