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The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of
chemistry. A general method of solving the SE was presented before as the free complement (FC)
theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use
the FC theory starting from the local valence bond wave function. When this theory is applied to larger
molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore,
an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular
calculations, we first construct the wave function to satisfy the antisymmetry rule, “electronic wave
functions must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic
interference may disturb the basis of the science.” Starting from determinantal wave functions is
typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing
molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging
to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are
necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not
necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the
necessary parts of the antisymmetrization operations become very small as molecules become larger,
leading finally to the operation counts of lower orders of N, the number of electrons. This theory
creates a natural antisymmetrization method that is useful for large molecules. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4919843]

I. INTRODUCTION

Chemistry is central to very broad fields of materials
science. It deals with complex sciences of matters, their
transformations, and even the creations of new matters.
Though chemistry is still an empirical science, some chemical
theories and concepts are well established. Among them,
probably the most important working concepts would be
molecular structural formulas and chemical reaction formulas.
They are used daily in chemistry and chemical industry as if
they are the language to describe the chemistry under study.
The essence of these concepts is the local atomic concept that
is transferable from chemistry to chemistry.

On the other hand, chemistry is governed by the principles
of quantum mechanics, in particular, the Schrödinger equation
(SE)1 and the relativistic Dirac equation (DE)2 that are written
as

(H − E)ψ = 0 (1)

in a usual notation and the antisymmetry principle that is
written as3

Pψ = (−)Pψ, (2)

where P is an exchange operator of any two electrons in atoms
and molecules. In the IUPAC Gold book,4 the antisymmetry

a)Author to whom correspondence should be addressed. Electronic mail:
h.nakatsuji@qcri.or.jp

principle is described as “the postulate that electrons must be
described by wave functions which are antisymmetric with
respect to interchange of the coordinates (including spin)
of a pair of electrons. A corollary of the principle is the
Pauli exclusion principle.” If we can solve the SE under the
constraint of the antisymmetry principle in high accuracy at
a reasonable speed, we can not only predict chemistry very
accurately but also simulate chemical phenomena as precisely
as or even more precisely than is possible through experiments.
This has long been a dream of many scientists since the birth
of the SE in 1926.1

In 2000, a breakthrough was initiated5,6 and in 2004, a gen-
eral theory of solving the SE was first presented7 and developed
to be useful for solving the SE of general atoms and mole-
cules.7–15 Our theory was originally called iterative comple-
ment interaction (ICI) theory7 but was renamed later to the
free complement (FC) theory11 because it is not an “iterative”
theory. This theory was shown to be useful also for solving the
DE.8 It was applied to very small systems like H2 molecule9

and helium atom10 using the variational principle, and the high
accuracy of the FC theory was demonstrated by calculating the
energy of the helium atom to more than 40 digits.10 An integral-
free method, called local SE (LSE) method,12 was introduced
for applications to general atoms and molecules. Outlines of
the theory and the application examples were summarized in
the review articles.13–15 Recently, using the super-parallel com-
puters, the FC-LSE theory has been applied to solving the SE’s
of some organic molecules like ethylene and formaldehyde.15

0021-9606/2015/142(19)/194101/10/$30.00 142, 194101-1 © 2015 AIP Publishing LLC
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When the theory is applied to larger molecules, the
antisymmetrization of the wave function that enforces Eq. (2)
becomes a time-consuming step. This is particularly so for the
highly accurate theories.14–25 Therefore, we have published an
efficient determinant based method, called Nk method,26 but
this method is not efficient for very complex functions. When
many electrons are highly correlated (with many rij factors, for
example), the ordinary determinant-based antisymmetrization
theory becomes less-powerful, but a simple N! (N factorial
(NF), where N is the number of electrons of the system)
algorithm is very time-consuming when N is large. Therefore,
only small atoms and molecules were the subjects of the
highly accurate calculations of the Schrödinger accuracy
with the Hylleraas-CI and related methods,16–21 exponentially
correlated Gaussian methods,22–25 quantum Monte Carlo
methods,27–29 full CI extrapolation method,30 and our FC
variational10 and FC-LSE methods.14,15,31 So, an additional
breakthrough concerning the use of the antisymmetry principle
is necessary to make these approaches applicable to larger
molecules.

Many people have accepted the antisymmetry rule that
may be summarized as electronic wave functions must be
prescribed to be antisymmetric for all exchanges of electrons,
otherwise bosonic interference may disturb the basis of the
science. For example, many quantum chemistry theories start
from Slater determinants, putting all electrons within deter-
minantal wave functions. We will show that the antisymmetry
is not necessary for the pair of electrons that are distant even
within a single molecule. Actually, we can neglect some (large)
parts of the antisymmetrization operations without affecting
the accuracy (i.e., chemical accuracy) of the calculations: it
would be a big loss if we have to assure antisymmetry for all
electron pairs in a molecule.

In this paper, we propose a new antisymmetrization
theory for molecules, called inter-exchange (iExg) theory,
that enables us to relax the antisymmetry rule. We divide
antisymmetrization operations for molecules to those within
atoms and to those between atoms in molecules. Then, the
antisymmetrizations for the electrons between distant atoms
become (partially) negligible and the antisymmetrizations
within different atoms are also accelerated. The iExg theory
is a natural theory of antisymmetrizations and shows that
in very large molecules, even most of the antisymmetry
operations are actually unnecessary. For example, we will
show that even for small C2 molecule, only 2.1% of the total
antisymmetry operations are necessary for the calculations of
the Schrödinger accuracy. Thus, the iExg theory opens a way
to relax the antisymmetry “rule” and to realize calculations of
very large molecules or systems. It converts N! requirements
to the requirements of lower orders of N . We note that the iExg
theory is based on the locality of electrons in the electronic
structure of molecules. This is supported by the validity of
chemical structural formulas and chemical reaction formulas
that are used daily in chemistry.

In Sec. II, we will discuss on the locality of electrons in the
electronic structure of molecules in relation to the FC theory.
Then, we present the iExg theory in some details. After some
practical arguments in Sec. IV, we apply the iExg theory to Li2,
C2, and then to helium fullerene, He60, a 120 electron system

in which C of C60 (fullerene) is replaced with the helium
atom. This calculation would have been impossible if we had
to perform the antisymmetrizations of 120 electrons, since
120! = ∼10198, a huge number, but became easily possible by
virtue of the iExg theory.

II. LOCALITY AND THE FREE COMPLEMENT THEORY

The FC theory is a general exact theory for solving the
SE of atoms and molecules. In this section, we discuss the
structure of the FC wave function to clarify the local nature
of electrons in molecular electronic structure. The FC theory
was explained in some details in the review article,14 whose
Figure 4 gives a flowchart of the FC method. In short, the exact
wave function of a molecule is constructed with the system’s
Hamiltonian7 using a recurrence formula called the simplest
iterative complement (SIC) formula,

ψn =
�
1 + Cn−1g (H − En−1) �ψn−1, (3)

where n is the order of the FC wave function and Cn and
En are the coefficient and energy at order n. We start from
some initial wave function ψ0 = Aφ0, where A is the N
electron antisymmetrizer. Ifψ0 has some overlap with the exact
wave function, any ψ0 is acceptable, though the convergence
speed may be different, depending on the quality of ψ0. The
scaling function g was introduced to eliminate the Coulomb
singularities6 and is given by

g =

A, i

rA, i +

i, j

rij (4)

for general molecules without external fields. At sufficiently
large order n of the recurrence formula (3), we can assume ψn

to become exact ψ. Then, we pick up all the independent
analytical functions {φI} from the rhs of Eq. (3), give
independent coefficient cI to each function φI , and rewrite
Eq. (3) as

ψ =

I

cIAφI . (5)

We refer to the function φI or ψI = AφI as complement
function (cf), since it is an element of the complete functions
that describe the exact wave function as expressed by Eq. (5).
The coefficients {cI} are determined by the variational
method or the LSE method.11,12 In our formalism, the initial
function ψ0 or its Hartree product φ0 is constructed by
the valence bond (VB) or the (localized) molecular orbital
(MO) method. In both pictures, each electron is localized
within the orbital expressed by the one-centered (VB) or
several-centered (MO) Slater or Gauss functions. To obtain
the exact wave function, any ψ0 is acceptable as an initial
wave function as far as it has an overlap with the exact
wave function. In this paper, we restrict ourselves to choose
the local VB function for the simplicity in formulations,
more explicitly, the classical Heitler-London-Slater-Pauling
(HLSP) type VB function. Then, φ0 is expressed by the
Hartree product of (the linear combination, in general, of) the
Slater or Gauss orbitals, χA =


cκra

1
kxa2

k ya
3
kza

4
k exp(−ακrA)

or χA =


cκxa1
k ya

2
kza

3
k exp(−ακrA2), centered on the nucleus

A (cκ denotes coefficient and ai
k

and ακ show the indices and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

125.174.90.109 On: Mon, 18 May 2015 07:28:51



194101-3 H. Nakatsuji and H. Nakashima J. Chem. Phys. 142, 194101 (2015)

orbital exponent for each Slater or Gauss function) as

φ0 =

i

χA(i) · σ, (6)

where σ represents the N-electron spin function. Equation (6)
may be modified slightly when we use complex initial func-
tions like, for example, the two-equivalent Kekule functions
and covalent plus ionic functions. Thus, the general form of
the cf is finally written as

φI = f I
�{ri A} ,�rij

	�
φ0, (7)

where f I
�{ri A} ,�rij

	�
denotes the functions composed of the

products of xi A, yi A, zi A, ri A, and rij, where i runs electrons,
A denotes nuclei in the molecule, and rij denotes the inter-
electron distance between the electrons i and j.

Now, we have a picture that an electron is captured
in an exponential region centered at the nucleus. Since the
exponential functions included in φ0 in Eq. (7) decay most
rapidly, the prefactor f I

�{ri A} ,�rij
	�

modifies this picture
only slightly. Since φ0 is common to all the cfs as seen from
Eq. (7), we would be able to have this local picture even for
the exact wave function. Thus, the FC theory as expressed
by Eqs. (5) and (7) implies that each electron is captured
essentially within the exponential region around the nucleus,
because the exponential function decays most rapidly among
many other functions. This is a theoretical origin of the local
concept in chemistry, which is supported also by the success of
molecular structural formulas and chemical reaction formulas
used daily in chemistry. We note that the cfs given by Eq. (7)
are classified into atomic and inter ones depending on the
nature of the prefactor f I

�{ri A} ,�rij
	�

of Eq. (7): the former
consists of the products of the functions belonging only to the
same atoms and the latter includes the interatomic functions.
However, their decaying behaviors are essentially the same
since they are controlled by the φ0 part.

It is necessary to note that when we use the (localized)
MO initial function, this picture is modified from one atomic
region to several atomic regions, which makes the formulation
more complex. For this reason, in the above argument, we have
limited ourψ0 to the simple HLSP-type VB function. In reality,
the FC theory corrects the possible shortcoming of the VB or
MO picture, since the FC theory is exact.

In our applications of the FC theory, we terminate the
expansion given by Eq. (3) or Eq. (5) to some order that is
correct at least to chemical accuracy in the absolute energy
(i.e., kcal/mol accuracy). For general atoms and molecules,
the coefficients {cI} in Eq. (5) are calculated using the
LSE method,11,12 which is an integral-free sampling-type
methodology. In the present LSE calculations given in Sec. V,
we used the local sampling method33 in which each sampling
coordinate was also localized according to the local picture of
the wave function.

III. IEXG THEORY

We now propose iExg theory, which is a new antisym-
metrization theory for molecules and interacting molecules.
It is based on the local nature of the electrons in the

electronic structure of molecules and creates a natural efficient
way of antisymmetrizations. The theory helps to relax the
antisymmetry “rule.” It differs completely from the existing
theories, mostly determinant-based theories.

In the iExg theory, the antisymmetrization operations
of the electrons in a molecule are divided into those
within each atom or fragment and those between atoms or
fragments. For simplicity, we consider a diatomic molecule
or a reacting system, AB, where A and B are separated by
the distance RAB and have NA and NB electrons, respectively,
and NA + NB = N . Then, the antisymmetrizer of AB, AAB

≡ AAB(1, . . . ,NA,NA + 1, . . . ,NA + NB), in which the first NA

electrons belong to A and the last NB electrons to B, is
rewritten as

AAB = AAAB(1 + E(1)
AB
+ E(2)

AB
+ · · · + E(k)

AB
+ · · · + E(K )

AB
)

=

K
k=0

AAABE(k)
AB
, (8)

where AA and AB are the antisymmetrizers for the electrons
of A and B, respectively: AA ≡ AA(1, . . . ,NA) and AB

≡ AB(NA + 1, ..,NA + NB). E(k)
AB

is the inter-exchange operator
of the k pairs of electrons between A and B, E(0)

AB
= 1, and K is

the lesser of NA and NB: K = min(NA,NB). We specify further
the k-electron inter-exchange operator E(k)

AB
by

E(k)
AB
=
Lk

l=1
ε
(k,l)
AB

, (9)

where ε(k,l)
AB

is the lth element of the k-electron inter-exchange
operators, including parity of the permutation, and Lk is
the total number of these operations. When ε

(k,l)
AB

acts on
an NA + NB electron function f , k electrons are exchanged
between A and B as

ε
(k,l)
AB

f (1, . . . ,NA,NA + 1, . . . ,NA + NB)
= (−)ε f (a(k,l)

1 , . . . ,a(k,l)
NA

,b(k,l)1 , . . . ,b(k,l)NB
), (10)

where (−)ε shows the parity of this exchange.
Thus, the antisymmetrizer for the whole system AB, AAB,

is written as a sum of the terms composed of the k-electron
exchanges between A and B, Ek

AB, and then the NA and
NB electron antisymmetrizations, AAAB. When we apply the
antisymmetrizer AAB to the cf φI , we do that in two steps: first
is the application of the inter-exchange operator, Ek

ABφI , and
second is the application of the intra-exchange operator on
this result, AAAB · E(k)

AB
φI . For simplicity, we discuss below

the AB system composed of the two atoms A and B, namely,
the diatomic molecule AB.

The operation count of each term of Eq. (8) is represented
by

N! = NA!NB!
�
1 + NA

C1 NB
C1 + NA

C2 NB
C2

+ · · · + NA
Ck NB

Ck + · · · + NA
CK NB

CK

�

= NA!NB!
K
k=0

NA
Ck NB

Ck, (11)

where nCm is the binomial coefficient defined by

nCm = *
,

n
m
+
-
=

n!
(n − m)!m!

. (12)
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In Eq. (11), N! = (NA + NB)! of the left-hand side (lhs) is
the total operation counts of the antisymmetrizer AAB on the
left-hand side of Eq. (8) and on the rhs, NA! is that of AA, NB!
is that of AB, and in the parentheses, the term NA

Ck NB
Ck is

the operation count of the k-electron inter-exchange operator
E(k)
AB

. Therefore, Lk in Eq. (9) is given by Lk = NA
Ck NB

Ck.
Equation (8) itself is not new. Similar formula was utilized

by McWeeny32 to study long-range forces. In the present study,
we utilize it to build up a new antisymmetrization theory
that helps to reduce antisymmetrization operations for large
molecules. When we follow strictly the antisymmetry rule,
we have to perform all the antisymmetrization operations
counted above with Eq. (11). But, is this always necessary?
The iExg formula of Eq. (8) gives us a tool to answer this
question by examining first the term E(k)

AB
φI and then the term

AAAB · E(k)
AB
φI , as explained above. Now, we examine first the

inter-exchange term E(k)
AB
φI . We notice that this term decreases

exponentially as the number of the electron exchanges k
increases and/or as the distance RAB increases. We explain
why.

The cf φI of a molecule is given by Eq. (7) as a product
of the function f I and the initial function φ0. Now, we refer
to φ0 given by Eq. (6). This φ0 always includes the product
of the orbital terms exp(−αiA riAA) exp(−α jB r jBB), where the
electrons iA and jB belong to the atoms A and B, respectively.
When single electron pair iA and jB is exchanged by the oper-
ator E(k)

AB
, we obtain exp(−αiA r jBA) exp(−α jB riAB), which is

exponentially smaller than the former, because r jBA > riAA

and riAB > r jBB since the atoms A and B are separated by the
distance RAB. When such exchange of electrons between A
and B is performed k times, the magnitude becomes smaller
k-times of the exponential. Therefore, the inter-exchange
term E(k)

AB
φI decreases exponentially as the number of the

electron exchanges k increases. Likewise, when the AB
distance RAB increases, again the inter-exchange term E(k)

AB
φI

decreases exponentially. When both atoms A and B have many
electrons, the higher inter-exchange terms of Eq. (8) become
essentially zero and only the first few terms contribute. As
the distance RAB increases, the inter-exchange contribution
decreases exponentially, and from some distance, it becomes
negligible. This is also the case when the atoms A and B

are separated by several bonds in a large molecule. The
orbital exponent α also affects this exchange contribution: the
inter-exchange involving the inner-shell electron contributes
much less than that of the valence electrons. As a result of
these observations, we understand that in large molecules,
many antisymmetrization operations actually give negligibly
small results and therefore need not be performed. The above
arguments are valid also for the cases where A and/or B are
the fragments or the interacting molecules. Thus, one finds
that the antisymmetry “rule” defined in the Introduction is
actually a too strict rule and therefore can be relaxed to save
the computer time: the iExg theory shows such a method.

We continue further the application of Eq. (8) to φI .
Referring to Eq. (8), the total exchange operator AAB

is rewritten as a sum of the k-electron exchange terms
AAABE(k)

AB
, which can be further transformed as

AAABE(k)
AB
=
Lk

l=1
AAABε

(k,l)
AB

=
Lk

l=1
A(k,l)

A
A(k,l)

B ε
(k,l)
AB

. (13)

The first equality was obtained simply by using Eq. (9). In the
second equality, A(k,l)

A
and A(k,l)

B are the antisymmetrizers for
the electrons of the systems A and B, respectively, after the
exchange ε(k,l)

AB
is done as in Eq. (10), namely,

A(k,l)
A
≡ A(k,l)

A
(a(k,l)

1 , . . . ,a(k,l)
NA

),
A(k,l)

B ≡ A(k,l)
B (b(k,l)1 , . . . ,b(k,l)NB

). (14)

The electron coordinates after the exchange ε
(k,l)
AB

is done
are defined in Eq. (10). The second equality of Eq. (13) is
valid because the second and third lines generate in different
orders the same full list of the electron permutations after
all possible k-electron exchanges are done. So, we obtain
Eq. (13).

The transformation of the iExg formula given by Eq. (13)
is very useful when it is applied to the molecular cf given
by Eq. (7). The cf’s are classified into atomic and inter
ones depending on the nature of the function f I

�{ri A} ,�rij
	�

whether it includes only the intra-atomic rij terms or it includes
the inter-atomic rij terms. When we apply the operations given
by Eq. (13) to the atomic cf’s, we obtain

A(k,l)
A

A(k,l)
B ε

(k,l)
AB

φI A(1, ..,NA)φJB(NA + 1, ..,NA + NB)
= (−)εA(k,l)

A
A(k,l)

B φI A(a(k,l)
1 ,a(k,l)

2 , . . . ,a(k,l)
NA

)φJB(b(k,l)1 ,b(k,l)2 , . . . ,b(k,l)NB
)

= (−)εA(k,l)
A

φI A(a(k,l)
1 ,a(k,l)

2 , . . . ,a(k,l)
NA

)A(k,l)
B φJB(b(k,l)1 ,b(k,l)2 , . . . ,b(k,l)NB

), (15)

where the last equality follows because A(k,l)
B applies only

to the b electrons. Thus, for the atomic cf’s, the operators
A(k,l)

A
and A(k,l)

B apply independently to the electrons of A
and B after ε(k,l)

AB
is applied, so that the computational labor

is reduced from NA! × NB! to NA! + NB!. This is a big
reduction! Actually, the atomic cf’s are very important in

molecular formations: with the reorganizations of atomic cf’s,
an important part of the molecular formation is described. Of
course, we can use the Nk algorithm for the antisymmetrizers
AA and AB.

When the cf φI includes one inter-electron term like riA jB

that connects different atoms or fragments, we have
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A(k,l)
A

A(k,l)
B ε

(k,l)
AB

riA jBφI A(1, ..,NA)φJB(NA + 1, ..,NA + NB)
= A(k,l)

A
A(k,l)

B r
a
(k,l )
i

b
(k,l )
j

φI A(a(k,l)
1 ,a(k,l)

2 , . . . ,a(k,l)
NA

)φJB(b(k,l)1 ,b(k,l)2 , . . . ,b(k,l)NB
). (16)

In this case, the operation may be done with the dot-
algorithm presented before together with the Nk algorithm26

and we get the accelerations for the electrons except
for a(k,l)

i and b(k,l)j . Then, the operation count becomes
[(NA − 1)! + (NB − 1)!] NANB, which is still much smaller
than NA! × NB!. As the inter-electron terms bridging A and B
increase, the operation count increases. However, if we apply
the dot algorithm,26 further acceleration is possible. Thus, the
accelerations in the second stage of the iExg theory are also
large, particularly for molecules composed of many atoms
and fragments: a systematic formulation will give very large
reductions.

We note finally that the sequential application of the
intra-atomic antisymmetrizer AAAB after the inter-exchange
operators E(k)

AB
as given by Eq. (8) may affect the counting

of the total number of the necessary exchanges. Namely,
though the exchange was substantially small in the first stage,
it may increase in the second stage. An example is the 1s
electron inter-exchange: though it is almost negligible in the
first stage, it becomes non-negligible since the intra-atomic
antisymmetrizer may exchange the electrons between the
atomic 1s and valence orbitals.

Thus, with the iExg theory, much acceleration seems to be
possible by relaxing the antisymmetry rule. Both the first and
the second stages above give large reductions of antisymmetry
operations compared to those if the antisymmetry rule is
strictly followed. This reduction is not restricted to the FC
theory, but applies to many different levels of the theories as
far as the locality of electrons is assured in the theoretical
framework. This situation should actually be almost universal
to chemistry since the local atomic concept is guaranteed
by the success of the chemical structural formulas and the
chemical reaction formulas daily used in chemistry.

For systems consisted of many atoms and/or fragments,
like polyatomic molecules and clusters, the iExg formula
becomes

A = AAAB · · ·AD(1 + E1 + E2 + · · · + E(k) + · · · + E(K )),
(17)

where A,B, . . . ,D represent different atoms and/or fragments,
E(k) the inter-exchange operator of the k pairs of electrons
among the fragments A to D, and K is the maximum of
the number of the pairs k. In polyatomic molecules, the
atoms may be separated by one, two, three, and so on
bonds and therefore, from some m-bonds, the exchange
contributions may be safely neglected. In a big molecule, such
situations dominate. Therefore, as a molecule becomes large,
the number of the unnecessary antisymmetrization operations
increases dramatically. Since the antisymmetrization is a time-
consuming step for the highly accurate calculations close to the
Schrödinger accuracy, the iExg theory naturally reduces the
computational costs even to a lower order of N . In this paper,
we will show as such an example the calculations of the He60

fullerene cluster that has the hypothetical structure similar to
the fullerene C60. Though the system has 120 electrons, which
are huge for the calculations of the Schrödinger accuracy, the
necessary permutations are drastically reduced by the iExg
theory, which makes the FC calculations easily possible.

IV. ESTIMATE OF THE NECESSARY NUMBER
OF INTER-EXCHANGES

Now, we estimate the necessary numbers of electron
inter-exchanges in the applications of the iExg theory,
considering two carbon atoms in the hydrocarbon molecule,
all-trans-polyacetylene, as an example. As expected from the
discussions given in the paragraph below Eq. (12), the possible
occurrence of the electron exchange can be estimated by using
the square of the overlap between the orbitals to which the
exchanging electrons belong. This is a rough estimate because
in the cf’s of the FC wave function, other factors like ri An and
rij

m also exist in the function f I as seen in Eq. (7), but their
distance dependences are much milder than the exponential
dependence of the orbitals. In Table I, we showed the square
of the overlap integral for the pair of the carbon orbitals to
which the exchanging electrons belong. The Slater orbitals of
the exponents α = 5.67(1s) and 1.59(2sp) were used. For the
valence 2sp electrons, we used the geometric average of the pσ
and pπ overlaps. The C–C bond distance used was 2.75 a.u.
(1.45 A), an average of the single and double bonds. The
non-bonded C–C distances were estimated from the structure
of the all-trans-polyacetylene.

Based on the data shown in Table I, we estimated the
possible numbers of electron inter-exchanges for the carbon
pairs in the polyacetylene and the results are summarized in
Table II. Based on our numerical experiences, we estimated
that the electron exchange can occur when the square of the
overlap integral is larger than 10−6. Table II implied that for
the 1s electrons, only one 1s electron inter-exchange with
the valence electrons of the nearest neighbor carbon atom
needs to be considered. For the valence electrons, one inter-
exchange must be considered up to the four bonds, two and
three inter-exchanges must be considered up to the two bonds,
and four inter-exchanges must be considered for the directly
bonded carbons. More than five inter-exchanges need not be
considered for one carbon pair. Also, the exchange of electrons
between the carbons separated by five or more bonds is safely
neglected. We note that for different carbon-carbon pairs,
up to six valence electron exchanges can occur, though four
exchanges are maximum between the directly bonded carbon
pair.

Thus, the iExg theory implies that in a given accuracy,
like the chemical or spectroscopic accuracy, only a limited
number of electron exchanges need to be considered between
the atoms or the fragments separated by some distance R
in a molecule or a system. The number of the electron
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TABLE I. Square of the overlap between the orbitals of two different carbon atoms as a measure of the occurrence of the electron inter-exchange between
them.a,b

Number of
exchange Exchange orbitals One bond Two bonds Three bonds Four bonds Five bonds

1 1sA-1sB 0.41×10−9 0.53×10−18 0.17×10−29 ∼0 ∼0
1 1sA-2spB 0.67×10−6 0.41×10−8 0.38×10−11 0.58×10−14 0.42×10−17

1 2spA-2spB 0.80×10−1 0.47×10−2 0.26×10−4 0.13×10−6 0.26×10−9

2 1sA-1sB,1sA-1sB 0.17×10−18 0.28×10−36 ∼0 ∼0 ∼0
2 2spA-2spB,2spA-2spB 0.65×10−2 0.22×10−4 0.69×10−9 0.17×10−13 0.68×10−19

3 2spA-2spB,2spA-2spB,2spA-2spB 0.52×10−3 0.10×10−6 0.18×10−13 0.22×10−20 ∼0
4 2spA-2spB,2spA-2spB,2spA-2spB,2spA-2spB 0.42×10−4 0.48×10−9 0.48×10−18 ∼0 ∼0
5 2spA-2spB,2spA-2spB,2spA-2spB,2spA-2spB,1sA-2spB 0.28×10−10 0.20×10−17 ∼0 ∼0 ∼0

aAll-trans-polyacetylene structure with all bond lengths of 2.75 a.u. (average of the single and double bonds) was assumed.
b∼0 means negligibly small.

exchanges reduces exponentially as the distance R increases.
As the size of the molecule or the system becomes larger
and larger, the number of the electron pairs for which we
need not antisymmetrize increases dramatically. This helps
to reduce the computational cost. For very large molecules,
the dependence on the system size would be a lower order of
N , though at the beginning, the scaling would not be good
because as seen above, up to six valence electron exchanges
can occur among different carbon-carbon pairs. Applications
of the iExg theory to many different levels of theories and to
many different types of molecular systems would be necessary
to examine its efficiency in chemistry. Below, we give some
examples of applications of the iExg theory to the FC-LSE
calculations in order to see its implications and its efficiency
in molecular calculations.

V. APPLICATIONS OF THE IEXG THEORY

A. Chemical bond formation of Li2
We first show the role of the iExg theory in the FC-LSE

calculations of the chemical bond formation process of the Li2
molecule. We described the wave function of this system by

ψ = cABA
�
Ψ̃AΨB

�
+ cABA

�
ΨAΨ̃B

�
+

I

cIAφI

=

I

c(A)I A

φ
(A)
I ΨB


+

I

c(B)I A

ΨAφ

(B)
I



+

I

cIAφI . (18)

TABLE II. Estimate of the possible number of inter-exchanges between the
orbitals belonging to different carbons in all-trans-polyacetylene.

Number of exchange Nature of exchangea Number of bondsb

1 1s-1s 0
1 1s-val 1
1 val-val 1, 2, 3, 4
2 (val-val)2 1, 2
3 (val-val)3 1, 2
4 (val-val)4 1
5 (val-val)5 0

aVal means valence.
b0 means that such exchange does not occur in chemical accuracy even between the
nearest neighbor carbons.

In the first line, the first term consists of the product of the
accurate FC wave function of the two Li atoms A and B in
which the atom A is reorganized, as shown by the tilde mark,
in the presence of the atom B and the second term represents
the reorganized atom B in the presence of atom A. The last
term represents the lower-order ordinary FC wave function
whose role is to describe mainly the inter-atomic effect. The
second line shows more explicit formula. Namely, the wave
function of the atom A, ΨA is written as ΨA =


I c(A)I AAφ

(A)
I ,

where

φ
(A)
I


is the set of the cf’s of the Li atom and


c(A)I



represents their coefficients. In the course of the interaction of
the two atoms, we described in the first term the reorganization
of the one set of the coefficients


c(A)I


in the presence of the

another atomic wave functionψ(B) and vice versa in the second
term. For the reorganized Li atom, we considered the cf’s of
the order four of the ground-state (M = 190) plus the order
three cf’s of the 2p-excited state (M = 57) that describe the
polarization reorganization. For the fixed Li atom, we used
the atomic FC result for the ground-state (n = 4, M = 190)
with the given coefficients. The third term was added to
describe mainly the inter-atomic term and we used the order
two (M = 669) FC wave function of the Li2 molecule. With
the first and second terms, the electron correlations within
atoms and their reorganizations in the course of the molecular
formation were described and at the same time, the correct
dissociation at R → ∞ was ensured. We did not include here
the effects of the simultaneous reorganization in both atoms
A and B to save the computer time, but this approximation
was approved in the results as shown below probably because
the equilibrium bond distance, 5.05 a.u. (2.67 Å), of Li2 is
longer than ordinary chemical bonds of organic molecules.
The Slater orbitals used for the Li atom were the Clementi-
Loetti’s Hartree-Fock orbitals.34 We used 106 sampling points
generated by the local sampling method.33

We showed in Table III the results of the iExg theory
applied to the FC-LSE calculations of the Li2 molecule at the
separations of R = 20.0, 10.0, 7.0, 5.05 (equilibrium distance),
and 3.0 a.u. The number of the exchanged electrons, Exg, the
number of the necessary permutations, the calculated energies,
and the H-square errors5,6 were given. Since Li2 is a 6-electron
system, we examined Exg of 0, 1, 2, and 3 (full). At infinite
separations, no exchange of electrons (Exg = 0) was necessary
between the two Li atoms. When two Li atoms approach
each other to 20 a.u., the results obtained with Exg = 0 were
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TABLE III. Results of the iExg theory for Li2 molecule calculated with the FC-LSE method at R = 20.0, 10.0, 7.0, 5.05 (equilibrium distance), and 3.0 a.u.a

R (a.u.) Method
Number of

exchanged electrons
Number of necessary

permutations (% to the total) Energy (a.u.) ∆E (kcal/mol)b H-square error

∞ FC-LSE −14.956

20.0 FC-LSE (iExg) 0 8 (2.78) −14.957 1.56×10−3

1 72 (25) −14.957 1.56×10−3

2 136 (47.22) −14.957 1.56×10−3

3 144 (50) −14.957 1.56×10−3

10.0 FC-LSE (iExg) 0 8 (2.78) −14.960 9.08×10−3

1 72 (25) −14.960 8.80×10−3

2 136 (47.22) −14.960 8.79×10−3

3 144 (50) −14.960 8.79×10−3

7.0 FC-LSE (iExg) 0 8 (2.78) (−15.080)c (2.44×100)c
1 72 (25) −14.977 2.65×10−2

2 136 (47.22) −14.977 2.71×10−2

3 144 (50) −14.977 2.71×10−2

5.05 FC-LSE (iExg) 0 8 (2.78) (−15.264)c (−168.86)c (2.40×100)c
1 72 (25) −14.994 0.71 3.02×10−2

2 136 (47.22) −14.994 0.70 3.00×10−2

3 144 (50) −14.994 0.70 3.00×10−2

FC-LSE (Nk or NF) NFd 288 (100) −14.994 0.70 3.00×10−2

Exacte −14.9954

3.0 FC-LSE (iExg) 0 8 (2.78) (−15.611)c (3.02×100)c
1 72 (25) (−16.588)c (7.14×10−1)c
2 136 (47.22) −14.920 4.38×10−2

3 144 (50) −14.920 3.00×10−2

aBold face means physically correct values with the minimum number of permutations.
bThe energy difference between the FC-LSE and the estimated exact energy at R = 5.05 a.u.
cBosonic solution.
dFull permutations considering spin (23×3!×3!).
eEstimated exact energy.28

equal to the results obtained with Exg = 1, Exg = 2, and
Exg = 3 in chemical accuracy. Therefore, at this distance,
two Li atoms do not exchange electrons. If we knew this
fact beforehand, we can save the number of the necessary
permutations: the necessary permutations for Exg = 0 are only
those within each Li atom, which are only 2.78% of the total
number of necessary permutations. This helps to reduce the
computational time. At R = 10.0 a.u., again the results of
Exg = 0, 1, 2, and 3 were all equal to chemical accuracy. So,
Exg = 0 at this distance. However, at R = 7.0 a.u., the energy
obtained with Exg = 0 was too low and the energies obtained
with Exg = 1, 2, and 3 were all equal. This shows that at this
distance, one electron exchange occurs between the two Li
atoms. The result of Exg = 0 was bosonic, symmetric solutions
having mixed with the antisymmetric solution and occurred
for ignoring the antisymmetry principle. The energy was too
low in comparison with the fermion case. At R = 7.0 a.u., the
number of the necessary permutations was 25% of the total:
we can get the 75% saving. At R = 5.05 a.u., the equilibrium
distance, again the number of the necessary exchange was
unity: although the energy for Exg = 0 was bosonic and too
low, the energy obtained with Exg = 1 was equal to the ones
of Exg = 2 and 3. We confirmed that this energy was equal to
the energy calculated by using the NF and Nk algorithms for
the antisymmetrizations where all the exchanges were done
without any selection. The calculated total energy of Li2 at
the equilibrium distance was −14.994 a.u. which was about
1 mH higher than the known exact energy, −14.9954 a.u.

reported by Filippi and Umrigar.28 When two Li atoms come
closer to R = 3.0 a.u., the number of the necessary exchange
becomes two: the energies for Exg = 2 and 3 were the same,
but the energies for Exg = 0 and 1 were bosonic and too low.
The repulsive interaction at this distance is just the so-called
exchange repulsion.

Figure 1 shows the potential energy curve of the Li2
molecule calculated with the FC-LSE iExg theory: the lines
for Exg = 0, 1, 2, and 3 were shown in purple, green, blue,
and red, respectively. As two Li atoms approach from 20 a.u.,
the interaction potential can be drawn safely with Exg = 0
up to about 9 a.u., but in the shorter region, the curve of
Exg = 0 shows a bosonic behavior. The stabilization near
9 a.u. is not due to the exchange, but due to the van der
Waals interaction without the electron exchange. To improve
this wrong behavior, we have to add one more exchange
between two Li atoms and with Exg = 1, we get the improved
potential curve up to about 4.6 a.u. The potential minimum
was obtained at around R = 5.05 a.u. with the curve of
Exg = 1, showing that the chemical bond of the Li2 molecule
is formed with the one electron exchange. This Exg = 1 curve
shows bosonic behavior at the length shorter than 4.6 a.u.,
and for shorter regions, we need Exg = 2. We performed
the vibrational analysis using the calculated potential energy
curve and obtained the equilibrium distance Req = 5.049 a.u.
(experiment 5.051 a.u.) and the binding energy D0 = 1.032 eV
(experiment 1.069 eV). The Exg = 2 curve showed the bosonic
behavior at about R = 2.05 a.u. and for shorter regions,
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FIG. 1. Potential energy curve of Li2 with Exg= 0 (purple), 1 (green), 2
(blue), and 3 (red).

all three exchanges (Exg = 3) were necessary to correctly
calculate the potential energy curve. Exg = 2 and 3 involve
the exchange between the closed-shell 1s electrons that causes
repulsions. The so-called “exchange repulsion” is appropriate
to describe the nature of the repulsive curve in this region.
Thus, the iExg theory not only reduces the computational
efforts of the antisymmetrization but also clarifies the nature
of the chemical bond and interaction.

B. C2 molecule

Next, we apply the iExg theory to the FC-LSE calcu-
lations of the C2 molecule (12 electrons, R = 2.348 a.u.
= 1.243 Å). We generated the order two FC wave functions,
both atomic and inter parts, from the VB initial function but we
omitted the inter cf’s related to the carbon 1s orbitals, which
are unimportant. The dimension of the independent atomic cf’s
was M = 359, that of the inter cf’s was M = 340, and the total
cf’s was M = 699. The Slater orbitals used for the carbon
atom were the Clementi-Loetti’s Hartree-Fock orbitals.34 In

the LSE calculation, the molecular 106 sampling points were
synthesized from the atomic local sampling points using the
local variance criteria: the set of the sampling points and the
corresponding wave function were optimized using the H-
square error as a criterion till we get the stationary behavior in
the calculated H-square error. In this process, 1200 sampling
points (0.12% of the total) were replaced with the new ones.
The details of this method will be published elsewhere.35

The results of the iExg theory applied to the C2 molecule
were summarized in Table IV. When the number of the
electrons exchanged (Exg) between the two carbons was 0–3,
the calculated energies were unreliable. When Exg = 4, it
was −75.925 99 a.u., and when Exg = 5 and 6, the energy
did not change, showing that the additional Exg = 5 and 6
were unnecessary. The present FC energy differs by only
0.51 mH (0.32 kcal/mol) from the exact value −75.9265 a.u.
reported by Bytautas and Ruedenberg.30 These results are
parallel to the results shown in Table II. We also used the
Nk algorithm26 instead of the iExg one and compared with
the present result. The calculated energy was −75.925 99 a.u.,
which was completely the same as the iExg result. However,
the computational time for the iExg method (9.3 h) was
shorter than that for the Nk method (11.8 h). The reason is
attributed to the fact that in the iExg calculations, the necessary
permutations were only 2.11% of the total, while in the Nk
method, all the permutations must be performed following the
antisymmetry rule, though the procedure itself is designed to
be fast.26

C. Helium fullerene, He60

Finally, we apply the FC-LSE iExg theory to solve the
SE of helium fullerene He60, a model fullerene composed
of helium atoms. The structure is shown in Fig. 2. Without
the iExg theory, the calculation of the Schrödinger accu-
racy is impossible, since He60 has 120 electrons whose
antisymmetrizations involve 120! = ∼10198 or 260 × 60! × 60!
= ∼10182 (considering spin) operations if the NF algorithm
is used. However, with the iExg theory, we estimated from
the calculations for the He2 system that only one electron

TABLE IV. C2 molecule calculated by the FC-LSE method using the iExg method for the antisymmetrization. The results were compared with the exact result
and with the result obtained with the Nk method for the antisymmetrization.a,b

Number of exchanged
electrons, Exg and method Energy (a.u.)

∆E = EFC-LSE−Eexact

(kcal/mol)
Number of necessary permutations

(% to the total) Computational time (hour)

0 (−77.871 17)c . . . 480 (0.001) 0.24
1 (−77.013 48)c . . . 24 480 (0.07) 0.60
2 (−75.879 98) . . . 199 680 (0.60) 3.1
3 (−75.910 28) . . . 526 080 (1.59) 7.4
4 −75.925 99 0.32 701 280 (2.11) 9.3
5 −75.925 99 0.32 725 280 (2.19) 9.5
6 −75.925 99 0.32 725 760 (2.19) 10.2

Nk method −75.925 99 0.32 33 177 600 (100)d 11.8

Exacte −75.926 5

aUsing 1036 cores in parallel with the Fujitsu PRIMERGY CX2550 at the Research Centre for Computational Science, Okazaki.
bBold face means physically correct values with the minimum number of permutations.
cBosonic energy.
dFull permutations considering spin (26×6!×6!).
eReference 30.
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FIG. 2. Potential energy curve of the helium fullerene He60 near the equilib-
rium distance. The blue and green lines show the results for the Exg= 1 and
Exg= 0 calculations, respectively, between the nearest-neighbor atoms.
The Exg= 0 curve shows the bosonic behavior for the distances shorter
than 7.5 a.u.

exchange between the nearest-neighbor atoms was necessary.
This led to the simplification that only 21 720 permutations
are necessary for this system. This is a huge simplification
that turns “impossible” to “easily possible.”

The helium fullerene He60 has two different bond dis-
tances, R1 = 1.0278 R and R2 = 0.9721 R and we varied R to
calculate the equilibrium structure. The FC wave function was
constructed using the theoretical synthetic chemistry method
(TSCM) that will be explained in a separate paper.36 In short,
we constructed the FC wave function of He60 by the products of
the accurate FC wave functions of the constituent He atoms as
follows. First, we calculated the order 4 (MHe = 22) FC wave
function of each helium atom. Then, we put this accurate FC
wave function of the helium atom at each He position of the
helium fullerene and using this initial wave function of He60,
we constructed the wave function of the He fullerene with the
standard FC method to order 2. This method gave 3587 cf’s
for He60. For the He atomic orbital, we used Clementi-Loetti’s
Hartree-Fock orbitals of the Slater basis.34 The calculations
were performed using 2048 cores in parallel with the Fujitsu
PRIMERGY RX300 at the Research Centre for Computational
Science, Okazaki.

We show in Fig. 2 the calculated potential energy curve of
He60 near the minimum. In the region R > ∼7.5 a.u., no inter-
atomic exchange was necessary and so the curves of Exg = 0
and 1 overlap. For the region, ∼7.5 > R > ∼5 a.u., one-
exchange between the nearest neighbor atoms was necessary,
so that the green line for Exg = 0 showed a bosonic behavior
near the minimum. The absolute value of the calculated total
energy of He60 at the minimum was −174.229 179 a.u. in
comparison with the calculated energy of the 60 He atoms at
the dissociation, −174.223 168 a.u. (The known exact energy
of 60 He atoms is −174.223 463 a.u.10) Thus, the binding
energy of He60 was calculated to be about 3.8 kcal/mol and the
equilibrium length at about R = 5.8 a.u. (3.1 Å). However, the
calculated binding energy may have some error: since He60
has 90 He–He interactions, 0.1 kcal/mol accuracy requires
the 0.1/90 kcal/mol accuracy per He2, which is about micro

TABLE V. He60 potential properties calculated by the Hartree-Fock and
CCSD methods with the cc-pVDZ and aug-cc-pVDZ basis sets compared
with the result of the present FC-LSE iExg theory.

Method
Req

(a.u.)a
Absolute energy at

Req (a.u.)b
Binding en-

ergy (kcal/mol)

Hartree-Fock
(cc-pVDZ)

6.0 −171.309 738 0.0689

Hartree-Fock
(aug-cc-pVDZ)

6.4 −171.342 501 0.138

CCSD (cc-pVDZ) 5.8 −173.256 258 0.356
CCSD (aug-cc-pVDZ) 5.6 −173.377 465 2.86
FC-LSE (present) 5.8 −174.229 179 3.77

aEquilibrium distance.
bExact energy of the 60 He atoms (the dissociation limit of He60) is −174.223 463 a.u.10

Hartree accuracy and this accuracy is not guaranteed with the
present calculational conditions.

For comparison, we have performed the Hartree-Fock and
coupled-cluster singles and doubles (CCSD) calculations of
He60 using the Gaussian 09 suite of programs.37 The full CI and
the CCSD parenthesis triples (CCSD(T)) did not work for such
a large system. In Table V, the results were summarized and
compared with the present FC-LSE iExg result. The Hartree-
Fock could scarcely describe the stabilization of this cluster,
while the CCSD showed a large basis set dependence: the
cc-pVDZ and aug-cc-pVDZ bases gave the binding energies
of 0.36 and 2.86 kcal/mol, respectively. Further, the CCSD
absolute energies were as higher as by about 1 a.u. than the
true value! On the other hand, our result should be correct,
being close to the chemical accuracy. The equilibrium distance
was calculated similarly with the CCSD and the FC-LSE
method.

As seen from this example, the iExg theory would
be useful for studies of clusters since generally speaking,
the distances between the elements are large, so that the
numbers of the necessary electron-exchanges between the
elements are small and the iExg theory becomes efficient.
The antisymmetrizations within the individual elements may
be performed using the efficient Nk method.

VI. CONCLUDING REMARKS AND PROSPECTS

To establish an accurate chemical theory that handles
routinely the exact solutions of the SE’s of general molecules,
we have to find out not only the general efficient theory
of solving the SE but also the efficient theory of satisfying
the antisymmetry principle for many-electron systems. For
the first, the FC LSE methodology7–15 has opened a way
toward accurate calculations of the Schrödinger accuracy. The
purpose of the present paper was to pave a way toward an
efficient antisymmetry method of essentially order N even for
the Schrödinger-accuracy calculations of very large molecules.
So far, the antisymmetry “rule” has been postulated, like
a “dogma,” as if it must3 be satisfied to any electron
pairs in a molecule even if their distances are apart in the
molecule. However, the present iExg theory clarified that
the antisymmetry “rule” was too restrictive and showed an
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efficient way of reducing vast numbers of antisymmetrization
operations in a molecule so that the FC theory becomes more
efficiently applied to very large systems: the order-size curve
may not be good at the beginning but would become better and
better as the size of molecules becomes larger and larger. This
is true not only for the highly accurate levels of the theory but
also for the lower levels of the approximation, if the locality of
electrons is assured in some definite way in the formalism. The
standard N3 algorithm for the determinant would be reduced
to a lower order of N for very large molecules. For example,
when we handle very large system, it is not clever to put all
the electrons of the system into one determinant. It is better
to use the iExg theory. Thus, a perspective is opened toward
building useful chemical theories that are applicable to much
larger systems than before.

In the present formulation of the FC-iExg theory, we
assumed the HLSP VB initial function instead of the MO
initial function for medium-sized molecules. For calculating
the wave function of the Schrödinger accuracy, this is all
right since any initial wave function is acceptable in the
FC theory, but another reason was that the choice of the
MO initial function may cause some complexity in the
formulation of the iExg theory. The iExg theory stands on
the locality of chemistry but the theoretical framework of
the MO theory stands on the delocalized picture which is
consistent with the “orbital” picture bearing the orbital energy
and the ionization energy as its eigenvalue. When the localized
orbital concepts are introduced, the extent of delocalization is
reduced to several atoms, which is already small for very large
molecules. For the iExg theory, the VB initial is convenient
but it is interesting to extend the initial wave function toward
the non-orthogonal orbital theory. Further, when we deal
with molecular interactions and chemical reactions, we may
deal with the fragments by the MO theory and consider
their interactions and reactions with the iExg theory. The
antisymmetrizations within the fragments and reactants may
be dealt with the Nk theory. Since the iExg theory is based
on the locality of the molecular electronic structure, it will
not work for the systems that have completely delocalized
electronic structures. Anyway, many interesting applications
are considered and will lead us to a new frontier of theoretical
chemistry.

The principle of the iExg theory would be extended even
within atoms: in heavy elements, inner-shell orbitals have large
exponents, while the valence orbitals have small exponents.
Therefore, the electrons of different shells occupy different
regions within the atom, which is a similar situation to the
atoms in molecules. Therefore, the iExg idea will also apply
to the different shells within atoms. This will produce much
simplification for the theory of heavy elements.

Further developments of the iExg theory are in progress
in our laboratory.
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