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Direct Determination of the Quantum-Mechanical Density Matrix Using the Density Equation
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With the use of the density equation [H. Nakatsuji, Phys. ReWdA41 (1976)], the second-order
density matrices are directly determined without any use of the wave functions. The third- and fourth-
order reduced density matrices (RDM’s) are decoupled into lower-order ones using the Green'’s function
technique. This method is applied to Be, Ne,(i4 H;0", NH3, CH,, BH, , NH,", and CHF, and
the results are successfully compared with the full configuration interaction results. The convergence
is fairly good, and the calculated second-order RDM’s almost satisfy the necessary conditions of the
N representability, thé®, Q, and G conditions, and the first-order RDM’s are exadiyrepresentable.
These results show that the present method is very promising.

PACS numbers: 31.10.+z, 02.70.Rw, 03.65.Ge, 83.10.—y

It is known that the many-electron wave function All of the important physical quantities are obtained
involves more information than we need to know. There{from the second-order density matrix. Since it determines
fore the determination of density or density matricesthe energy, we can apply the variational principle in a suit-
without using the wave function could be a convenientable domain of the density matrices [3]. However, it is
alternative to wave mechanics, and along this line thestill not completely known what conditions the Pauli prin-
density functional theories [1,2] and density matrix ap-ciple enforces on the density matrices (epresentabil-
proaches [3], etc., have been presented. ity condition) [5]. Moreover, since these conditions may

The Hohenberg-Kohn theorem [1] ensures the use dbe very complicated, it is impracticable to carry out such
the electron density as a basic variable. Recently, thisariational calculations.
density functional theory has been much developed and On the other hand, a nonvariational approach for the di-
widely used [1,2]. However, the Hohenberg-Kohn theo-rect determination of the density matrix has been proposed
rem is an existence theorem, and the explicit functionaby one of the present authors [6]. He showed that the equa-

form is still not known [4]. tion
|
ET™ = Zv(i) + Z w(i,j)]r(") + (n + 1)[[v(n +1) + Z w(i,n + DIC" D gy, oy
i i>j i
+ E(n + 1)(n + 2)] wn + Ln + 2T D gy, .1 dx,ss, ()

which is called the density equation, is equivalent to then terms of the lower-order ones, based essentially on the
Schrdédinger equation foeach nwith n = 2. That is, fermion’s anticommutation relations [10], and Colmenero
this equation in the domain of thé-representable density and Valdemoro applied it, using the density equation, to
matrices is the necessary and sufficient condition for thsome four-electron systems [11]. However, as we shall
corresponding wave function to satisfy the Schrddingeshow later, this method seems to have limitations for more
equation. The necessity alone was shown by Cho [7¢omplex atoms and molecules. We have derived more ac-
and by Cohen and Frishberg [8]. However, unless theurate decoupling approximations of the third- and fourth-
N representability condition is not known, the number oforder density matrices in terms of the lower-order ones
unknowns exceeds the number of conditions [9], sinceising the Green’s function technique, and applied them,
the nth-order density equation contaimsh-, (» + 1)th,  using the density equation, to some atoms and molecules.
and(n + 2)th-order density matrices. On the other hand,In this communication we briefly outline the method and
if we can calculate in some way or even approximatelygive the results of the calculations, comparing them with
the (n + 1)th and(n + 2)th-order density matrices from the traditional wave function approach. We actually use
the nth- and lower-order ones, it becomes possible tadhe second-order density equation= 2).

solve the density equation and calculate the density matrix The density matrix (DM)'* is related to the Green’s
directly without any use of the wave function. The purposefunctionG™ as

of this communication is to show that such a method is now

almost established. T (]! |xy - x,) = (=i)"
Recently, Valdemorcet al. have suggested a decou- n!
pling approximation of the higher-order density matrices X G(”)(x{O’ x0T |x 01 - x,07),
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and the reduced density matrix (RDNP is defined by The UV term in the 3-DM is defined by
nD(}"{ ”.rélrl ceery) = Z l"(n)(xi ~"X,/1|X1 X)), occupied  virtual Lk .20
ooy, i1,i2,i3 __ i i2,i
UVF(3)]1}2 h= < Z Z )( jlj2Vk j3 + - )

where o; is a spin variable. Taking lower-order pertur-

bation series of the Green’s functions, we introduce the

following decoupling approximations for the third- and The U term is defined by Eq. (4), and théterm is the
fourth-order Green’s functions: solution of the linear equation

G(3)= ‘ ‘ ’ + H ‘ + m (2) . L2 occupied  virtual 12 Dk Dk
V;1,}2=U;1112+ Z - Z Vllllc(r FHFj2>7

+HH 3) o

where HF stands for Hartree-Fock. Th&/ term repre-

In Egs. (2) and (3), we give only the representative gralohssents the foIIowmg process: A particle (or a hole) 2 first

but we include all the related terms including the exchang&ollides W'th31( j1:j2), moves some distance, then collides
terms. The first two terms of Eq. (2) and the first threewith 3 (V;’;5’). The sum of all the intermediate states
terms of Eq. (3) are the same as those given by Valdemongelds the total amplitude, and the sign reflects whether a
et al., and correspond approximately to the first-orderparticle or a hole propagates as an intermediate state. The
terms. The last terms of Egs. (2) and (3), which we calisecond term of the linear equation represents the subtrac-
UV and 2P (two-pair) terms, respectively, are the secondion of some overcounted diagrams. Note toatterm is
order terms in electron correlations. These terms are moteot the simple product of the lower-order density matrices.

explicitly given below, and their physical meanings are Since the Green'’s function method is quite general,

G(4) =

clarified. Valdemoro’s decoupling approximation was derived as
First we define the collision tertd by a special case. Valdemoro’s procedure, which is quite
interesting, is based on the exact relation betweemthe
U (x{xjlx1x2) — Ux|xhlxax;) = 2P (x| x 1 x2) RDM’s "D and then-hole RDM’'s (-HRDM'’s) "D, for
IO (6l TO(xf o) | ©X@MPIe:
O horeke |t DI - Dk = 3 OUDE ~ 1D1iDh)
— 3 (DiiD% — ;D2DY).

where the second term in the rhs is the second-order DM
(2-DM) in the independent-particle approximation [2,6]. Valdemoroet al. put the RDM (HRDM) term in the left-

The 2P term in the 4-DM is defined by hand side to be equal to the RDM (HRDM) terms on
| 2 i the right-hand side. Hence this approximation has the
LWL = 2 UaUSS + - possibility of neglecting some terms that are common to

both RDM and HRDM. In addition, their approximation
where the sum is for all the permuted, antisymmetrizedepresents the higher-order RDM’s by the simple products
products ofU and consists of 72 terms. of the lower-order ones, which is generally impossible.

TABLE I. Errors of the various approximations of the 3- and 4-RDM’s for the ground state of Be.

3-RDM 4-RDM

Element Valdemoro +UvV Full-Cl Element Valdemoro +2P Full-Cl
J123, M123 error error value J 1234, M1234 error error value

2,3,32,33 335 x 107* 7.250 X 1077 1.758 X 107*  3,3,2,2,3,3,22 —7.928 X 1075 2.931 X 1077 3.933 X 1073
2,2,32,23 -3.174 X 107 —4.751 x 1077 2029 X 107* 3,3,2,2,3,3,1,1 —5581 X 107 1.169 X 1077 5.591 X 1073
2,2,31,1,3 -2233 X 1074 —2.552 x 1077 2235 X 107* 3,3,2,2,2,3,23 3964 X 107> —1.466 X 1077 —1.967 X 1073
1,1,3,1,1,3 —-2.015 X 107* —2.814 x 1077 3.187 x 10+ 3,3,1,1,3,3,1,1 —3.922 X 107> 1.779 X 1077 7.948 X 1073
1,331,333 1.752 X 107* 4.459 X 1077 3364 X 107 4,42,233,1,1 —3.740 X 107> 1.869 X 1078 3.742 X 1073
332233 —-1.678 X 107* —3.625 X 1077 —8.789 X 107 4,4,33,2,2,1,1 —3.652 X 1075 —1.731 X 1077 3.657 X 107
32,2223 1.587 X 107* 2376 X 1077 —1.014 X 107* 4,3,2,2,33,1,1 2973 X 107> —3.329 X 107 —2.977 X 1073

33221313 2791 X 107> —5.844 X 1078 —2.796 X 107°

44113311 —-2.628 X 1075 6.203 X 107% 1.631 X 1076

2All the 3- and 4-RDM elements with the Valdemoro errors larger thanx 107* and2.5 X 1073, respectively, are listed.
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TABLE Il. Calculated energies and density errors in the density-equation method and the wave function approach.
Density-equation method Wave function approach
Valdemoro present Hartree-Fock SDCI Full-Cl
System Active space Energy
Number of correlation energy error(%)
electrons 2D error®
Be 2 X2 —14.59775 —14.58269 —14.56853 —14.58269 —14.58269
4 —106.4 0.014 100 0.028 0
1.165 X 1072 4.823 X 107 4.631 X 1072 1.141 X 1074 0
Ne 3X6 not conv. 128.57862 —128.49637 —128.57726 —128.57835
6 —0.331 100 1.33 0
1.373 X 1072 1.947 X 107! 6.943 X 1073 0
H,O 5X2 not conv. —76.72751 —75.67884 —75.72829 —75.72902
10 3.00 100 1.44 0
7.122 X 1073 3.154 X 107! 1.030 X 1072 0
NH; 5X3 not conv. —56.05293 —55.98860 —56.05344 —56.05513
10 3.30 100 2.53 0
6.231 X 1073 3.473 X 107! 2.039 X 1072 0
H;O* 5X3 not conv. —76.09629 —76.03996 —76.09706 —76.09833
10 3.55 100 2.18 0
9.977 X 1073 3.067 X 107! 1.793 X 1072 0
CH, 4X4 —40.12426 —40.18726 —40.11015 —40.18772 —40.19049
8 82.4 4.02 100 3.45 0
2.948 X 107! 9.757 X 1073 3.702 X 107! 2.819 X 1072 0
BH; 4 X4 —26.80563 —26.87450 —26.80526 —26.87534 —26.87719
8 99.5 3.75 100 2.58 0
3.198 X 107! 1.072 X 1072 3.813 X 107! 2.831 X 1072 0
NH; 4X4 —56.42354 —56.47990 —56.40047 —56.48087 —56.48347
8 72.2 431 100 3.14 0
2912 X 107! 1.164 X 1072 3.671 X 107! 2.757 X 1072 0
CH;F 7 X 4 not conv. —139.52339 —138.42548 —138.52491 —138.53004
11 6.37 100 491 0
4514 X 1072 5.614 X 107! 6.118 X 1072 0

#Present approximation corresponds to ValdemotdV for 3-RDM and Valdemorot+2P for 4-RDM.
PError percentage in the correlation energy.

“This error means the square norm of the differences between the calculated 2-RDM and the full-Cl one.

Note that we have shown previously [6] that, by puttingrepeated until convergence is obtained.
the independent particle model approximation

ili2 1 il 2
Djijp =+ <D./'1Dj2

2

1

i2 il
- 5 pin})

In some cases,

interpolation techniques are necessary for an efficient
convergence: The previous and the present 2-RDM'’s are
averaged with some given weight.

We applied the present density-equation method to

into the density equation, we get the HF equation as aeveral atoms and molecules: Be, Ne(OHH; O, NHs,
CH,, BH, , NH,", and CHF. The comparative wave
Based on the above decoupling approximation of thdunction approach was used at the HF, configuration-

result.

3- and 4-RDM'’s, we solved the second-order densityinteraction SDCI, and full Cl levels.
equation [Eq. (1) wite = 2] iteratively. The HF orbitals

The following
basis sets were used: For atoms, the double-zeta Slater-

were used as one-electron basis and the HF 2-RDM wagpe orbitals (STO’s) [12] were used and expanded by
used as an initial guess. The iterative procedure is asix Gaussian-type orbitals (GTO’s) [13]. For molecules,

follows:

We first symmetrize and normalize a trial 2- the minimal STO-6G basis [13] and the experimental

RDM, then calculate the energy and the 3- and 4-RDM’smolecular geometries [14] were used. The dnd &
from the 2-RDM, and substitute them in the densityorbitals of Ne and the slorbitals of CH, BH, , NH4+,
equation. Since only the exact density matrices satisfiand CHF were frozen as cores.
it, its right-hand side will differ from the left-hand side
From this residue we calculate a new 2pling approximations as given by Egs. (2) and (3). We
RDM by the Newton method. The above procedure iscalculated the 3-RDM from the exact 1- and 2-RDM’s

in general.

First, we examine the accuracy of the present decou-
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and the 4-RDM from the exact 1-, 2-, and 3-RDM’s. Thewave function. The 3- and 4-RDM'’s were decoupled into
exact RDM’s were calculated from the full Cl wave func- lower-order ones using the Green’s function technique.
tion. Table | shows the results for Be. In going from The results for the atoms and molecules, Be, NeQH
Valdemoro’s approximation to the present one, the errorgl;O*, NH;, CHy, BH,, NHZ, and CHF were quite
are reduced from the order db~* to 1077 for the 3- accurate and promising. The convergence was fairly
RDM, and from the order of0 > to 10”7 for the 4-RDM.  good, and the calculated 2-RDM’s almost satisfy some
Thus our approximations significantly improve the Valde-necessary conditions dfl representability, while the 1-
moro’s ones. RDM'’s are exactlyN representable. These results show

We next compare the results of the density-equatiorthis method to be very promising. We are now exploring
method at different levels of approximations. Table Ilboth more accurate and more efficient methods. More
shows the results of the energies and the 2-RDM'’s fodetails of the theory and the calculations will be published
the calculated systems. In comparison with the exact fulin near future.
Cl results, the Valdemoro’s approximation shows poor This study was supported in part by a Grant-in-aid
results, while our approximations for the 3- and 4-RDM’sfor Scientific Research from the Japanese Ministry of
improve over it remarkably. Some calculations with theEducation, Science and Culture. K.Y. acknowledges the
Valdemoro’s approximation were difficult to converge, fellowship of the Japan Society for the Promotion of
while our approximation led to convergence within a few Science.
iterations.
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2P term result. Their special corrections seem to work [1] P. Hohenberg and W. Kohn, Phys. Rev. &4 136
well for the four-electron atoms. Note, however, that for (1965); W. Kohn and L.J. Sham, Phys. Rev1A33 140

- - i i (1965).
Iﬁgrv\?;?,(:;ﬁ?]c?ifﬁg§|fthe 4-RDM is essentially equal to [2] R.G. Parr and W. YangDensity-Functional Theory of

. . Atoms and MoleculegOxford University Press, Ne
On the other hand, our method including the and 2P York, 1989). ules(Ox versity W

terms works well even for many-electron systems having 3] c. Garrod, M.V. Mihailovic, and M. Rosina, J. Math.

more than four electrons. This is in marked contrast to ~ phys.16, 868 (1975).

the Valdemoro’s approximation which either gives very [4] H. Nakatsuji and R.G. Parr, J. Chem. Ph3, 112

poor results or does not even give a convergence in the (1975); H. Nakatsuji, J. Chem. Phy&7, 1312 (1977).

calculations. For atoms, the error in the correlation energy[5] A.J. Coleman, Rev. Mod. Phy85, 668 (1963); C. Garrod

is only 0.014% for Be and-0.33% for Ne (the minus and J. Percus, J. Math. Ph{.1756 (1964); H. Kummer,

sign means overshooting). For molecules, it is 3—49% for __ J- Math. Phys8, 2063 (1967).

hydrides and 6% for CkF. Although these energy errors [6] H. Nakatsuji, Phys. Rev. A4, 41 (1976).

are larger than those of the SDCI method except for the[g f ggr?ér?gﬁggpﬁﬁgrr?b?%ug%i 1Rsalv916,e?,)éz7 (1976)

atoms, the errors OT the 2-RDM’s measured by the squarjg] E. Davidson, private communication to one of the authors

norms of the deV|_at|ons from the exact ones are smaller b (H.N.) at Tomakomai in 1976 J. E. Harriman, Phys. Rev.

an order of magnitude than those of the SDCI method. We A 19 1839 (1979).

interpret this as follows: The SDCI method is a variational[10] C. Valdemoro, Phys. Rev. A5, 4462 (1992); F. Colmen-

method, while the present density-equation method is a ero, C. Perez del Valle, and C. Valdemoro, Phys. Rev. A

nonvariational method directly calculating the 2-RDM’s. 47, 971 (1993); F. Colmenero and C. Valdemoro, Phys.
We finally checked theN representability of the cal- Rev. A47, 979 (1993).

culated 2-RDM’s using some necessary conditidhsQ, [11] F. Colmenero and C. Valdemoro, Int. J. Quant. ChBf.

and G conditions [5], which are the nonnegatives of the 369 (1994). _

RDM, the HRDM, and theS matrix. We found that our [12] E. Clementi and C. Roetti, Atom Data Nuc_:l. Data Ta#,

2-RDM'’s almost satisfy thes®&l representability condi- 428 (1974); the exponents were reoptimized by T. Koga

tions. We also found that all the eigenvalues of the 1- and S. Watanabe (private communication).

. 13] W.J. Hehre, R.F. Stewart, and J. A. Pople, J. Chem. Phys.
RDM'’s are in the range of zero to 2, so that the calculate& ] 51, 2657 (1969). W P y

1-RDM's are exactlyN representable [15]. ~ [14] L.E. Sutton, D.G. Jenkin, and A.D. Mitchellables of
The present study is summarized as follows. With" ~ |nteratomic DistancesThe Chemical Society, London,
the use of the density equation the second-order density 1958).

matrices were directly determined without any use of thg15] T.L. Gilbert, Phys. Rev. B2, 2111 (1975).

1042



