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Abstract

Ž .Calculations of magnetic shielding constants of protons and heavy elements in HX molecules XsO, S, Se, and Te2
Ž .are presented based on the Dirac–Fock DF method in the presence of a finite magnetic field. The calculated magnetic

shielding constants agree fairly well with experiments. The so-called diamagnetic, paramagnetic, Fermi-contact, and
spin–dipolar terms are also presented by applying the Gordon decomposition method. The results are compared with those

Ž .calculated by the quasi-relativistic QR method, and we found that the difference between the DF and QR methods is
significant for TeH . q 2000 Elsevier Science B.V. All rights reserved.2

1. Introduction

Ž .Nuclear magnetic resonance NMR spectroscopy
is fairly sensitive to chemical environments around
resonant nuclei. The nuclear magnetic shielding con-
stants, measured as NMR chemical shifts, have a
substantial contribution from orbital and spin angular
momenta in atomic core region of valence orbitals
w x1,2 . Thus, in molecules containing heavy elements,
the relativistic effects become substantial and are
observed by the NMR spectroscopy. Such impor-
tance of the relativistic effect has been suggested for

w xmany years 3–7 , and confirmed unambiguously by
w xour laboratory 8–16 .
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We have presented a series of studies about the
relativistic effects on the nuclear magnetic shielding

w xconstants 8–16 . We have proposed a method for
computing the magnetic shielding constants under

Ž .the influence of the spin–orbit SO interaction using
Ž .the unrestricted Hartree–Fock UHF wavefunctions

w xincluding magnetic field as a finite perturbation 8 .
This method called SO–UHF has been applied to H,

w x w x w x w x w xC 8 , Ga, In 9 , Si 10 , Al 11 , Sn 12 , Nb and Ti
w x13 chemical shifts of various halogen-containing
compounds. These results have demonstrated the
importance of the SO effect. Further, including other

y2 Ž .c -order spin-free relativistic SFR terms, like the
so-called mass-velocity and Darwin terms, together
with the SO interaction, we have carried out calcula-

w x w x w xtions of H 14 , Hg 15 , and W 16 chemical shifts
in some halide and oxide compounds. These SFR
terms were shown to strongly couple with the SO
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term, affecting significantly the chemical shifts of
the heavy elements.

Ab-initio fully relativistic four-component calcu-
lations of magnetic shielding constants have not

w xappear before our recent calculations 17,18 , though
w xsome pioneering theoretical works existed 5,6 .

Those of nuclear spin–spin coupling constants was
w xalso reported very recently 19 . On the other hand, a

Ž .number of ab-initio quasi-relativistic QR calcula-
w xtions have been reported 8–16,20,17 , since the

computational labours involved are less than the
Ž .four-component Dirac–Fock DF one and the under-

lying concepts are the extensions of the non-relativis-
tic ones. The density functional theories also have
been applied to calculations of magnetic shielding

w xconstants 21–25 . Since any QR theories are, in
nature, approximate ones derived from a fully rela-
tivistic four-component theory, a comparison be-
tween these two methods is necessary particularly
when they are applied to really heavy elements.

w xIn our recent communications 17,18 , we pro-
posed a use of the matrix DF finite perturbation
theory for magnetic shielding constants: we explic-
itly dealt with the four-component Dirac–
Coulomb–Breit Hamiltonian with the DF approxima-
tion. We have presented the calculations of the pro-
ton magnetic shielding constants of H and hydro-2

w xgen halides 17,18 , and the shielding constants of
w xthe inert atoms, He to Xe 17 .

This communication has two objectives. One is to
apply the ab-initio four-component DF method to the
calculations of the magnetic shielding constants of
heavy resonant nuclei, which is actually first in the
world, and the other is to compare the results with
those by a standard QR method and discuss the

Ždifferences. Molecules selected here are XH XsO,2
. 1S, Se, and Te . The H and X shielding constants in

these molecules are calculated by the DF method,
and for comparison, they are calculated by the QR

Ž .Douglas–Kroll DK method.

2. Computational details

2.1. RelatiÕistic theory

The matrix DF method are utilized with the no-pair
Ž .Dirac–Coulomb DC Hamiltonian described by

w xSucher and Mittleman 26,27 to obtain fully rela-
tivistic wavefunctions. The vector potentials arising
from external uniform magnetic field and nuclear
magnetic moment are added to the no-pair DC
Hamiltonian.

To make a comparison between the DF and QR
methods, the relativistic Hamiltonian generated from
the second-order DK trans-formation and the gener-

Ž .alized unrestricted Hartree–Fock GUHF method
are used, evaluating the matrix elements over the
basis functions by the matrix-transformation method

w xproposed by Hess 28 . The DC Hamiltonian includ-
ing magnetic vector potentials were block-diagonal-
ized by the DK transformation which is important

w xfor heavy element NMR 29 . One-electron SO term
was included in the form generated from the DK
transformation, and two-electron SO term was added
in the Breit–Pauli form.

2.2. Magnetic shielding constant

In the DF method with no-pair DC Hamiltonian,
Ž .the magnetic shielding constant s t,usx, y, z ist u

given by a single term as

s DF
n , t u

E r =aŽ .ni i uDFs F BŽ . Ý0 t 3¦E B r0 t n ii

DF=F B 1Ž . Ž .0 t;
B s00 t

DF Ž .where F B is the four-component DF wave-0 t

function in the presence of a uniform external mag-
Ž .netic field B tsx, y, z , a are 4=4 standard0 t i

Dirac matrices, and r is a coordinate of electron ini
Ž .from the nucleus n. The derivation of Eq. 1 has

been reported in some detail in the previous report
w x Ž .17 . The point nucleus model is used in Eq. 1 ,
since we have found that the finite nucleus model

w xdoes not affect much the calculated values 29 .
w xPyper 5 reported that, when the Gordon decom-

Ž .position is applied to Eq. 1 , the DF magnetic
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shielding constant is divided into four terms as fol-
lows,

s GD
n , t u

1 r y d P r d y r y d rŽ . Ž .i n i t u i t t n i ,uDF DFŽ . Ž .s F 0 b F 0Ý¦ ;2 32c rnii

ˆE 1 r = PŽ .n i i uDF DFq F B b F BŽ . Ž .0 t 0 tÝ 3¦ ;EB c r0 t n ii B s00 t

E 8
D F DFŽ .q F B pb d r s F BŽ . Ž .0 t n i u 0 tÝ¦ ;EB 30 t i B s00 t

2Ž . Ž .E 1 3 r s P r y s rn i n i u n iuDF DFq F B b F B ,Ž . Ž .0 t 0 tÝ 5¦ ;EB c r0 t n ii B s00 t

2Ž .

where s is the Pauli matrix, and b is a 4=4 matrix
defined as,

I 0
bs , 3Ž .

0 yI

and I is a 2=2 unit matrix. The first and second
Ž .terms in Eq. 2 are spin-independent, and the third

Ž .and fourth terms spin-dependent. Eq. 2 is formally
Ž .equivalent to Eq. 1 , though a non-zero deviation

occurs when we use finite basis function expansion.
Ž .If this deviation is small enough, we can use Eq. 2

as a useful analysis method. The four terms in Eq.
Ž . Ž y2 .2 are quite similar to the lowest-order c terms

w xin the traditional QR theories 8 , namely diamag-
Ž .netic term, paramagnetic term, Fermi-contact FC

Ž .term, and spin–dipolar SD term. We have reported
Ž .that, for light elements, these four terms in Eq. 2

w xnumerically parallel to those of the QR theory 18 .
Ž .As seen from the form of b , Eq. 2 is divided

into large- and small-component contributions, corre-
sponding to the fact that the four-component DF
wavefunction consists of the so-called large- and

Ž .small-components. On the other hand, in Eq. 1 , the
cross-coupling term between large and small compo-
nents is essential.

Ž .The derivative operators ErEB in Eqs. 1 and0 t
Ž .2 are approximated by the finite perturbation
method in the present calculations. The magnetic
shielding constants are averaged over all directions
of given molecular axes, x, y, and z.

The detailed formulation for the QR theory of the
magnetic shielding constants used here will be pub-

w xlished elsewhere in near future 29 .

2.3. Basis sets and molecular geometries

The Gaussian basis sets used for large-component
wavefunctions in our calculations are as follows.

Ž .O 13s 8p 2d
Ž .S 15s 10p 2d
Ž .Se 26s 20p 15d
Ž .Te 28s 23p 17d
Ž .H 6s 3p

We used these primitive functions without contrac-
tion. For Te and Se, they are the Huzinaga’s well-

w xtempered sets 30 , whose exponent ranges of s-
orbitals are 104930899.977y0.0416 for Te, and
97106338.742y0.0580 for Se. These ranges of ex-
ponents are wide enough in comparison with the
universal Gaussian basis sets proposed for carrying

Table 1
Calculated and experimental proton magnetic shielding constants

Ž . Ž .in XH XsO, S, Se, and Te and their analysis ppm2

aMolecule Dirac–Fock
DF GDs s s s s s D Exptl.

Ž . Ž . Ž . Ž .dia para FC SD

OH 29.66 21.24 8.28 0.07 0.01 29.60 y0.06 30.052

SH 30.24 20.82 8.89 0.42 0.07 30.20 y0.04 31.262

SeH 31.68 20.41 8.79 2.18 0.10 31.48 y0.20 32.812

TeH 34.52 20.42 8.39 5.61 0.22 34.64 y0.122

bMolecule Douglas–Kroll quasi-relativistic GUHF
DKs s s s s Exptl.

Ž . Ž . Ž . Ž .dia para FC SD

OH 21.22 8.28 0.08 0.01 29.59 30.052

SH 20.82 8.89 0.62 0.03 30.37 31.262

SeH 20.42 8.78 3.24 0.13 32.58 32.812

TeH 20.40 8.36 8.74 0.33 37.842

cMolecule Non-relativistic RHF
NRs s s Exptl.

Ž . Ž .dia para

OH 21.23 8.28 29.51 30.052

SH 20.83 8.89 29.72 31.262

SeH 20.48 8.77 29.26 32.812

TeH 20.60 8.42 29.022

a DF GD Ž . Ž .s and s are defined by Eqs. 1 and 2 , respectively,
GD Ž . Ž . Ž . Ž .and s ss dia qs para qs FC qs SD . D is defined as

Dss GD ys DF.
b DK Ž . Ž . Ž . Ž .s ss dia qs para qs FC qs SD .
c NR Ž . Ž .s ss dia qs para .
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w xout accurate matrix DF calculations 31 . The basis
w xsets for O and S are taken from Huzinaga et al. 32 ,
w xand for H from Huzinaga and Klobukowski 33 .
w xTwo polarization d-functions are added for O 32 ,

and three p-functions whose exponents are taken
Ž .from the outer three of 6s are added for H.

For the basis sets used for small-component
wavefunctions, the kinetically balanced basis func-

� 4tions =x were used, which are generated from the
� 4large-component basis functions x .

ŽThe XH distances and the HXH angles XsO, S,
. w xSe, and Te are taken from Ref. 20 . The molecular

symmetry is C in all molecules. The gauge origin2v

of the external magnetic field is commonly located
Ž . Ž .on the X atom XsO, S, Se, and Te for both s H

Ž .and s X .

3. Results and discussions

3.1. Proton magnetic shielding constants

Table 1 shows the results of the proton magnetic
Ž . Žshielding constants s H in XH XsO, S, Se, and2

.Te . The proton magnetic shielding constants calcu-
Ž DF .lated by both the DF method s and the QR

Ž QR .method s agree well with the experimental
ones, while those calculated by the non-relativistic

Ž .restricted Hartree–Fock RHF method do not show
correct trend. The diamagnetic and paramagnetic
terms are almost constant, and the SD terms are
commonly small in all methods, and therefore only
the FC term is the origin of the proton chemical

Ž .shifts of XH XsO, S, Se, and Te .2
Ž . DF GDThe differences D between s and s ,

Ž . Ž .which are defined by Eqs. 1 and 2 , respectively,
Žare smaller than 0.2 ppm for all molecules see Table

.1 . These D values are negligibly small in compari-
son with the proton chemical shifts, suggesting that
this decomposition analysis is quantitatively reliable.

The DF method and the QR method give fairly
close results for the paramagnetic term, the diamag-
netic term, and the SD term. Only the FC terms of
s QR are larger by a few ppm than those of s DF in
SeH and TeH , and this deviation is not negligible2 2

1 Žin terms of the H chemical shifts of XH XsO, S,2
.Se, and Te .

3.2. Magnetic shielding constants of heaÕy elements

Table 2 shows the results of the X magnetic
Ž . Žshielding constants s X in XH XsO, S, Se, and2

Table 2
Ž . Ž .Calculated and experimental magnetic shielding constants of X in XH XsO, S, Se, and Te and their analysis ppm2

Ž . Ž . Ž .For a , b , and c , see footnotes of Table 1
aMolecule Dirac–Fock

DF GDŽ . Ž . Ž . Ž .s s dia s para s FC s SD s D Exptl.

OH 329.7 416.1 y90.2 4.3 y0.5 329.7 0.0 3242

SH 750.0 1066.1 y348.8 36.8 y4.4 749.4 y0.6 7262

SeH 2422.0 3021.7 y1028.2 520.6 y97.4 2416.7 y5.3 24012

TeH 4769.4 5420.9 y2800.0 2870.4 y753.7 4737.6 y31.8 49542

bMolecule Douglas–Kroll quasi-relativistic GUHF
DKŽ . Ž . Ž . Ž .s dia s para s FC s SD s Exptl.

OH 414.4 y88.7 6.1 0.0 331.8 3242

SH 1053.1 y338.2 46.6 0.1 761.6 7262

SeH 2917.4 y859.0 483.1 0.7 2542.2 24012

TeH 5098.9 y1738.3 1886.1 12.7 5259.4 49542

cMolecule Non-relativistic RHF
NRŽ . Ž .s dia s para s Exptl.

OH 416.0 y88.8 327.2 3242

SH 1065.1 y337.3 728.8 7262

SeH 3011.5 y844.9 2166.6 24012

TeH 5373.2 y1650.4 3722.8 49542
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. Ž .Te . The total s X values are plotted in Fig. 1 to
visualize the overall trends of the calculated and

Ž .experimental values. The experimental s X values
are excellently reproduced by the DF method, sug-
gesting that the present method is valid for the third-
and fourth-row elements of the periodic table. The
DK method also gives reasonable results, though it
slightly overestimates the shieldings of Se and Te.
We note here that the magnetic shielding operator

w xgenerated from the DK transformation 29 is differ-
ent from those in the traditional NR and QR meth-
ods, while the magnetic shielding operator in the
traditional QR method is the same as the large-com-
ponent operator in the Gordon decomposition. This
difference in the operator may cause a small numeri-
cal deviation between the DK method and the other
methods even for light elements.

As seen from Fig. 1, with going down on the
Ž .periodic table as XsO™S™Se™Te, the s X

values increase dramatically in all present methods,
though the non-relativistic RHF method underesti-

ŽFig. 1. Magnetic shielding constants of X in XH XsO, S, Se,2
.and Te calculated by the relativistic DF method, the quasi-relativ-

istic DK method, and the non-relativistic RHF method, and exper-
imentally proposed values.

mates significantly the experiments in SeH and2

TeH . We note here that some of the experimental2

values in Table 2 are the sum of the observed spin
rotation data and the calculated diamagnetic terms
with relativistic corrections, and therefore they may
have a small deviation from the real magnetic shield-
ing constants. For detailed comments on the experi-

Ž w xmental values see Vaara et al. 20 and the refer-
. Ž .ences cited therein . The calculated values of s Te

were reported to be 3496.60 and 3676.86 ppm by the
SCF and CAS methods, respectively, considering the

w xhigher-order SO contributions 20 . These values are
about 1000 ppm smaller than those by the present
DF and QR methods, and we guess that this underes-
timation is due to the lack of the SFR terms. It is true
that the SO effect significantly couples with the SFR

w xeffect in heavy elements 15 .
As shown in Table 2, the deviation D between

s DF and s GD is 0.0–31.8 ppm, the maximum
being for TeH . Since these D values are negligibly2

small in comparison with the absolute values of
Ž .s X and their shifts, the Gordon decomposition is a

meaningful analysis method even for the heavy ele-
Ž .ments, like Se and Te. The s para is much modi-

Ž .fied by the relativistic effect, and the s dia which is
calculated from the zeroth-order wavefunction is also
slightly modified. The FC and the SD terms are
apparently different between the DF and QR meth-
ods; however, these deviations may be due to the
difference in the definition of the FC and SD opera-
tors in the DF and QR methods, as mentioned above.

Ž .When we define the spin-dependent term as s FC
Ž .qs SD , this term is not so different between the

Ž .DF and QR methods. For examples, in TeH , s FC2
Ž .qs SD s2116.7 ppm by the DF method and

1898.8 ppm by the QR method. On the other hand,
Ž .when we define the spin-independent term as s dia

Ž .qs para , the differences between the DF and QR
methods are significantly large, and they directly

Ž .contribute to the differences of the total s X . It is
remarkable that the differences between the calcu-
lated values by the DF and QR methods appear
mainly in the spin-independent term, and not in the

Ž .spin-dependent term, in s Te .

3.3. Large- and small-component contributions

As describe in the Section 2, the Gordon-decom-
posed magnetic shielding constants are divided into
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Table 3
a 1 Ž . Ž .bLarge- and small-component contributions to the H and X magnetic shielding constants in XH XsO and Te ppm2

GDMolecule component Gordon decomposition s Exptl.

Ž . Ž . Ž . Ž .s dia s para s FC s SD

Proton magnetic shielding constant
OH 2

Large 21.24 8.28 0.07 0.01 29.67
Small 0.00 0.00 0.00 0.00 0.00
Total 21.24 8.28 0.07 0.01 29.67 30.05

TeH 2

Large 20.42 8.39 5.61 0.22 34.64
Small 0.00 0.00 0.00 0.00 0.00
Total 20.42 8.39 5.61 0.22 34.64 y

O and Te magnetic shielding constant
OH 2

Large 416.3 y89.3 4.2 0.0 331.2
Small y0.2 y0.9 0.1 y0.5 y1.5
Total 416.1 y90.2 4.3 y0.53 29.7 324

TeH2

Large 5533.6 y1853.7 2799.5 6.6 6486.0
Small y112.7 y946.3 70.9 y760.3 y1748.4
Total 5420.9 y2800.0 2870.4 y753.7 4737.6 4954

a Large- and small-component contributions are explained in Section 2.
b GD Ž . GD Ž . Ž . Ž . Ž .s is defined by Eq. 2 , and s ss dia qs para qs FC qs SD .

the large-component contribution and the small-com-
ponent one, and these contributions are listed in
Table 3. Roughly speaking, the small component is
‘smaller’ than the large-component by a factor of
Ž Ž . .py erc A r2mcfÕr2c, where Õ is speed ofˆ
electron, and therefore the small-component contri-
bution to the magnetic shielding is smaller by a

Ž .y2factor of roughly Õr2c than the large-compo-
nent one, in light elements.

For the proton magnetic shielding constants, the
small-component contribution is quite small in both
OH and TeH , and only the large-component con-2 2

tributions determine the total values. On the other
Ž .hand, in the X magnetic shielding constants s X in

XH , the situation is different. Although the small-2

component contributions are negligibly small in OH 2

as expected from the above order estimation, they
are significantly large in TeH . In particular, the2

small-component contributions are quite large in the
paramagnetic term and the SD term. This suggests
that the higher-order relativistic terms in the QR
theories are not so small, and the decoupling of a
four-component Hamiltonian into a two-component
one is not completely well done by the second-order

DK method, when it is applied to extremely heavy
elements like Te. All the small-component terms
except for the FC term have negative contribution to
the total magnetic shielding constant of TeH . This2

Ž .is a reason why s Te by the DF method is smaller
than that by the QR method.

4. Concluding remarks

Ž . Ž .The magnetic shielding constants s X and s H
Ž .in XH XsO, S, Se, and Te are calculated by the2

DF method based on the no-pair DC Hamiltonian
incorporated into the finite perturbation method.
These results are compared with those calculated by
the QR method. The present results may be summa-
rized as follows.
1. The present method is valid for calculations of the

magnetic shielding constants of heavy elements
up to Te. The calculated results reproduce fairly
well the experimental values.

2. The origin of the proton chemical shifts in XH 2
Ž .XsO, S, Se, and Te is essentially the FC term.
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Ž .3. The X magnetic shielding constants, s X , calcu-
lated by the DF method and the QR method are
quite similar in OH and SH , while the ones2 2

calculated by the QR method significantly overes-
timates in TeH .2

4. The diamagnetic and paramagnetic terms of the
DF method are significantly different from those
of the QR method especially in TeH , while the2

Žspin-dependent contribution sum of FC and SD
.terms is similar.

Ž .5. The small-component contributions to s Te are
quite large especially in the paramagnetic term,
and this fact may be an evidence of break-down
of the QR method when it is applied to really
heavy elements.
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