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A new force approach is reported in which we improve the wavefunction so that the Hellmann—Feynman theorem is
satisfied. A sufficient condition for the Hellmann—Feynman theorem to be satisfied is that the basis set includes AO deriv-
atives ax,/ ax, for any basis x,.Here we test a procedure in which only the first derivative AOs are added to the “parent”

AOs. The results are very encouraging.

1. Introduction

Knowledge on the derivatives (especially first and
second derivatives) of the potential energy hyper-
surface and the electronic origins of them is of fun-
damental importance in studies of molecular geome-
tries (stable and transient), vibrations, chemical reac-
tions and dynamics. Two approaches have been de-
veloped for derivative studies: one uses the direct
analytic gradient of the SCF [1—4], MC SCF [3,5,6],
or CI [7-9] energy, and the other uses the Hellmann—
Feynman (H—F) theorem [10]. Though the difference
between these two expressions for the force vanishes
identically for exact and stable [11] wavefunctions

(therefore we refer it as an error term), it was disappoint-

ingly large for most approximate wavefunctions, ex-
cept for floating wavefunctions [12—14]. However,
we prove a theorem which shows that there is a
unique and systematic way of improving the SCF and
MC SCF wavefunctions so that they satisfy the Hell-
mann—Feynman theorem. Based on this theorem,

we propose an approximate method and test it for
LiH and BH at several internuclear distances. Our
method is theoretically orthodox: we aim to improve
the wavefunction so that it satisfies the Hellmann—
Feynman theorem. The quality of the resultant force
and other properties should be improved at the same
time because of the improvement in the wavefunction.
Further, the intuitive picture of the Hellmann—Feyn-
man force [15,16] is associated with the results ob-
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tained. It may give a basis for understanding and pre-
dicting similar phenomena. Computationally, the
time for the force calculation is negligible, though we
use time for improving the wavefunction.

2. Force in SCF theory

In the Hartree—Fock—Roothaan SCF theory [17],
the MOs ¢; in the single determinant

V= 9161 - 0,01l €y

are linearly expanded in a set of basis functions {x,},
¢j = rE crin’ (2)

and the linear coefficients {c,;} are determined varia-
tionally through the SCF equation

Zs> Fys — €iS,5)c5i =0, (3)
where F, is the Fock matrix given by
F, = (rlhls)+ ?:Pm [(rsltu) — 3 (relsw)], 4
U
occ
Ptu = IE 2cticui’ (5)

in standard notation. (Though we use the notation for
the closed-shell RHF theory, the following formula-



Volume 75, number 2

tions are also valid, with slight modification, for the
UHF theory. For extensions to restricted open-shell
and MC SCF theories, see a forthcoming paper [18].)

The SCF energy may be written as (R 4, x,) =
(W(x,)|H(R 0| ¥(x,)) where {R 4} are the nuclear co-
ordinates and {x,} a set of (non-linear) parameters
involved in the wavefunction. For the present purpose,
the {x,} are restricted, without loss of generality, to
the centers of the constituent AOs {x,} [13]. The
force acting on nucleus A is written as [3]

Fy= (W|0H/OR 4|¥) — 2JA, dx,/0R 4, 6)
r
where

A= EP,S[Z(r'Ihls)

+ 22 P, [20s1u) - (r’tlsu)]] —22ID,,('1s)
o s @

under the orthonormality of the MOs. 7' denotes the
derivative of the AO r, 9x,/0x, and D, is given by

occ
Drs =2 ? €iCriCsi- (8)

In eq. (6), the first term is the H—F force and the second

term, which is —2(¥|H|9W¥/0R ), is denoted as the
error term since it arises entirely from errors included
in the wavefunction W used. It is the sum of the AO
contribution A, which we call AO error *,

In the analytic calculation of the energy gradient
[2—4], the two terms of eq. (6) are calculated explicit-
ly. When the error term is not small, such a method
gives a reliable numerical result since the energy is cor-
rect to second order in the error included in the wave-
function: the error term in eq. (6) cancels the (first-
order) error included in the H—F force. In the gradient
program, however, the most complex and time-con-
suming part is due to the calculation of the error term.
The calculation of the H—F force is straightforward.

The point of the present paper is to show that there
is a unique and systematic way of improving the wave-
function so that the AO error A, given by eq. (7)

* In the calculations with a floating wavefunction [14], the
AO error A, of the AO x is made zero.
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vanishes identically. With the use of the Fock matrix
given by eq. (4) it is easy to rewrite the AO error as

A=42c, %} Fypg — €:Sy5)esss ©
1

where F, = (r'|F|s) and Sy = (' |5). When the basis
set {x,} includes not only the AO r but also its deriv-
ative 7', the SCF solution satisfies

?(Fr:s —€;Sy)cgi =0, (10)

so that the error associated with the AO r vanishes
identically:

A, =0. (11)

On the other hand, when the basis set does not in-
clude 7', eq. (9) implies that the error term is just the
sum of the SCF errors due to the absence of the basis
¥, Zy(Fys — €Sy s)cg;, multiplied with the coefficient
c,; of the “parent” AO 7.

Some implications of the theorem are as follows:

(1) A sufficient condition for the H—F theorem to
be satisfied is that the basis set includes 7’ for any ele-
ment r. The basis set {r, ', 7", ...} is such a basis. If
the basis is recurrent in the sense, 7 = r("), then the num
ber of elements can be finite.

(2) We may want to terminate the sequence, r, r,..
at some stage, say at ’. Then all of the AO errors of the
“parent” AOs {r} vanish identically, but the AO errors
of the added derivative AOs {r'} remain and are given
by

4 12%' SE Fyrs —€;Spg)eg 12)

However, if we start from the “parent” AOs which are
already reasonably good, the mixing coefficient c,; of
the added derivative AOs r' should be small so that
the error term may be neglected. In the next section
we examine the validity of such an approximation.
The addition of the derivative AOs may be viewed
differently. We already have mentioned that the float-
ing wavefunction satisfies the H—F theorem, if the
centers x of the constituent AOs X,(x) are determined
variationally [12—14]. Such a floating AO may be ex-
panded around the position x, which is usually the
position of the nucleus to which x, belongs, i.e.,

X, () = x,(xg) + (axr/ax)x()(x —xg)+.... (13)
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The addition of the derivative AO thus gives the free-
dom of “floating” to the parent AO, X,. However, an
important difference between the floating and present
methods lies in the width of the basis set space. The
present method gives lower energy than the floating
method even if we restrict ourselves only to first
derivative AOs. The order of the energy lowering is
similar to that obtained by the addition of so-called
“polarization” functions [19]. For a gaussian basis,
the functional form of the derivative AO is just that of
the polarization function, namely, the derivative 3/0x
of s, py., Py, etc. AOs gives p,, s +d,2,d,,, etc. AOs,

Xy
respectively, with the same exponent *.

3. Test calculation for LiH and BH

Test calculations were performed for LiH and BH
at several internuclear distances. The Li or B nucleus
was put at the origin and the H nucleus at positive
displacement along the z axis. The (9s5p/4s) primitive
sets of Huzinaga [20] contracted to [3s2p/2s] sets
by Dunning and Hay [19] were used as the “parent”
AOs and their first-derivative AOs were added. Table 1
gives the AO errors, H-F force, and the sum of them

* The “polarization” is shown to be most effective when two
AOs have the same exponent.

CHEMICAL PHYSICS LETTERS

15 October 1980

(energy gradient) obtained before and after addition
of the first derivative AOs. It also gives the SCF ener-
gies. Before the addition, large AO errors are seen for
the 1s AOs of Li and H of LiH, and for the 1s and 1p
AOs of B and the 1s AO of H of BH. The H—F force
is unreliable at this stage in comparison with the energy
gradient. After the addition, however, the AO errors
of the parent AOs vanish identically as eq. (11) shows.
The values given in table 1 are the AO errors of the
added derivative AOs. It is seen that the AO errors
become dramatically small. For LiH the total errors
are zero up to three places of decimals and for BH

up to two places. The calculated H-—F force is there-
fore in good agreement with the energy gradient ob-
tained after the addition.

In figs. 1 and 2, the forces acting on the Li and B
nuclei of LiH and BH are plotted against the inter-
nuclear distances. It is seen that after the addition of
the derivative AOs, the H—F force and the energy
gradient agree quite well (i.e., the error term is negli-
gibly small) over a wide range of internuclear distances.
For the H—F forces acting on the H nuclei of LiH and
BH, the error terms were so small that the curves for
the H—F force and the energy gradient (after the ad-
dition) superpose almost completely. Further, the
energy gradient itself is seen to be affected by the
addition of derivative AOs. This difference is due to

'0-05 AO’S

(3s2p/2s] pLus
FIRST DERIVATIVE ENERGY GRADIENT —— - —

[3s2p/2s] onLy

Li=>—o0H

H-F Force

- ENERGY GRADIENT

0.0

EXPTL.
0.04 | ]

H-F FORCE or ENERGY GRADIENT on L1 NUCLEUS (A.U.)

2.5 3.0

3.5 4.0 4.5

INTERNUCLEAR DISTANCE (A.U.)

Fig. 1. Energy gradient and Hellmann—Feynman force acting on Li versus internuclear distances for LiH.
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Fig. 2. Energy gradient and Hellmann—Feynman force acting on B versus internuclear distances for BH.

the improvement of the wavefunction. It is larger than

the order of magnitude of the error term obtained

after the addition.

Table 2 summarizes the bond lengths and force
constants of LiH and BH calculated from different
forces and compares them with experimental values
[21]. It is seen that these properties are improved by

the addition of the derivative AOs. After the addition,

the energy gradient and the H—F force give essential-
ly the same results. Therefore, at this stage, we can
use the H—F force instead of the energy gradient: the
time for calculations of the error term can be saved.
It is interesting to analyze the intuitive concept of the
H—F theorem along the reaction path and the vibra-

tional mode.

Table 2
Bond lengths and force constants of LiH and BH
Molecule Property [3s2p/2s] [3s2p/2s] plus first-derivative AOs Exp. a)
' energy
gradient energy H-F force H-F force
gradient onLior B on H
LiH bond length (au) 3.084 3.031 3.021 3.039 3.015
force constant (mdyn/A) 1.069 1.080 1.079 1.065 1.025
BH bond length (au) 2.348 2.323 2.334 2.329 2.329
force constant (mdyn/A) 3.148 3.244 3.108 3.197 3.046

a) From ref. [21].
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4. Concluding remarks

In this paper we have shown that there is a unique
and systematic way of improving the SCF wavefunc-
tion so that it satisfies the Hellmann—Feynman theorem.
When the basis set includes the derivative AO 7' for any
element r, the SCF wavefunction strictly satisfies the
H—F theorem. Based on this fact, we have examined
here the approximate method in which only the first
derivative AOs are added to the parent AOs, which
are [3s2p/2s] sets of Huzinaga—Dunning [19,20],
for LiH and BH. Over a wide range of internuclear
distances, the error term became so small that the
H-F theorem was essentially satisfied. This was con-
firmed also through calculations of equilibrium bond
lengths and force constants. Further, the quality of
the force itself was shown to be improved at the same
time by the present improvement of the wavefunction.

In the conventional energy gradient procedure, the
derivative AOs are calculated after the SCF process,
as seen in eq. (7). The calculation of this error term is
a time-consuming process and requires a special pro-
gram [4,22,23]. In the present approach, however,
the derivative AOs are added to the basis set before
SCF as a basis expansion. No special programming is
required. The added AOs work to improve the wave-
function as polarization functions, and the AO errors
of the parent AOs vanish identically. Though the time
for SCF calculation increases with this improvement,
the calculation of the error term seems to be unneces-
sary at least for the basis set of the present quality.
Since the calculation of the H-F force is straight-
forward, we can save time at this stage. Further, the
intuitive force concept based on the H—F theorem
may be used quantitatively. It is interesting to apply
it to various chemical processes [24,25]. Since the set
of parent'AO and its derivatives r, ', 7", etc. forms a
so-called shell structure, the algorithms for fast
evaluation of integrals would be useful [26,27]. Lastly,
we note that the present theorem is valid also for
general MC SCF wavefunctions and general open-shell
orbital theories. The proof will be given in a forth-
coming paper.
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