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The generalized-UHF (GUHF) theory is reviewed in the framework of 
two-component quasi-relativistic molecular orbital theory. The GUHF orbitals 
in which alpha and beta spin functions have independent complex spatial 
functions can describe the magnetic interactions of spinning electrons, which 
are important for magnetic chemistry. Spin-orbit (SO) and Zeeman 
interactions are examples. This study presents the SO-GUHF theory in which 
the SO interaction is considered and the quasi-relativistic (QR)-GUHF theory 
in which the DKH (Douglas-Kroll-Hess) quasi-relativistic Hamiltonian is used. 
We review theories on the magnetic shielding constants based on the 
SO-GUHF and QR-GUHF methods and explain the applications to the 1H 
shielding constants of hydrogen halides, the 13C chemical shifts of methyl 
halides, 119Sn chemical shifts of tin halides, the shielding constants of noble 
gas atoms, and the 199Hg shielding constants of mercury halides. 

 
 
1.  Introduction 
 
The periodic table is one of the greatest manifestations of quantum theory as a 
governing principle of atomic and molecular systems. The chemical properties of 
an element can be predicted from its position in the periodic table. For example, 
the nuclear magnetic shielding constants and the chemical shifts in nuclear 
magnetic resonance (NMR) can be predicted.1 Our systematic study shows that 
the mechanism of the chemical shift is an intrinsic atomic property that can be 
understood from its position in the periodic table.1-3 When the elements are in an 
upper row of the table, the basic principle is explained from the non-relativistic 
theory but as the elements becomes heavier, the relativistic effects becomes very 
important.4 Magnetic properties are sensitive to relativistic effects. Since our 
purpose here is to provide quantitatively correct predictions and the underlying 
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concepts for the magnetic properties of molecules including all the elements in 
the periodic table, our intended theory should be based on the relativity.5 

 The basic aspects of the relativistic quantum theory is described by the 
four-component Dirac theory.5 Many recent studies attempting to develop 
relativistic quantum chemistry are based on the four-component Dirac theory.6-9 
However, despite such developments, the four-component theory has actually 
been applied only to small molecules. The main problem arose from a subtle 
balance between the large- and small-component spaces, which were necessary 
for obtaining a solution satisfying the variational principle.10,11 Many different 
quasi-relativistic theories, two-component approximate versions of the Dirac 
theory, have been proposed in recent years. A traditional quasi-relativistic theory 
is based on the Pauli approximation: the non-relativistic Schrödinger 
Hamiltonian is modified to include the mass-velocity, Darwin, and the spin-orbit 
(SO) terms.4 The Pauli SO operator has been widely used in quantum chemistry, 
for example to investigate spin-forbidden processes.12 A more systematic 
quasi-relativistic theory was introduced by Hess to quantum chemistry,13,14 and is 
known as the Douglas-Kroll-Hess (DKH) theory.13-16 The DKH theory is based 
on the unitary transformation13-16 that separates the positive and negative energy 
parts of the Dirac Hamiltonian; it was formerly called “no-pair theory”.13,14,16 The 
ability of the successive higher order transformation had been suggested by 
Douglas and Kroll;15 however, only the second-order transformation has been 
actually used for the calculation until recently. Nakajima and Hirao adopt an 
exponential unitary operator to derive the higher order Douglas-Kroll (DK) 
transformed Hamiltonian.17 The third order DK (DK3) is applied for various 
systems.17,18 

 Another method based on the “normalized elimination of the 
small-component” (NESC) was developed by van Lenthe and co-workers as 
“regular approximation”.19 Among a series of regular approximations, the 
zeroth-order regular approximation (ZORA)19,20 is the most widely applied for 
quantum chemical calculations. In the category of NESC, Nakajima and Hirao 
proposed a new scheme of quasi-relativistic method, namely “relativistic scheme 
by eliminating of small components” (RESC).21,22 In order to eliminate the 
small-component, without involving the infinite series expansion, the RESC 
method assumes the denominator, E-V, to be the classical relativistic kinetic 
energy. For various molecules including heavy elements, the RESC method 
works well.21-23 These quasi-relativistic approaches are widely used today in 
quantum chemistry as a useful theoretical tool. In addition, the relativistic 
effective core potential (ECP) and relativistic model potential24-26 methods have 
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been used frequently because they include the relativistic effect at low 
computational cost. 
 Relativistic theory is important for studies of magnetic properties: the fact 
that an electron has an internal freedom known as “spin” is most naturally 
described by the Dirac theory.27 The magnetic shielding constant is an important 
magnetic property and is measured mainly in NMR spectroscopy. It reflects the 
angular momentum of valence electrons in the vicinity of the nuclei,4 so that the 
relativistic effect becomes important for molecules that include heavy elements. 
 The importance of the SO interaction in the magnetic shielding constant have 
been demonstrated with a semi-empirical perturbation calculation by Morishima, 
Endo, and Yonezawa in 1973 (Ref. 28). Similar results are also given by Ref. 29. 
The importance of the relativistic effect on the magnetic shielding constant for 
atoms was shown with Dirac-RPA calculation by Kolb, Johnson, and Shorer in 
1982 (Ref. 30). The relativistic theory for NMR parameters was formulated by 
Pyper,31 Pyykkö,32 and Zhang and Webb33 by extending the Ramsey’s formula34 
to Dirac theory. No ab-initio reliable calculations on the relativistic effects had 
been published untill 1995, when an ab-initio calculations of the SO effects on 
the magnetic shielding constants were presented by this laboratory by developing 
the UHF formalism for calculating the SO effects.35 Although this SO-UHF 
method is only an approximate method for calculating the SO effects, it is easy 
and simple and was developed later to become the generalized UHF (GUHF) 
method in this laboratory, 41,45-48 which is the topic of this review. The 
well-known GUHF method49-51 not only describes the SO effects accurately 
within the orbital theory, but also represents a general quasi-relativistic theory as 
an extreme of the non-relativistic molecular orbital theory. 
 The SO-UHF method has clearly demonstrated that the SO interaction is an 
essential source of the chemical shifts even for proton chemical shifts in 
hydrogen halides and for 13C chemical shifts in methyl halides:35 the chemical 
shifts actually observe the SO effect in these molecules. The SO-UHF method 
has been applied to a number of molecules, such as the halides of main-group 
elements, Si,36 Sn,37 Al,38 Ga,39 and In;39 and the importance of the SO effects on 
the nuclear magnetic shielding constants has been shown. It has been shown that 
“normal halogen dependence” (NHD)52 is essentially due to the SO effect. In the 
compounds of the transition metals, Ti40 and Nb,40 the chemical shifts were 
mainly determined by the paramagnetic term and the SO effect was relatively 
small. Many subsequent studies53,54 have recognized the importance of the SO 
interaction on the NMR chemical shifts. 
 For the magnetic shielding constants of heavy resonant nuclei, not only the 
SO interaction but also the spin-free relativistic (SFR) effects, such as 
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mass-velocity and Darwin terms, are important:42-44 they further interact strongly 
with each other.43,44 Relativistic increase of magnetic shielding constants of 
heavy atoms has been shown by Kolb et al.30 Pyykkö and his co-workers pointed 
out that such relativistic effect is significantly important in the NMR of heavy 
resonant nuclei.51 They distinguished between the effect of the “heavy atom shift 
of heavy atom” itself (HAHA),55 in contrast to “heavy atom shift induced by a 
neighboring heavy atom” which is observed as the NHD. This laboratory recently 
shown that the HAHA effect originates from the relativistic effect, mainly the 
mass-velocity correction, on the magnetic interaction term of the 
Hamiltonian.45-48 

 Thus, a relativistic theory that covers all elements of the periodic table, yet is 
of very rigid foundation and is still very usable is necessary. As the correlation 
effects are not as large for the chemical shifts,56,57 we do not consider them in this 
article. Some benchmark calculations of the NMR parameters based on the 
Dirac-Hartree-Fock (DHF) theory have been performed only for small 
molecules.58-61 On the other hand, the quasi-relativistic NMR theories have been 
applied to various molecules within the frameworks of the DKH45-48 and 
ZORA62,63 formalisms. We recently developed the quasi-relativistic theory47 
based on the DKH transformation for the Hamiltonian including magnetic 
interactions. The resultant Hamiltonian was quite complicated compared with the 
non-relativistic Hamiltonian or the Dirac Hamiltonian;58 however, once the 
Hamiltonian matrix elements are obtained, the method can be handled within the 
well known molecular orbital (MO) theory of the GUHF framework. Therefore, 
the quasi-relativistic MO theory can be considered as a natural extension of the 
non-relativistic MO theory. The GUHF based quasi-relativistic NMR theory has 
been successfully applied to the NMR chemical shifts of the various nuclei such 
as 1H,48 13C,41 125Te,46 and 199Hg.45,48 
 The quasi-relativistic GUHF method can be applied to NMR parameters 
other than the magnetic shielding constant and also to magnetic properties other 
than the NMR parameters. The magnetic circular dichroism (MCD) is an 
important field of relativistic quantum chemistry. The quasi-relativistic GUHF 
method had been applied to the theoretical study of the MCD spectra of CH3I.64 
The quasi-relativistic GUHF/SECI calculation showed the importance of the 
relativistic effect to explain the experimentally observed spectra. 
 The relativistic study of molecular properties other than energy is a new field 
of quantum chemistry. Consideration of the change of picture effect47,65,66 has 
enabled us to conduct relativistic study in an appropriate manner. As relativistic 
quantum chemistry progress, the importance of relativistic effect on the 
molecular properties will become more widely recognized. 
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 In this article, we examine the relativistic molecular orbital theory in terms of 
the unrestricted Hartree-Fock (UHF) theory and its generalization. The 
relativistic effects on the molecular magnetic properties, especially the magnetic 
shielding constants, are discussed and we present our recent results of the 
relativistic study on the magnetic shielding constants and NMR chemical shifts.  
First, we address the conventional UHF wavefunction. The UHF wavefunction 
describes the spin-polarization. Although there are certain limitations, the UHF 
wavefunction can approximately treat the SO effect. We discuss the applicability 
and limitation of the SO-UHF theory. To accurately include the SO effect, the 
UHF wavefunction has to be generalized. The GUHF theory for SO interaction 
[GUHF is also called the general HF (GHF)49,50] is introduced here. A theoretical 
outline of the NMR magnetic shielding constant with the SO-GUHF theory is 
presented in Section 2. The relation between the UHF, GUHF, and the 
two-component quasi-relativistic theories is discussed in Section 3. The GUHF 
orbital, which is introduced from the nonrelativistic theory, is corresponding to 
the two-component quasi-relativistic orbital. In Section 5, an example of the 
magnetic shielding constants and chemical shifts including SO and relativistic 
effects is shown. The SO effect of SO-UHF and SO-GUHF methods and the 
heavy atom shift ising the quasi-relativistic GUHF method are explained. Section 
6 gives a summarize this article. 
 
2.  Magnetic shielding constant with spin-orbit interaction 
 
2.1.  Hamiltonian and operators 
 
The electronic Hamiltonian for molecules in a uniform magnetic field B with 
nuclear magnetic moment µN is written as35 

 ( ) ( )
21 1 1,

2
N

N j j
j N j kNj jk

ZH
c r r>

−⎡ ⎤= + + +⎢ ⎥⎣ ⎦
∑ ∑ ∑B µ p A  

 ( )SO 1
2 j j j

j
H

c
+ + ⋅ ∇ ×∑σ A . (1) 

where ZN denotes the charge of atom N, jA  and SOH  are the magnetic vector 
potential and SO operator; they are given by 

 ( ) 3

1
2

N Nj
j j

N Njr
×

= × − + ∑
µ r

A B r d , (2) 
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( ) ( ) ( )

3
SO

32

1
4

2Nj j j jk j j kj j j

N k jNj jkj
H

r rc ≠

× ⋅ × ⋅⎡ ⎤+ × ⋅
−= ⎢ ⎥⎣ ⎦

∑ ∑ ∑
r p σ r p σ r p σ

.(3) 

Here d denotes the gauge origin of the vector potential. Expanding the 
Hamiltonian in powers of B and µN, we obtain  

 ( ) ( ) ( ) ( )
, , , ,

0,0 1,0 0,1,
x y z x y z

N t t Nu Nu
t N u

H H B H Hµ= + +∑ ∑ ∑B µ  

 ( )
, ,

1,1

,

x y z

t Ntu Nu
N t u

B H µ+ +∑ ∑ , (4) 
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ZH p H
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j Nj tu j Njtu
Ntu

j Nj

r
H

c r
δ− ⋅ − −

= ∑
r d r r d
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Eq. (5) represents the Hamiltonian without magnetic field including the SO 
interaction. Eq. (6) denotes the magnetic Zeeman interaction. The first term of Eq. 
(7) is the paramagnetic shielding term. The second and third terms of Eq. (7) are 
the spin-dipolar (SD) and the Fermi-contact (FC) term: these terms arise from the 
SO effect. Eq. (8) is the diamagnetic shielding term.  
The magnetic shielding constant is given by 

 
2

,
0N

N tu
t Nu

E
B

σ
µ = =

∂⎡ ⎤= ⎢ ⎥⎣∂ ∂ ⎦B µ

. (9) 
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Using the Hellmann-Feynman theorem, the magnetic shielding tensor is written 
as 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]1,1 0,1
, 00 0N tu Ntu t Nu t

t

H B H B
B

σ =

∂
= Ψ Ψ + Ψ Ψ

∂ B  

 ( ) ( )dia para SO SO
, , , ,SD FCN tu N tu N tu N tuσ σ σ σ= + + + . (10) 

In the presence of the SO interaction, the magnetic shielding tensor is described 
by the sum of the diamagnetic term, paramagnetic term, SD term and FC term. 
The wavefunctions ( )0Ψ  and ( )tBΨ  are defined by 

 ( ) ( ) ( ) ( )0,0 0 0 0H EΨ = Ψ , (11) 

 ( ) ( )( ) ( ) ( ) ( )0,0 1,0
t t t t tH B H B E B B+ Ψ = Ψ . (12) 

To apply the Hellmann-Feynman theorem, the wavefunctions have to satisfy the 
variational principle.  
 The wavefunctions of ( )0Ψ  and ( )tBΨ  in Eqs. (11) and (12) may be 
expressed by the sum of the singlet and triplet functions because the 
Hamiltonians ( )0,0H  and ( )1,0

tH  include spin-dependent operators. 

 ( ) ( ) ( ) ( ) ( )
, ,

0 0 0 0 0
x y z

S S Ts Ts
I I I I

I I s
C CΨ = Φ + Φ∑ ∑ ∑ , (13) 

 ( ) ( ) ( ) ( ) ( )
, ,x y z

S S Ts Ts
t I t I t I t I t

I I s
B C B B C B BΨ = Φ + Φ∑ ∑ ∑ . (14) 

Here S
IΦ  denotes singlet functions, Ts

IΦ  (s = x, y, z) triplet functions in x, y, 
and z components, CI their coefficients, and the sum of I runs all over the states. 
We label the triplet functions with x, y, and z components: the recombination by 
the unitary transformation of ms = +1, 0, -1 functions. Explicitly using Eqs (13) 
and (14) leads to the sum-over-state perturbation formalism. Because the 
magnetic shielding constant is a second order property, the SO effect on the 
magnetic shielding constant comes to the third order perturbation. For easier 
treatment of SO interaction, we adopt different approach. We used a method that 
includes the effect of SO interaction as an orbital theory of the single Slater 
determinant, without expanding the configuration state functions. 
 
 
 
 



 198

2.2.  SO-UHF method 
 
The finite-perturbation method with UHF wavefunction is used for the spin-spin 
coupling constants.67 Spin-spin coupling is the coupling of nuclear and electron 
spin. The electron spin-polarization is induced by the magnetic moment of the 
other nucleus. The mechanism is similar to the SD and FC terms of the magnetic 
shielding constant, in which electron spin is induced by the SO and Zeeman 
interactions. So we first consider the UHF wavefunction to describe the SO effect. 
For the closed shell system with 2n electron, the UHF wavefunction is written as 

 UHF
1 2 1 2n n
α α α β β βϕ αϕ α ϕ αϕ βϕ β ϕ βΨ = N . (15) 

Here we use the corresponding orbital, which was obtained by the unitary 
transformation of the SCF orbitals. The corresponding orbitals { }αϕ  and { }βϕ  
are orthonormal in each sets but have overlap between them when i = j, 

 d i j i ijTα βϕ ϕ δ=∫ r . (16) 

These corresponding orbitals are connected with the natural orbitals λ and ν of 
the UHF wavefunction as 

 i i i i ia bαϕ λ ν= + , (17) 

 i i i i ia bβϕ λ ν= − , (18) 

where a and b are the normalization constants. Using Eqs. (17) and (18) the UHF 
wavefunction can be expanded in the form of limited configuration interaction 
(CI) and to the first order it is written as68  

 UHF RHF RHF Tz Tz
i i

i
C CΨ = Φ + Φ∑ , (19) 

where RHFΦ  denotes the RHF configuration, 

 RHF
1 1 n nλ αλ β λ αλ βΦ =  (20) 

and TzΦ  is the triplet configuration of z component  

 ( )1 1
1
2

Tz
i i i n nλ αλ β ν λ αβ βα λ αλ βΦ = + . (21) 

The UHF wavefunction is an eigenfunction of Sz and satisfies the relation 
UHF 0zS Ψ =  for closed-shell molecules: it includes only the triplet ms = 0 

component and the other x and y components are not included.  
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 The matrix elements of the spin-linear operators between singlet and triplet 
functions are shown in Table I. It is diagonal in the x, y, and z representation. 
Using this diagonal nature, we can study the effect of the SO interaction on the 
magnetic shielding constant by the UHF wavefunction up-to the first-order in the 
perturbation.35 

 For calculating the diagonal and off-diagonal elements of the magnetic 
shielding tensors, we need all the terms in Eqs. (13) and (14) The term 

( ) ( )0 0Ts Ts
I IC Φ∑  (s = x, y, or z) for zero magnetic field is obtained by 

calculating the UHF wavefunction in the s-component of the SO interaction 
operator. It is the eigenfunction of the Ss operator and is written as  

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF0 0 0 0 0Tx Tx
x C CΨ = Φ + Φ∑ , (22) 

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF0 0 0 0 0Ty Ty
y C CΨ = Φ + Φ∑ , (23) 

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF0 0 0 0 0Tz Tz
z C CΨ = Φ + Φ∑ . (24) 

Since the SO matrix elements are diagonal as shown in Table I, the terms 
( ) ( )0 0Tx TxC∑ Φ  etc. in Eqs. (22) to (24) are exactly the same as the 

corresponding terms of the first order in the SO perturbation.  
 In the presence of the magnetic field, we first applied the magnetic field in 
the same direction as the SO interaction and calculate the UHF wavefunction for 
each direction:  

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF Tx Tx
x x x x x xB C B B C B BΨ = Φ + Φ∑ , (25) 

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF Ty Ty
y y y y y yB C B B C B BΨ = Φ + Φ∑ , (26) 

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF Tz Tz
z z z z z zB C B B C B BΨ = Φ + Φ∑ . (27) 

The diagonal elements (t = u) of the diamagnetic, paramagnetic, and FC term can 
be calculated with the six UHF wavefunctions corresponding to Eqs. (22) to (27). 
For the diagonal elements of the SD term, we can perform the UHF calculation 
for the u component of the SO interaction and for the t component of the 
magnetic field,  

 ( ) ( ) ( ) ( ) ( )UHF RHF RHF Tu Tu
u t t t t tB C B B C B BΨ = Φ + Φ∑ . (28) 

However, if we neglect the coupling between the magnetic field and the SO 
interaction, we have  

 ( ) ( ) ( ) ( )0 0Tu Tu Tu Tu
t tC B B CΦ = Φ∑ ∑ . (29) 
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Therefore, no new UHF calculation is necessary for obtaining the SD term. 
Using Eq. (29), the off-diagonal terms of the shielding tensor (t ≠ u) can be 
obtained with using the six UHF wavefunctions of Eqs. (22) to (27). 
 The matrix elements of the spin-linear operator, 

 ( ) ( )t t t
j

F f j S j= ∑   ( ), ,t x y z= , (30) 

are calculated as 

 ( ) ( ) ( ) ( )UHF UHF
t t t t t tu tB B B F BFΨ Ψ Ψ=Ψ  ( )t u=  (31) 

 ( ) ( )UHF UHF
t t u uuFB BΨ= Ψ  ( )t u≠ . (32) 

The SD and FC terms of the shielding constant is obtained with Eq. (10). Note in 
the calculation of the matrix element of Eq. (32), we have to handle two different 
UHF wavefunctions and so the problem of -non-orthogonal orbitals arise. 
However, this can be circumvented by calculating the corresponding orbitals of 
the two-UHF wavefunctions.  
 Eqs (22) to (32) summarizes the SO-UHF method for the magnetic shielding 
constant.35 In the SO-UHF method we used the nature of each component where 
the spin-linear operator can be calculated by the UHF wavefunction for each 
direction. The effect of the first-order perturbation of SO interaction can be 
calculated using the conventional UHF wavefunctions. For the higher-order 
effect of SO interaction, we need the matrix elements between the different 
component of triplet functions as Tt Tu

sFΦ Φ  (t ≠ u). To include such terms 
within the HF orbital theory, we have to extend the UHF wavefunctions to the 
GUHF form.  
 
2.3.  SO-GUHF method 
 
The UHF wavefunction includes triplet functions of UHF 0zS Ψ = , but other 
components are not involved. To include all the x, y, and z components of triplet 
functions in the single determinant, the spin-functions are generalized to the 
linear combination of α and β functions as 

 ( ) ( ) ( )GUHF
1 1 1 2 2 2 2 2 2n n na b a b a bϕ α β ϕ α β ϕ α βΨ = + + +N . (33) 

Eq. (33) is known as the GUHF wavefunction. The limited CI form of the GUHF 
wavefunction is  

 GUHF RHF RHF Tx Tx Ty Ty Tz TzC C C CΨ = Φ + Φ + Φ + Φ∑ ∑ ∑ . (34) 
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The GUHF wavefunction is no longer the eigenfunction of St (t = x, y, z).  
 The single Slater determinant of Eq. (33) for the 2n electron system can be 
re-written as  

 GUHF
1 2 2... nψ ψ ψΨ = . (35) 

The GUHF orbital, the linear combination of α and β spin-orbitals as 

 p p p
α βψ φ α φ β= + , (36) 

is defined by the GUHF equation 

 ( )( ) 0j j j jF α βε φ α φ β− + = . (37) 

Projecting Eq.(37) on α  and β  and using the orthonormal condition of 
spin-functions, yields 

 0j j j j

j j j j

F F
F F

α

β

α α ε α β φ
β α β β ε φ

− ⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
. (38) 

The orthonormal condition of GUHF orbitals is given by 

 j k j k j k jk
α α β βψ ψ φ φ φ φ δ= + = . (39) 

The spatial orbitals are expanded by the conventional one-electron basis 
functions as 

 p p pC Cα β
λ λ λ λ

λ λ

ψ χ α χ β= +∑ ∑ . (40) 

The GUHF based LCAO-MO approach. The orbital expansion coefficients, C, 
are complex in general. The matrix GUHF-Roothaan equation has the form  

 ( )αα αβ α α

βα ββ β β
⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

S 0F F C C
ε

0 SF F C C
, (41) 

where S is the overlap matrix, Sµν µ νχ χ= , and ε is the orbital energy. The 
Fock matrix can be written as 

 ( ) ( )C C SO SO
ωω ωω ωω ωω ωω ωω′ ′ ′ ′ ′ ′= + − + −F h J K J K . (42) 

If the magnetic field is not applied, the matrix elements of h are 

 21
2

A

A A

Zh p
r

ωω
µν ωωδ µ ν′

′
⎛ ⎞= −⎜ ⎟
⎝ ⎠∑  
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( )

2 3
, ,4

A A s
s

A s x y z A

Z ri
c r

µ ν ω σ ω
=

× ∇
′− ∑ ∑ . (43) 

JC and KC denote Coulomb and exchange operators of the electron-electron 
repulsion; their matrix elements are 

 ( )1
C, 12

,

J r Dωω ττ
µν ρλ

τ α β ρ
ωω

λ

ν ρλδ µ′ −
′

=

= ∑ ∑ , (44) 

 ( )1
C, 12K r Dωω ω ω

µν ρλ
ρλ

λ ρµ ν′ ′−= ∑ , (45) 

and 

 ( ) ( ) ( ) ( ) ( )1 * 1 *
12 1 2 12d d 1 1 2 2r rµ λ ρ νλ ρ χ χ χ χµ ν− −= ∫ r r . (46) 

The density matrix is 

 *
occ

k
k

kD C Cω ω
ρ λ

ωω
ρλ

′′ = ∑ . (47) 

JSO and KSO represent Coulomb and exchange operators of the two-electron SO 
interaction. The matrix elements are given by 

 ( )[SO, 12
, , ,

s
s

s x y z
J gωω

µν ττ
ττ α β ρλ

ρλ δ ω σµν ω′
′

′= =

′= ∑ ∑ ∑  

 ( ) ]21
s

sg Dττ
ωω ρλρλ τ σ τν δµ ′

′′+ , (48) 

 ( )[SO 12
, , ,

s
s

s x y z
K g Dωω ωτ

µν ρλ
τ α β ρλ

λ ρ ω σµ ν τ′

= =

= ∑ ∑ ∑  

 ( ) ]21
s

sg Dτω
ρλλ ρ τ ων σµ ′+ , (49) 

and 

 ( ) ( ) ( ) ( ) ( )* *12 21
12 1 22 3

12

21 d d 1 1 2 2
4

s s
s l lg

c rµ λ ρ νλ ρ χ χ χ χµ ν −

+⎛ ⎞= − ⎜ ⎟
⎝ ⎠∫ r r . (50) 

The GUHF-Roothaan equation is solved iteratively, by the same procedure as 
that in the usual non-relativistic HF method.  
 The magnetic shielding constant is calculated with the finite perturbation 
method.35,69 The finite-field GUHF equation is written as 

 ( ) ( )( ) ( )1,0 0t tB B
j t t j jF B H ε ψ+ − = . (51) 
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To quantize the electron spin in the direction of the magnetic field, we choose the 
principal axis of spin-angular momentum as t zσ σ= . The magnetic shielding 
constant is calculated by Eq. (10). For calculating all the components of the 
magnetic shielding tensor, we need one GUHF wavefunction without magnetic 
field and three GUHF wavefunctions with each direction of magnetic field Bt (t = 
x, y, z). 
 
3.  Relation between quasi-relativistic theory and GUHF theory 
 
3.1.  Orbital space for the general two-component Hamiltonian 
 
Here we study what kind of one-particle orbital is necessary for the 
quasi-relativistic theory. We consider an arbitral one-body operator Ô  which is 
represented by 2×2 matrix form. Ô  can be written with identity operator Î  
and Pauli matrix σ as 

 0 0
, ,

ˆ ˆ ˆ
s s

s x y z
O o I o I o σ

=

= + ⋅ = + ∑o σ  (52) 

where 

 ( )0 1
1 0xσ = , ( )0

0y

i
i

σ
−

= , ( )1 0
0 1zσ =

−
 (53) 

and 

 ( )1 0ˆ
0 1

I = . (54) 

Here, os (s = 0, x, y, z) represents the usual one-dimensional operator which acts 
on spatial functions. The one-particle orbital space { } { }1 2,pψ ψ ψ=  on which 
Ô  acts must have the direct product of {ω} and {χ}; χ is a spatial function on 
which os acts and ω is the two-dimensional column vector as 

 { } ( ) ( ){ }1 0
,

0 1
ω = . (55) 

ω is the eigenfunction of σz and Î . Thus, ψ has the form 

 ( ) ( )1 0
0 1p kp k kp k

k
c cψ χ χ⎡ ⎤′= +⎢ ⎥⎣ ⎦∑  (56) 
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with complex coefficient c and c’. Generally, operators in the two-component 
quasi-relativistic theory have 2×2 matrix form, thus, the two-component 
quasi-relativistic orbital is expressed by Eq. (56).  
 The Pauli matrix relates the spin-operator as 

 1
2

=s σ  (57) 

The spin functions, eigenfunction of s2 and sz, are 

 ( )1
0

α = , ( )0
1

β =  (58) 

Therefore, the two-component quasi-relativistic orbital can be written as 

 [ ]p kp k kp k
k

c cψ χ α χ β′= +∑  

 p p
α βφ α φ β= +  (59) 

Eq. (59) is identical to the GUHF orbital. The quasi-relativistic orbital theory is 
not special; it can be handled in the frameworks of GUHF theory49-51 with 
modification of operators into relativistic theory. Eq. (59), is also known as the 
LCASO-MS approach.70 
 The orbital space for the spin free operator,  

 ( )0
0

0

0ˆ ˆ
0
o

O o I
o

= = , (60) 

has an RHF form expressed as 

 k k
k

cα αψ χ α= ∑ , k k
k

cβ βψ χ β= ∑  (61) 

with 

 k kc cα β= , (62) 

because the spatial functions are completely decoupled from the spin function. 
An interesting example is the conventional UHF orbital which is expressed as Eq. 
(61), but 

 k kc cα β≠ . (63) 

The operator corresponding to UHF orbital space has a form expressed as 
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 ( )0ˆ
0
x

O
y

=  (64) 

where x y≠ . This operator can be rewritten as follows: 

 
( ) ( )

( ) ( )( )01ˆ
02

x y x y
O

x y x y
+ + −

=
+ − −

 

 0
ˆ

z zo I o σ= + . (65) 

Here  

 ( )0
1
2

o x y= +  (66) 

and  

 ( )
1
2zo x y= − . (67) 

Eqs. (64) to (67) show that the conventional UHF orbital describes the 
spin-dependent operator of sz direction.  
 Similarly to Eq. (52) , the two-body operator, ( )1,2V , of the two-component 
theory can be written as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
ˆ ˆ ˆ ˆ1,2 1 1,2 1 1 1,2 2 2 1,2 1V I v I I I= + ⋅ + ⋅v σ v σ  

 ( ) ( ) ( )ˆ2 1,2 1+ ⋅ ⋅σ x σ  (68) 

where ( )ˆ 1I , ( )1σ , etc.., denote an operator acting on the spin part of electron 1. 
( )0 1,2v  represents the scalar two-body operator i.e. Coulomb repulsion. ( )1,2v  

represents the vector operator: the two-electron SO interaction4 is categorized in 
this type. ( )ˆ 1,2x  is the tensor operator and the spin-spin interaction4 having this 
form. 
 
3.2.  Quasi-relativistic GUHF method 
 
The outline of the GUHF theory including the SO interaction is given in Sections 
2.3. In this section, we consider further relativistic correction within the GUHF 
theory. In the quasi-relativistic theory, the Hamiltonian is written as  

 ( ) ( ) ( ) ( )( )SF SO mag, N
j

H H j H j H j= + +∑B µ  
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 ( ) ( )( )C SO, ,
j k

V j k V j k
>

+ +∑ , (69) 

where HSF and HSO denote the spin-free and spin-orbit parts of Hamiltonian 
without magnetic field. Vc and Vso are electron-electron interaction of Coulomb 
repulsion and the SO interaction, respectively. Hmag represents the magnetic 
interaction. 
 Since the spin-free relativistic (SFR) effect strongly couples with the SO 
interaction,42-44 the SO-GUHF method is insufficient for the magnetic shielding 
constant of heavy elements. The relativistic correction to the magnetic interaction, 
especially the mass-velocity correction is also important.45-48 The quasi- 
relativistic- (QR-) GUHF theory is necessary to explain the magnetic shielding 
constant of heavy elements. The quasi-relativistic theory can be handled within 
the frame of the SO-GUHF only changing the operators into the quasi-relativistic 
form.45-48 

 The DKH theory is a quasi-relativistic theory whose accuracy has been 
examined in detail and has been widely accepted in quantum chemistry.13-16 We 
have extended the DKH theory to the systems in which the magnetic vector 
potential is present, and adapted it for the QR-GUHF theory,47, 48 namely we use 
the Hamiltonian, 

 ( ) ( )2 2 SF2SF
j j j j j j j j j jc p c K V R Hj V R KH + + + += ⋅p p , (70) 

 ( ) ( )[ ]SO
j j j j j j j ji K R VH j R K⋅ ×= σ p p , (71) 

 ( ) ( ) ( )[ ] mag2mag
j j j j j j j j j j j j jK R c c Rj KH H⋅ ⋅ + ⋅ ⋅ += σ p σ A σ A σ p ,(72) 

where, Kj and Rj are kinetic factors, Vj and Aj are the scalar and vector potentials, 
SF2
jH  and mag2

jH  are the second-order terms. The detailed form of the above 
operators is given in Ref. 47. The first term in Eq.(70) is the relativistic kinetic 
energy involving mass-velocity correction. The third term, appears as V ⋅p p  in 
Eq.(70), is the Darwin term of the DK form. The kinetic factors, Kj and Rj, in 
Eq.(72) relate to the mass-velocity correction to the magnetic interaction. 
Expanding Eq.(72), we obtain the diamagnetic, paramagnetic, spin-dipolar, and 
Fermi contact terms in the DK form: each term corresponds to it of the 
SO-GUHF in the non-relativistic limit. 
 If we are interested in the heavy atom effect on the chemical shift of light 
resonant nucleus, we can use the relativistic ECP24,25 for the sake of convenience. 
Using the ECP is based on the assumption that the chemical shift is mainly 
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determined by the valence electronic structure and that the relativistic effect is 
local in heavy elements. 
 
4.  Computational aspects 
 
4.1.  Basis sets 
 
Basis sets for NMR properties in the non-relativistic level have been discussed in 
the literature (for example, see Ref. 57). Here, we turn our attention to the basis 
sets for heavy elements in relativistic calculations.71 The orbitals of a heavy atom 
shrink to the nucleus by the relativistic effect; therefore, functions with a large 
exponent are necessary compared with the non-relativistic function.71 For the 
contracted basis sets, contraction coefficients should be determined by the 
relativistic calculations.48,69 Because the orbital shapes differ between p1/2 and p3/2 
or d3/2 and d5/2 orbitals in a heavy element, the inner orbital should be contracted 
in two patterns or sufficient freedom should be given. Because of the FC term 
which sensitively reflects the electron density at the nucleus, a sufficient degree 
of freedom is necessary for the 1s orbital of the heavy element from which the 
shielding constant is calculated. 
 Our laboratory uses the well-tempered Gaussian basis function (WTBF)72. 
The WTBF covers a sufficient range of exponents, and the parameters for almost 
all elements are available. Because the primitive WTBF is too large to apply to 
molecular calculations, our laboratory uses the segment contraction scheme 
based on the proposal by Davidson73 and Dunning.74 The coefficient of the inner 
most p orbitals (2p1/2 and 2p3/2) is determined by primitive basis calculation of 
atom or small molecule includes the SO interaction, and the primitive functions 
are contracted with the resulting coefficients. The coefficients of outer orbitals 
are determined by the atomic ROHF calculation with the SFR Hamiltonian. For 
the 6s6p block elements the second inner p orbital (3p1/2 and 3p3/2) and inner 
most d orbital (3d3/2 and 3d5/2) are contracted with two patterns considering the 
SO interaction. The obtained basis function is used in a certain splitting pattern 
according to the purpose. 
 
4.2.  Gauge-origin problem 
 
Gauge-origin dependence is problematic in the finite-basis calculation. Here we 
propose two methods to overcome the origin dependence. The first approach is 
systematic augmentation of the basis function. This can be achieved by adding 
the FOBFs (first-order higher angular momentum basis functions).75 The FOBFs 
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method can be used without modifying the previous formulation, and conserves 
the traditional picture of NMR theory.78-80 The second approach is using GIAOs 
(Gauge invariant atomic orbitals).76, 77 To adapt to the GIAO, we have to modify 
the previous formula (in details, see Ref. 48), and some additional terms from 
gauge-error arise. In the molecule including heavy elements, the computation 
dimension of FOBFs method becomes very large to diminish the gauge-error; 
therefore, the GIAO method was mainly used in the following calculations. 
 We should note that the decomposition of the total magnetic shielding 
constant into the diamagnetic and paramagnetic shielding terms depends on the 
gauge-origin;57,79 however, the total shielding constant is invariant at the infinite 
basis limit. The conventional basis and GIAO calculations provide the different 
shielding pictures in terms of diamagnetic contributions. 
 
5.  Results 
 
5.1.  SO-UHF results 
 
The first report of the SO-UHF calculation is the proton shielding constants of 
hydrogen halides and 13C shielding constants of methyl halides.35 In that study, 
we demonstrated that the origin of the chemical shifts of heavy halides is the SO 
interaction with the ab-initio calculation. The proton chemical shifts are 
discussed in a following section, and the result of the 13C chemical shifts is 
shown in Fig.1. The result clearly shows that the chemical shifts of CH3I and 
CH3Br are entirely the SO effects. The 13C NMR is a common research tool in 
chemistry and alkyl iodides are also familiar reagents. In other word, the 
measurement of 13C NMR is measurement of the magnitude of the relativistic 
effect. 
 The SO-UHF method has been applied for the NMR of various elements and 
the chemical shifts of main-group and transition metal halides, Al,38 Si,36 Ga,39 
In,39 Sn,37 Ti,40 and Nb.40 The 119Sn chemical shifts calculated with the SO-UHF 
method are shown in Fig.2 with a comparison of the experimental value. The 
chemical shifts of the main-group of metals are mostly determined from the 
electronegativity of ligands.68 However, the large NHD has pointed out.48 The 
NHD has been explained by the substituent effect in the diamagnetic term or by 
the 3

Nr
−  value of the paramagnetic term affected with the overlap of ligand 

orbitals.81 
 Our series of SO-UHF studies shows that the origin of the NHD is the SO 
interaction. The diamagnetic and paramagnetic terms are also an important origin 
of the chemical shifts in certain cases. We can conclude from our RHF1,2 and 
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SO-UHF35-40,42-44 studies that the NMR chemical shifts are determined from the 
various contributions of the electronic structure. The chemical shifts contain rich 
chemical information. This information reflects the valence electronic structure 
as well as the core electron density. 
 
5.2.  SO-GUHF results 
 
Hydrogen halides (HX, X = F, Cl, Br, and I) are the simplest molecular system 
that clearly shows the relativistic effect on the magnetic shielding constant. The 
experimentally observed chemical shifts show the typical NHD: the high field 
shift according to the increase in the atomic number of halogen. The pioneering 
report of semi-empirical work by Morishima et al.28 has indicated that this 
halogen dependence originates from the SO effect. The first ab-initio calculation 
with the SO-UHF method was carried out by Nakatsuji et al.,36 and the result 
clearly shows that the origin of the chemical shift is the SO interaction. Several 
groups are applying various methods of calculating these molecules.53,54,61,82,83 

 Table II shows the SO-GUHF and QR-GUHF results of proton magnetic 
shielding constants of hydrogen halides.48 For the comparison, the 
non-relativistic (NR) results and the experimental values are also indicated. We 
use the uncontracted cc-pVTZ84,85 for H, F, and Cl, and the even-tempered sets of 
Visscher et al.86 for Br and I. The GIAO method was used, and the experimental 
bond lengths were used. 
 In the GUHF calculation σdia+para is almost the same as the NR value. The SO 
contribution becomes as large in the heavy halides as bromide and iodide. In σSO, 
the spin-dipolar term is 1 ppm or less and the Fermi contact term is dominant. 
The QR-GUHF method in which the DKH Hamiltonian was used gives slightly 
large value in HI compared with the SO-GUHF method in which the Pauli SO 
term is included. We can conclude that in the proton shielding constants in 
hydrogen halides the most of relativistic effects can be taken into account by 
considering the SO interaction with the GUHF method. 
 The calculated proton chemical shifts compared with the experimental values 
are shown in Fig. 3. Without SO interaction, no chemical shifts are observed in 
HCl, HBr, and HI. In other word, observing the proton chemical shifts in these 
molecules is measuring the SO interaction itself. 
 
5.3.  Magnetic Shielding Constants of Heavy Elements: noble gases 
 
Kolb et al. calculated several properties of various closed shell atoms and ions 
with the four-component relativistic RPA.30 They showed that the magnetic 
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shielding constants of heavy elements increase substantially by the relativistic 
effect. In the non-relativistic theory, the magnetic shielding constant of a closed 
shell atom can be written as 

 2

1 1
2NR c r

σ = . (73) 

This formula is derived from the diamagnetic shielding term. In the 
non-relativistic formula, the paramagnetic shielding term does not contribute to 
the shielding constant of atoms because of their spherical symmetry. Kolb et al. 
have shown that this formula does not hold in a system with large atomic charge, 
even though the expectation value was calculated using the four-component 
relativistic wavefunction.30 
 Their results strongly suggest that we have to consider the relativistic 
correction to the magnetic interaction. Our recent study shows that the origin of 
the relativistic increase of the magnetic shielding constant is the relativistic 
correction to the magnetic interaction.47 
 Table III shows the magnetic shielding constants of noble gas atoms at the 
non-relativistic RHF, the QR-GUHF, and the DHF theroy.47 We used (9s4p) and 
(12s8p) basis sets for Ne and Ar: the exponents were taken from cc-pVDZ.84,85 
Dyall’s (15s11p6d), (19s15p9d), and (24s20p13d8f) basis sets87 were used for Kr, 
Xe, and Rn. 
 The results clearly show that the relativistic effect substantially increases the 
magnetic shielding constants of heavy elements: the effect is about 400 ppm in 
Kr and 1600 ppm in Xe. It becomes about 8500 ppm in Rn. The relativistic 
molecular orbital method is indispensable for studying the magnetic shielding of 
heavy elements. Using the DHF method is the most favorable approach. However, 
the DHF calculation of magnetic shielding constant is still very costly and it can 
be applied only to very small molecules. The QR-GUHF method well reproduces 
the results of the DHF method; moreover, the QR-GUHF calculation is much 
easier than the DHF calculation. The QR-GUHF method is a strong theoretical 
tool for studying the magnetic shielding constants of molecules including heavy 
elements. 
 
5.4.  Mercury-199 NMR 
 
As discussed in the previous section, the relativistic molecular orbital theory is 
necessary for the theoretical study of the NMR parameters of heavy resonant 
nuclei. In this section, we present the study of 199Hg NMR of HgXY (X, Y = Me, 
Cl, Br, and I) compounds, the NMR chemical shifts of a heavy atom.48 



 211

 We used Huzinaga-Dunning DZ basis for H,88 Ahlrich’s TZ basis89 with 
polarization functions90 for C and Cl. In the non-relativistic calculation, 
Huzinaga’s TZ basis with polarization functions90 were used for Hg, I, and Br. In 
the relativistic calculation, contracted WTBFs72,48 of [18s15p8d3f], [12s10p6d], 
and [10s8p5d] are used for Hg, I, and Br. Experimental molecular geometries 
were used. All calculations were performed using the GIAO method. 
 Table IV shows the calculated magnetic shielding constants. Comparing the 
σd+p of the QR-GUHF with the NR value, we can see the significant relativistic 
effect in the spin-free terms: the effect is about 1000 ppm in HgI2. Moreover, σSO 
is large even in HgMe2: the heavy atom is only Hg itself. Consequently, the 
magnetic shielding constants of the QR-GUHF are largely increased compared 
with the NR values. Such heavy atom shift of heavy atom itself (HAHA) effect 
was pointed out by Pyykkö and co-workers.55 Our study shows that the origin of 
the HAHA effect is the mass-velocity correction of the magnetic interaction in 
the QR Hamiltonian45-48 and such correction relates to the change of picture 
effect.47,48,65,66 
 The theoretical and experimental 199Hg chemical shifts are shown in Table III. 
The comparison between theoretical and experimental chemical shifts is 
displayed in Fig. 5. The halogen dependence of the chemical shifts clearly 
originated from the relativistic effect. The origin of the chemical shift is σpara and 
σSO(FC). However, unlike 1H and 13C chemical shifts, considering only the SO 
interaction is insufficient for 199Hg chemical shift. The coupling of the SO and 
SFR effect is quite important for heavy elements; the relativistic correction to the 
magnetic interaction is also important. Without these effects, the experimental 
values cannot be reproduced.48 
 
6.  Summary 
 
This review article explains the two-component quasi-relativistic theory from the 
viewpoint of the Generalized UHF molecular orbital theory. In terms of MO, the 
GUHF-MO in which the freedom of electron spin is considered is equivalent to 
the relativistic two-component molecular spinor. The GUHF-MO gives α and β 
spin to a single electron and gives an independent degree of freedom to the 
spatial function of α and β furthermore. This GUHF-MO provides a complete 
space for the spinning electron in the presence of a magnetic field. Thus, the 
GUHF theory is suited to study of the magnetic properties of atoms and 
molecules. We applied the GUHF theory to the study of magnetic shielding 
constants: it is a fundamental property in chemistry and physics, and the 
importance of the relativistic effect on it is known. The SO-GUHF theory with 
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the SO interaction and the QR-GUHF theory, with the DKH quasi-relativistic 
Hamiltonian have been explained. The SO-GUHF theory is our fundamental 
theory; its quasi-relativistic extension, the QR-GUHF theory, and adaptation to 
the relativistic ECP can be easily achieved by modification of Hamiltonian 
matrix elements. 
 In this article, we classified the relativistic effect on the magnetic shielding 
constant into two types. The first type is where the relativistic effect from the 
bonding heavy elements affects the magnetic shielding constant of the resonant 
nucleus. These “heavy atom shift induced by bonding heavy elements” mainly 
originate from the SO interaction of heavy elements. The second type is the 
relativistic effect of the heavy resonant nucleus itself. To study this “heavy atom 
shift of the heavy atom itself”, a high-level relativistic theory is required. The 
mass-velocity correction to the magnetic interaction term is an important source 
of this shielding effect, but the SFR and SO are also needed.  
 The proton shielding constants of hydrogen halides and 13C shielding 
constants of methyl halides are examples of the first type. The SO interaction is 
the essential origin of the chemical shifts. The magnetic shielding constants of 
noble gas atoms are important examples of the “heavy atom shift of the heavy 
atom itself”, since the four-component DHF results are available. The relativistic 
effect significantly increases the magnetic shielding constants of heavy atoms, Kr, 
Xe, and Rn. The DKH based QR-GUHF theory has been able to accurately 
reproduce the DHF results. The theoretical study of the 199Hg NMR chemical 
shifts, the NMR of heavy resonant nucleus, has been presented. Although, 
without relativistic theory we have not been able to clarify the mechanism of the 
199Hg NMR chemical shifts. The QR-GUHF study has shown that the origin of 
the chemical shift is the paramagnetic shielding and Fermi contact term. 
 QR-GUHF theory is a good starting point of electron correlation theory 
because it includes relativistic effect in the zero-th order Hamiltonian. In addition, 
many of the developments that have been accumulated with non-relativistic 
quantum chemistry can be applied with some modifications. For example, 
QR-GUHF theory can be adapted to the properties of excited state molecules, 
such as the MCD spectra. Thus, QR-GUHF is a fundamental theory of the 
relativistic quantum chemistry of molecular magnetic properties. 
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TABLE I. Matrix elements of the spin-linear operator between singlet and triplet functions. 

Operator  S TxOΦ Φ  S TyOΦ Φ  S TzOΦ Φ  

i xi xif s∑  S Tx
i xi xif sΦ ∑ Φ  0 0 

i yi yi
f s∑  0 S Ty

i yi yi
f sΦ ∑ Φ  0 

i zi zif s∑  0 0 S Tz
i zi zif sΦ ∑ Φ  

( )i i i i xi x yi y zi zii i
O f s f s f s= ∑ ⋅ = ∑ + +f s  

 
 



 

217

 
 
 

TABLE II. Proton magnetic shielding constants and chemical shifts of hydrogen halides (ppm). 
 Magnetic shielding constant Chemical shiftc
 NRa  SO-GUHFb QR-GUHFb  exp. δtheory δexp

 σtotal  σd+p σso σtotal σd+p σso σtotal  σtotal NR SO QR
HF 28.09  28.15 0.18 28.09 28.17 0.17 28.34  29.20 0.00 0.00 0.00 0.00
HCl 30.54  30.55 1.02 31.57 30.54 1.01 31.56  31.78 -2.45 -3.48 -3.22 -2.58
HBr 30.74  30.73 5.95 36.68 30.71 6.43 37.15  35.65 -2.65 -8.59 -8.81 -6.45
HI 31.15  31.08 16.07 47.15 30.95 18.77 49.72  44.54 -3.06 -19.06 -21.38 -15.34

aNon-relativistic calculation (NR): σtotal = σdia + σpara. 
bGUHF calculation: σtotal = σd+p + σSO, σd+p = σdia + σpara, σSO = σSO(SD) + σSO(FC).  
cδ(HX) = σ(HF) - σ(HX) 
 

 
 



 218

 
 
 

TABLE III. Magnetic shielding constants of noble gas 
atoms (ppm). 

 NR QR-GUHF DHF
Ne 552.0 560.5 557.5
Ar 1233.7 1284.4 1271.8
Kr 3154.5 3624.0 3571.6
Xe 5326.6 7044.7 6957.8
Rn 10727.1 19074.6 19162.9

 
 
 
 
 
TABLE IV. 199Hg magnetic shielding constants and chemical shifts of mercury compounds (ppm). 

aNon-relativistic calculation (NR): σtotal = σdia + σpara. 
bGUHF calculation: σtotal = σd+p + σSO, σd+p = σdia + σpara, σSO = σSO(SD) + σSO(FC).  
cδ(HgXY) = σ(HgMe2) - σ(HgXY) 
 
 

Molecule Magnetic shielding constant Chemical shiftc
 NR  QR-GUHF δtheory Exptl 
 σtotal  σd+p σso σtotal NR QR δexp 
HgMe2 6666.6  6064.0 6708.2 12772.2 0.0 0.0 0 
HgMeCl 7228.4  7066.1 6191.3 13257.4 -561.8 -485.2 -814 
HgMeBr 7205.5  6972.8 6797.7 13725.5 -538.9 -953.3 -915 
HgMeI 7021.0  6619.1 7564.2 14183.3 -354.4 -1411.1 -1097 
HgCl2 7525.6  7473.1 6467.8 13940.0 -859.0 -1168.7 -1594 
HgBr2 7729.9  7625.0 8609.3 16234.3 -1063.3 -3462.1 -2209 
HgI2 7233.6  6297.1 10910.7 17551.6 -567.0 -4779.4 -3430 
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Fig. 1. Comparison between theoretical and experimental 13C chemical shifts in methyl halides with 
and without the spin-orbit interaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Comparison between theoretical and experimental 119Sn chemical shifts in tin tetrahydride 
and tetrahalides. 
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Fig. 3. Comparison between theoretical and experimental 1H chemical shifts in hydrogen halides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison between theoretical and experimental 199Hg chemical shifts in HgXY (X, Y = 
Me, Cl, Br, and I). 
 
 
 

-20-100

-20

-10

0
NR
SO-GUHF
QR-GUHF

Theory (ppm)

E
xp

er
im

en
t (

pp
m

)

HF

HCl

HBr

HI

-4000-20000

-4000

-2000

0 NR
QR

Theory (ppm)

E
xp

er
im

en
t (

pp
m

)

HgMeCl

HgMe
2

HgMeBr
HgMeI

HgCl
2

HgBr
2

HgI
2


