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The simplest iterative complement (SIC) calculations starting from Hartree-Fock and giving full configuration
interaction (CI) at convergence were performed using regular and inverse Hamiltonians. Each iteration step is
variational and involves only one variable. The convergence was slow when we used the regular Hamiltonian,
but became very fast when we used the inverse Hamiltonian. This difference is due to the Coulomb singularity
problem inherent in the regular Hamiltonian; the inverse Hamiltonian does not have such a problem. For this
reason, the merit of the inverse Hamiltonian over the regular one becomes even more dramatic when we use a
better-quality basis set. This was seen by comparing the calculations due to the minimal and double-ζ basis sets.
Similar problematic situations exist in the Krylov sequence and in the Lanczos and Arnoldi methods.
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I. INTRODUCTION

The Schrödinger equation (SE) is the most important
governing principle in atomic and molecular physics and
chemistry:

Hψ = Eψ, (1)

where the Hamiltonian is written as

H =
∑

i

−1

2
�i −

∑
i

∑
A

ZA/rAi +
∑
i>j

1/rij (2)

in an ordinary notation. Within a given set of complete
orthonormal functions {φi}, the solution of the Schrödinger
equation (SE) is called a full configuration interaction (CI)
where the wave function ψ is expressed as ψ = ∑

i ciφi .
When we introduce the Hamiltonian matrix H whose element
is Hij = 〈φi |H |φj 〉, the full CI equation is written as

HC =EC, (3)

where C is a vector composed of {ci}. In the second-quantized
form the Hamiltonian is written as

H =
∑
ps

vs
pa†

s ap +
∑
pqrs

wst
pqa

†
s a

†
t aqap, (4)

where p, q, s, and t are elements of a given orthonormal
orbital like Hartree-Fock, and vs

p and wst
pq are their one- and

two-electron integrals.
Usually, a full CI solution involves a diagonalization of a

very large Hamiltonian matrix H. Previously, we have shown
[1] that with only two-dimensional diagonalization, we can
obtain a full-CI solution, when we use the simplest iterative
complement (SIC) method [2],

ψr
n+1 = (

1 + Cr
nH

)
ψr

n = ψr
n,0 + Cr

nψ
r
n,1, (5)

for solving the SE. In the above equation, n is the iteration num-
ber and Cr

n is a single variable in each iteration. The superscript
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r means that we use the regular Hamiltonian introduced above
instead of the inverse Hamiltonian introduced below. The
second equality is to define ψr

n,0 = ψr
n and ψr

n,1 = Hψr
n , which

will be used later. The IC method was originally called the
iterative configuration interaction (ICI) method. Later, it was
renamed as the IC (iterative complement) method to generalize
it to an analytical case. The SIC method is the simplest one
among the members of the IC method [2]. The SIC wave
function was proven to become exact at convergence, namely
to become equivalent to the full CI in the present case. This
was demonstrated previously starting from the Hartree-Fock
but the convergence was slow. In the SIC two-dimensional
secular equation, the Hamiltonian matrix involves the integral
of the H 3 operator even at the beginning (n = 0), which
was calculated by the three-times products of the Hamiltonian
matrix H. Similar calculations of full CI were reported with
the use of a different member of the IC method [3].

We know, on the other hand, that the analytical integrals
including more-than-third powers of Hamiltonian diverge plus
or minus infinity [4–6], namely,

〈ψ̃ |Hm|ψ̃〉 = ±∞, m � 3, (6)

where ψ̃ is any approximate wave function and H is the
analytical Hamiltonian given by Eq. (2). This problem is
called the singularity problem. Finite size of the nucleus [7]
does not solve this problem. However, when we use the
second-quantized Hamiltonian, the singularity problem is not
obvious. Actually, when the basis set is crude, we can multiply
its Hamiltonian matrix many times, as in the SIC calculations
reported previously [1]. However, this was simply due to the
crudeness of the basis set. With the analytic Hamiltonian this
is, in principle, impossible. So, the SIC calculation with the
regular Hamiltonian is problematic.

In 2002, this author introduced the inverse Schrödinger
equation (ISE):

H−1ψ = E−1ψ, (7)

to avoid the singularity problem [4]. The inverse Hamiltonian
H−1 is defined by H−1H = HH−1 = 1. The ISE is equivalent
to the original SE: The exact wave function is a common
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eigenfunction of both the regular and inverse Hamiltonians.
We assume without loss of generality that our Hamiltonian
is positive: If not, this is easily done by adding some
positive constant εp to the original Hamiltonian. It was shown
previously [4] that the ISE has the same determinative power
as the SE. The variation principles and the H -square equations
also exist in the inverse sides of the Hamiltonian. Furthermore,
the cross-H -square equation and its family give a bridge
connecting the two worlds of the Hamiltonians.

The equation corresponding to Eq. (3) for full CI is

H−1C =E−1C, (8)

where H−1 is the inverse matrix of H. Its element is written as
(H−1)ij = 〈φi |H−1|φj 〉 because of the completeness of {φi}:
H−1 is the matrix of the inverse Hamiltonian in our space.

It is possible to formulate the SIC method using the inverse
Hamiltonian H−1 [4],

ψi
n+1 = (

1 + Ci
nH

−1)ψi
n = ψi

n,0 + Ci
nψ

i
n,1, (9)

similarly to the regular case given by Eq. (5). The superscript
i means that we use the inverse Hamiltonian instead of the
regular one. With the inverse SIC method, we do not encounter
the singularity problem and we are guaranteed to have the exact
wave function at convergence [4]. We want to see in this paper
what happens when we use the inverse Hamiltonian instead of
the regular Hamiltonian in the SIC calculations.

II. KRYLOV SEQUENCE DESCRIBED BY REGULAR
AND INVERSE HAMILTONIANS

The Krylov sequence plays an important role in the
eigenvalue problem [8,9] and is related to the Arnoldi method
[10] and the Lanczos method [11]. In my earlier paper, the
Krylov sequence was extended to the inverse space [4]. We
refer to it here because of its close relationship to the SIC
method used here. From the similarity between an operator
and its matrix in a complete space, the Krylov sequence can
be written in an operator form, which is adopted here. The
Hamiltonian Krylov sequence

{ψ0,Hψ0,H
2ψ0,H

3ψ0, . . .} (10)

is used to solve the SE as a basis set to expand the exact wave
function. Referring to the SIC method for solving the SE
given by Eq. (5), we notice that in the SIC method the exact
wave function is calculated in a stepwise manner considering
the two contiguous elements of the Krylov sequence. After the
introduction of the inverse Hamiltonian, we can introduce the
inverse Hamiltonian Krylov sequence by

{ψ0,H
−1ψ0,H

−2ψ0,H
−3ψ0, . . .}. (11)

The relation of this sequence to the inverse SIC method
given by Eq. (9) is clear. Previously, we have proposed to
introduce the complete Krylov sequence by [4]

{. . . ,H−3ψ0,H
−2ψ0,H

−1ψ0,ψ0,Hψ0,H
2ψ0,H

3ψ0, . . .},
(12)

which covers both positive and negative powers of H . The
complete Krylov sequence gives wider space than the regular

and inverse ones: It always includes a complete set but its half
may become useless as seen below.

A problem in the Krylov sequence is the singularity prob-
lem. When H includes a singular potential like the Coulomb
potential, the elements of the regular Krylov sequence do
not satisfy, except for ψ0, the necessary condition that the
correct wave function must satisfy, namely the integratable
finite condition. Therefore, the regular Krylov sequence is
not adequate as a basis to expand the exact wave function of
atoms and molecules. In such cases, we may use the inverse
Krylov sequence, because this sequence is appropriate as a
basis to expand the exact wave function. When we use the
analytical Hamiltonian given by Eq. (2), the above statement
is very clear. But, when we use the Hamiltonian matrix H
based on the second-quantized Hamiltonian given by Eq. (4),
the singularity problem becomes unclear: One may think that
one can multiply the Hamiltonian matrix many times. A similar
situation may also occur in the usages of the Arnoldi method
and the Lanczos method. This paper will show that we have to
be careful on this problem.

III. SIC METHOD WITH REGULAR
OR INVERSE HAMILTONIAN

Now we formulate the SIC method with regular or inverse
Hamiltonian. The SIC iterative calculations consist of two
steps. First, we calculate the SIC wave function using Eq. (5) of
the regular Hamiltonian or Eq. (9) of the inverse Hamiltonian.
Second, we calculate the variables Cr

n or Ci
n using variation

principle. When we use the regular variation principle 〈ψ |H −
E|δψ〉 = 0 (so, the superscript v below is r), the secular
equation for the regular (a = r) or inverse (a = i) SIC wave
function is written as(v

ha
n − Ea

n · vsa
n

)
ca
n = 0, (13)

where the two-dimensional Hamiltonian and overlap matrices
are given by

vha
n =

( 〈
ψa

n,0

∣∣vH ∣∣ψa
n,0

〉
,

〈
ψa

n,0

∣∣vH ∣∣ψa
n,1

〉
〈
ψa

n,1

∣∣vH ∣∣ψa
n,0

〉
,

〈
ψa

n,1

∣∣vH ∣∣ψa
n,1

〉
)

,

vsa
n =

( 〈
ψa

n,0

∣∣ ψa
n,0

〉
,

〈
ψa

n,0

∣∣ ψa
n,1

〉
〈
ψa

n,1

∣∣ ψa
n,0

〉
,

〈
ψa

n,1

∣∣ ψa
n,1

〉 ) ,

vca
n =

(
1

Ca
n

)
,

(14)

where vH denotes the Hamiltonian used in the variational step
and then vH = H in the present case of using the regular
Hamiltonian. ψa

n,0 and ψa
n,1 (a = r or i) are defined in Eqs. (5)

and (9). The nth-order SIC wave function ψa
n,0 is transformed

into the form of ψa
n,0 = ∑

i d
a
n,iφi

, where φi is an element of
the full-CI configurations described by the various excitations
from the Hartree-Fock configuration. The Hamiltonian matrix
rhr

n of the regular variation problem for the regular SIC wave
function involves the integral of H 3 at the (2,2) position that
suffers the singularity problem even at the first iteration (n =
0). By continuing the 2 × 2 diagonalization at each order n, we
obtain the converged solution ψ . Since each step is variational,
the energy approaches the exact energy from above. When the
SIC method is done with the regular Hamiltonian, Eq. (5), we
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call it the R-R method and when the SIC method is done with
the inverse Hamiltonian, Eq. (9), we call it the I-R method. The
former “R” or “I” refer to the regular or inverse SIC method
used to construct the wave function, and the latter “R” denotes
the regular variational method used thereafter.

We can use the inverse variation principle [4] 〈ψ |H−1 −
Ei |δψ〉 = 0, instead of the regular one, in the second step of
calculating the single variable Cr

n or Ci
n. Then, the secular

equation and the Hamiltonian and overlap matrices are given
by Eqs. (13) and (14), respectively, with the superscript v being
i which indicates that it is derived from the inverse variation
principle. Then, vH in Eq. (14) is H−1. The superscript a is
either r or i depending on whether the regular or inverse SIC
method was used. So, again, we have these combinations, the
R-I and I-I methods. The first letter, “R” or “I,” distinguishes
the Hamiltonian used in the SIC step and the latter “I” means
that the inverse variation method is used in the variational step.
Since each step is variational, the inverse energy approaches
the exact full-CI value E−1 from below [4].

Thus, we have four distinct SIC calculations, R-R, R-I, I-R,
and I-I methods. In the R-R method, the singularity problem
occurs at any order. In the R-I method, the singularity problem
is circumvented only at the first iteration (n = 0). In the I-R
and I-I methods, the singularity problem is circumvented at any
order. So, these two methods are the recommended procedures.

IV. SIC CALCULATIONS OF FULL CI
WITH MINIMAL BASIS

We apply the method summarized above to the molecules
H2O, HCN, C2H2, HCHO, and O3 using the STO-6G basis
[12]. The geometrical parameters are summarized in [13].
These molecules were studied previously using the R-R
method described above [1]. We compare here with the results
obtained using the inverse Hamiltonian. The Hamiltonian
matrix was calculated by modifying the GAMESS program [14].
The full-CI calculations were due to the GUGA algorithm [15]
in the GAMESS program. The initial wave function of the SIC
calculation was Hartree-Fock.

Table I shows the summary of the results. The positive
shift energy is included in the caption. Since the 1s orbitals
were frozen to the initial Hartree-Fock ones, the energy in
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FIG. 1. (Color online) Convergence process of the R-R and I-R
cases (above) and the R-I and I-I cases (below) of the SIC calculations
of the full CI for O3 with the minimal basis.

TABLE I. SIC calculations with minimal basis. Positive shift energy εp is 24.0, 29.0, 26.0, 41.0, and 86.0 a.u., respectively for H2O, HCN,
C2H2, HCHO, and O3. Ep–εp is valence electron energy. The 1s orbitals of the second-row atoms were frozen as cores. The frozen-core
energy and the nuclear repulsion energy are −61.24327 and 9.00935 for H2O; −88.58359 and 23.87882 for HCN; −76.39699 and 24.79128
for C2H2; −104.93835 and 31.36441 for HCHO; and −207.33247 and 68.82230 for O3, all in a.u.

Full CI SIC
Active Energy R-R case R-I case I-R case I-I case
space

Molecule Occ.×unocc. Dimension Ep 1/Ep Dimension Iter. Energy Iter. Energy Iter. Energy Iter. Energy

H2O 4 × 2 37 0.50601 1.97625 2 11 0.50601 12 1.97625 3 0.50601 3 1.97625
HCN 5 × 4 1436 0.96356 1.03782 2 32 0.96356 29 1.03782 3 0.96356 4 1.03782
C2H2 5 × 5 2640 0.82984 1.20505 2 33 0.82984 31 1.20504 5 0.82984 4 1.20504
HCHO 6 × 4 3644 0.98942 1.01070 2 38 0.98942 33 1.01070 4 0.98942 4 1.01070
O3 9 × 3 4067 0.83019 1.20454 2 74 0.83019 73 1.20454 8 0.83019 7 1.20454

SDCI initial 2 55 0.83019 55 1.20454 6 0.83019 6 1.20454
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Table I is the valence electron energy relative to the frozen-
core energy defined by EFC = 2

∑nc

i hii + ∑nc

ij (2Jij − Kij )
using the Hartree-Fock quantities, where i, j run only the
core orbitals. The frozen-core energy and the nuclear repulsion
energy of each molecule are given in the caption of the table.
The sum of the valence electron energy, the frozen-core energy,
and the nuclear repulsion energy is the total energy in an
ordinary sense.

The dimension of the full-CI calculation was 4067 for O3

and the calculated valence electron energy and its inverse were
0.830 19 and 1.204 54 a.u., respectively. The SIC calculations
gave the same energies after the iterations of the two-
dimensional calculations: 74 and 73 iterations in the R-R and
R-I cases and only eight and seven iterations in the I-R and I-I
cases. (These iteration numbers are those when the SIC energy
becomes equal to the full-CI one to within ±0.5 × 10−5 a.u.
This criterion is different from the previous one [1] where the
threshold was ±1.0 × 10−5 a.u.) For other molecules, the I-R
and I-I cases always converged much faster than the R-R and
R-I cases.

The convergence behavior of the SIC calculations are
shown in Fig. 1 for O3. The upper figure is for the R-R and
I-R cases and the lower one is for the R-I and I-I cases. Since
every step of the SIC calculation is variational, the energy
always decreases in the R-R and I-R cases, and increases in
the R-I and I-I cases. In the accuracy of Fig. 1, four, five
iterations were enough for the I-R and I-I cases, but more
than 40 iterations were necessary for the R-R and R-I cases:
The rapid convergence is due to the usage of the inverse
Hamiltonian in the SIC method. The regular Hamiltonian was
not good because it caused the singularity problem. The Krylov
sequence given by Eq. (10) suffered the singularity problem.
A similar advantage of the usage of the inverse Hamiltonian
over the regular one was observed previously for the hydrogen
atom [4] in the IC (called ICI before) calculations of the exact
wave function.

In the last row of Table I, we gave the result when the
singles and doubles (SD) CI wave function was used as an
initial function. (Other data are due to the Hartree-Fock initial
guess.) The convergence was accelerated: 74 and 73 for the
R-R and R-I cases were reduced to 55 for both cases and
eight and seven for the I-R and I-I cases were reduced to six
for both cases. A better-quality initial function is useful for
getting faster convergence. However, even this improvement
was much less effective than using the inverse Hamiltonian in
the SIC step.

V. SIC CALCULATIONS OF FULL CI
WITH DOUBLE-ζ BASIS

We know already that the analytical integral including Hn

of the regular Hamiltonian diverges for n larger than 3. In the
preceding section, we could perform the SIC calculations even
with the regular Hamiltonian, multiplying the H matrix even
up to 70–80 times, which is just impossible with the analytical
Hamiltonian. We could do so because the second-quantized
Hamiltonian constructed by the STO-6G basis is very crude.
In this section we will see what happens when the basis set is
improved to the double-ζ quality and so the second-quantized
Hamiltonian is improved toward the analytical Hamiltonian.

How much difference can we see between the regular and
inverse Hamiltonians?

We calculate here Ne atom, LiH, and CH+ using different-
quality basis sets higher than the double-ζ quality [16]. Table II
is a summary of the results. “FC” below the basis set means
frozen core. The positive shift energy, the frozen-core energy,
and the nuclear repulsion energy are given in the caption. The
full-CI dimension is 273–7818, while the SIC dimension is
always only 2. The convergence rate is different from atom
to molecules and among different quality bases. But, the I-R
and I-I methods always give much faster convergence than
the R-R and R-I methods. The iteration times of the R-R and
R-I calculations starting from the Hartree-Fock initial guess
are 14–62 for atoms and 103–1987 for molecules, while those
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FIG. 2. (Color online) Overall convergence process of the
R-R and I-R cases (above) and the R-I and I-I cases (below) of
the SIC calculations of the full CI for CH+ with the [5s2p/2s]
basis.
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for the I-R and I-I cases are only 2 for atoms and 3–12 for
molecules. When we use the SD CI wave function as ψ0, the
iteration numbers drop down by about 1/2 in all the cases.
Thus the use of the SD CI ψ0 has some merit, but the most
remarkable result is a marvelous convergence speed of the
SIC method when the inverse Hamiltonian is used in the wave
function generation step (the I-R and I-I cases). The difference
between the R-R and R-I methods was small, as expected from
the theoretical consideration.

The merit of the inverse Hamiltonian over the regular
one is more clearly seen from Figs. 2 and 3, which show
the convergence processes of the four different cases of the
SIC calculations for the [5s2p/2s] basis of CH+, which were
the largest calculations in Table II: The full-CI dimension
was 7818. The convergence speeds of the R-R and R-I cases
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FIG. 3. (Color online) Detailed convergence process of the
R-R and I-R cases (above) and the R-I and I-I cases (below) of
the SIC calculations of the full CI for CH+ with the [5s2p/2s]
basis.

were very slow: There was still some error even at 400 times
iterations, but the convergence of the I-R and I-I cases was
quite fast. In Fig. 2 the profile is like the vertical-horizontal
axis, but in Fig. 3 which was enlarged only up to 30 iterations,
we see a rapid convergence of the I-R and I-I cases, in contrast
to the very slow convergence in the R-R and R-I cases. In the
I-R and I-I cases, even two iterations gave an accurate enough
result in the scale of Fig. 3. Actually, when we start from the
SD CI initial guess, the second iteration result was already
accurate up to five decimal figures, as shown in Table II. This
is a rather surprising result.

Comparing Fig. 1 for the minimal basis with Figs. 2
and 3 for the double-ζ basis, we see that the advantage of the
inverse Hamiltonian is more enhanced for the double-ζ basis
than for the minimal basis. We think the reason is as follows.
As the basis is improved, the freedom of the wave function
near the nuclear and electron cusps increases, and hence the
nuclear and electron singularity problems become severe in
the R-R and R-I cases even in the matrix formalism, while
in the I-R and I-I cases, the use of the inverse Hamiltonian
resolves this difficulty, and moreover a larger freedom in
the wave function gives a faster adjustment of the wave
function, leading to a faster convergence. Thus, the results
shown in this section demonstrate a prominent merit of using
the inverse Hamiltonian in the SIC calculations of the full-CI
wave function.

VI. CONCLUDING REMARKS

The full-CI description of the exact wave function requires
a large number of variables. On the other hand, the IC theory
requires only a small number of variables [2]; in particular, the
SIC method requires only one variable per iteration. When we
apply the SIC theory to the full-CI solution, the regular and
inverse Hamiltonians work quite differently. Between the two
steps involved in the SIC calculations, the first wave function
generation step using Eq. (5) of the regular Hamiltonian or
Eq. (9) of the inverse Hamiltonian is more important than
the second variation step to calculate the single variables Cr

n

or Ci
n. Among the four distinct SIC methods, the R-R, R-I,

I-R, and I-I methods, the singularity problem does not occur
at any order in the I-R and I-I methods, but it does occur
at any order in the R-R method, and in the R-I method, the
singularity problem is circumvented only at the first order
(n = 0). Actually, when only the regular Hamiltonian was
used, namely in the R-R case, the calculations required a lot
of iterations. But, when the inverse Hamiltonian was used in
the first wave function generation step, namely in the I-R and
I-I methods, quite a rapid convergence was obtained. Though
some improvement was seen in the R-I calculations, it was not
so impressive. These results are understood from the singular-
ity problem that the regular Hamiltonian has but the inverse
Hamiltonian does not have. Thus, the I-R and I-I methods
are the recommended procedures among the four distinct SIC
methods.

This is understood also from the Krylov sequence that is
related theoretically to the SIC method. When the regular
Hamiltonian is used, the elements of the Krylov sequence
given by Eq. (10) have singularity and therefore they are not
appropriate as a basis set to expand the wave function because
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they do not satisfy the condition of integratability that the
correct wave function must satisfy. Actually, the Hamiltonian
integrals calculated from the elements of the Krylov sequence
given by Eq. (10) all diverge for the singularity problem
when the analytical Hamiltonian given by Eq. (2) is used.
Though such divergence may not occur when we use the
second-quantized Hamiltonian based on some incomplete
basis set, the obtained finite values of the integrals are simply
due to the incompleteness of the used basis set and therefore
their values are essentially unreliable. On the other hand, when
we use the inverse Hamiltonian, we do not have the singularity
problem and the Krylov sequence given by Eq. (11) is well
defined and can be used as a basis set to expand the full-CI
wave function and the exact wave function. A similar argument
should also hold in the usage of the Arnoldi method and the
Lanczos method.

Overall, the inverse Hamiltonian gives a stable and efficient
ground for the descriptions of the full-CI and exact wave func-
tions of atoms and molecules. In the inverse side of the world,
there are no dangerous pitfalls on the playground of electrons
and therefore things are much more stable there. Therefore,
the inverse world should be explored more extensively. In the
present study, the inverse matrix was calculated by using a
conventional subroutine library. However, this is not realistic
for most practical studies. It is necessary to efficiently describe
the inverse matrix even approximately with high accuracy.
Such study is in progress.

A note may be useful, that is, on the positive energy
dependence of the total iteration number. Though the regular
Hamiltonian method does not depend on the amount of the

positive energy εp, the inverse Hamiltonian method does. So,
by changing εp, one can modify the convergence speed. This
is well known, for example, in the inverse iteration method [8],
so we performed several calculations using different positive
energies for the two steps of the SIC method and observed
some variations in the iteration numbers. However, these
variations were much smaller than those caused by the change
of the regular Hamiltonian into the inverse one.

Another note is that we have shown previously [3] that the
general singles and doubles (GSD) case of the IC theory, which
was proposed in 2000 [2], can be formulated in such a way that
is free from the singularity problem without introducing the
inverse Hamiltonian. Actually, the IC-GSD method in such a
formalism has given a very fast convergence to the full CI.

For analytical cases, this author introduced the scaled
Schrödinger equation (SSE) [5] that is equivalent to the
original SE. The SSE has led to several general ways of solving
the SE, among which we have used the free complement (FC)
method [5,6] most frequently [17] to solve the SE of atoms
and molecules.
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