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Variational calculations of fermion second-order reduced density matrices
by semidefinite programming algorithm
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The ground-state fermion second-order reduced density matrix~2-RDM! is determined variationally
using itself as a basic variable. As necessary conditions of theN-representability, we used the
positive semidefiniteness conditions,P, Q, and G conditions that are described in terms of the
2-RDM. The variational calculations are performed by using recently developed semidefinite
programming algorithm~SDPA!. The calculated energies of various closed- and open-shell atoms
and molecules are excellent, overshooting only slightly the full-CI energies. There was no case
where convergence was not achieved. The calculated properties also reproduce well the full-CI
results. © 2001 American Institute of Physics.@DOI: 10.1063/1.1360199#
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I. INTRODUCTION

The ground state ofN-body fermion system is com
pletely described by the second-order reduced density m
~2-RDM! G (2) because any observable properties of the s
tem can be calculated from the 2-RDM.1,2 This fact led us to
desire to use 2-RDM as a basic variable of quantum mech
ics instead of the wave functionC; if we can determineG (2)

without usingC, we have a closed form of quantum mecha
ics where the basic variable is 2-RDM. We refer to su
formalism of quantum mechanics as density matrix the
~DMT!.3

In the nonrelativistic case, the determinative equation
C is the Schro¨dinger equation~SE!. Therefore, to establish
DMT, we have to formulate the equation for the RDM that
equivalent to the SE in the necessary and sufficient sen3

As such an equation, one of the author derived density eq
tion ~DE! ~Refs. 4 and 5! that has recently been used su
cessfully to calculate the 2-RDMs of atoms and molecu
directly without any use of the wave function.6–9 This ap-
proach is called density equation theory~DET! and a review
on the DET in chemical physics has recently been sum
rized together with some later developments.3

Another equation that is equivalent to the SE but
cludes 2-RDM alone as a variable is the variational equa
of the form,

Eg<E@G (2)#, ~1.1!

where Eg is the exact ground-state energy. This meth
called density matrix variational theory~DMVT ! is a

a!Author to whom correspondence should be addressed.
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straightforward consequence of the Ritz variational princi
combined with the fact that the Hamiltonian involves on
one- and two-body operators. The problem here is how w
we can restrict our variableG (2) to beN-representable.10 The
N-representability condition that is enforced by the Pa
principle is not completely known forG (2) and this is an
obstacle of the DMT in general.

The P, Q, ~Ref. 10! andG ~Ref. 11! conditions are the
well-known necessary conditions of theN-representability.
They are the semidefiniteness conditions of the matrices
rived fromG (2). Though these three conditions are not co
plete, they seem to be quite strong to characterize
N-representability of the ground-state 2-RDM. First calcu
tions along this line were performed in a beautiful way
Garrodet al.12,13 for the ground state of Be, and Mihailovi´
et al.14 for the nuclear ground state of15O, 16O, 17O, 18O,
20Ne, 24Mg, and 28Si. At that time their method was ver
heuristic and could hardly be applied to general systems.
found that this method can be elegantly realized using
semidefinite programming algorithm~SDPA!,15 recently de-
veloped in the field of mathematical programming. We c
culated the ground-state energies of atoms and molec
using these three necessary conditions and employing SD
as our problem solver.

II. THEORICAL OUTLINE

First and second order reduced density matrices~1-,
2-RDMs!, g andG, respectively, are defined by

g j
i 5^Cuai

†aj uC&, ~2.1!

and
2 © 2001 American Institute of Physics
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G j 1 j 2

i 1i 2 5 1
2 ^Cuai 1

† ai 2
† aj 2

aj 1
uC&, ~2.2!

wherea† and a denote creation and annihilation operato
respectively. Note we have simplifiedG (2) asG. Throughout
this paper, we assume the elements of 1-RDM and 2-RDM
be real. CompleteN-representability condition is known fo
g,10 but for G, we know only necessary conditions~the
known complete condition is not practical!. Some trivial con-
ditions for 2-RDM are:

~1! Antisymmetric condition,

G j 1 j 2

i 1i 2 52G j 1 j 2

i 2i 1 52G j 2 j 1

i 1i 2 ; ~2.3!

~2! Hermiticity,

G j 1 j 2

i 1i 2 5G i 1i 2

j 1 j 2; ~2.4!

~3! Trace condition,

(
k

G jk
ik5

2

N21
g j

i ; ~2.5!

~4! Number of electrons,

N5(
k

gk
k ; ~2.6!

~5! Eigenstate of the number ofa ~or b! electrons,

Tr NaG5Na and TrNa
2G5Na

2; ~2.7!

where the operators ofNa andNa
2 are written as

Na5(
i

aia
† aia , Na

25(
i j

aia
† aiaaj a

† aj a ; ~2.8!

~6! Spin symmetry,

G
j 1s

18 j 2s
28

i 1s1i 2s2 50; ~2.9!

when s1Þs18 or s2Þs28 and s1Þs28 or s2Þs18 , wheres
denotes spin variable.

~7! Expectation value ofS2,

Tr S2G5S~S11!, ~2.10!

where the spin-squared operatorS2 is given by

S25Sz1Sz
21S2S1

5
1

2 (
i

~aia
† aia2aib

† aib!1
1

4 S (
i

aia
† aia2aib

† aibD 2

1(
i j

aib
† aiaaj a

† aj b ; ~2.11!

~8! Positive semidefiniteness ofP matrix, which is just
2-RDM,

( xi 1i 2
G j 1 j 2

i 1i 2 xj 1 j 2
>0, ~2.12!

wherexi 1i 2
is an arbitrary geminal.

Note that except for the condition 8, all of these con
tions are linear to 2-RDM.

The Q andG matrices are defined by
Downloaded 06 Jun 2002 to 130.54.33.130. Redistribution subject to A
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Qj 1 j 2

i 1i 2 5^Cuai 1
ai 2

aj 2

† aj 1

† uC& ~2.13!

and

Gj 1 j 2

i 1i 2 5^Cuai 1
† ai 2

aj 2

† aj 1
uC&. ~2.14!

These matrices are semidefinite11 and linear toG as

Qj 1 j 2

i 1i 2 5~d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2!2~d j 1

i 1g j 2

i 21d j 2

i 2g j 1

i 1!

1~d j 2

i 1g j 1

i 21d j 1

i 2g j 2

i 1!22G j 1 j 2

i 1i 2 ~2.15!

and

Gj 1 j 2

i 1i 2 5d j 2

i 2g j 1

i 122G j 1i 2

i 1 j 2. ~2.16!

We note that originally theG matrix was written in an
equivalent nonlinear form.16

The Hamiltonian of the system can be written as

H j 1 j 2

i 1i 2 5wj 1 j 2

i 1i 2 1
1

N21
~v j 1

i 1d j 2

i 21v j 2

i 1d j 1

i 2!, ~2.17!

where v and w are 1- and 2-body operators, respective
Then, the basic equation of DMVT given by Eq.~1.1! is
written as the variational minimization of the energy with
our constraints,

Emin5 min
GP(2)P

Tr HG, ~2.18!

where (2)P is the set of 2-RDMs which satisfies the abo
necessaryN-representability conditions, namely,

(2)P5$GuP,Q,G matrices are non-negative and the

conditions 1 – 7 are satisfied%. ~2.19!

Either of theP, Q, andG conditions forms compact conve
set with trace topology,17 and a finite combination of com
pact convex sets is also compact convex set, therefore
method should find a minimum in energy. This method c
be applied to the ground state of any space and spin sym
try.

III. CALCULATION METHOD

The minimization problem with some linear constrain
can be achieved by using semidefinite programming al
rithm ~SDPA! ~Ref. 15! as a problem solver. The SDPA ha
recently been developed in the field of mathematical p
gramming. In this section, we explain how to apply SDPA
our problem of solvingG (2) in the constrained variationa
method given by Eq.~2.19!. The dimensions of the matrice
aren3n, if they are not explicitly defined.

A. Simplified problem

First, we introduce a simplified problem which contai
all the essentials, that is

Problem~a!: Minimize the total energy of the 2-RDMG
subject to the fixed number of electrons and the posit
semidefiniteness ofG.

The positive semidefiniteness ofG is the P condition. Note
that this problem gives the exact solution forN52. Problem
~a! is written as,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Problem~a8!:H Minimize TrHG

subject to TrNG5N

and G is positive semidefinite.

~3.1!

Formal expression of the problem15 is,

Problem~a9!:H Minimize F0"Y

subject to F1"Y5c1

and Y is positive semidefinite,

~3.2!

whereF0 andF1 are constantn3n symmetric matrices, and
Y is n3n symmetric variable matrix,c1 is real constant, and
" is an operator such that

F"Y5(
i , j

~F! i j ~Y! i j . ~3.3!

One can easily confirm that problem (a8) and problem (a9)
are the same when we takeY as G, F0 as the Hamiltonian,
and F1 as the number of operator. A generalization of t
problem (a9) is called semidefinite programming~SDP!.

B. Semidefinite programming algorithm „SDPA…

The SDPA ~Ref. 15! solves the following form of
semidefinite programming and its dual:

SDP5
primal: minimize (

i 51

m

cixi

subject to X5(
i 51

m

Fixi2F0 , Xf0

dual: maximizeF0"Y

subject to Fi "Y5ci~1< i<m!, Yf0,
~3.4!

whereX and Y are n3n real symmetric matrices,Fi (1< i
<m) symmetric constraint matrices,ci andxi real constant
and variable numbers, respectively,U"V denotes inner prod
uct of the matrices,U"V5( i , jUi , jV i , j , andXf0 meansX to
be positive semidefinite. We assume all the constraint ma
ces are linearly independent.

Semidefinite programming is usually solved by prim
dual interior-point method.18,19 This method is based on th
primal-dual theorem of SDP, which shows an existence
the optimal solution and gives a necessary and sufficient c
dition for the optimal solution~minimum in primal problem,
and maximum in dual problem!: if there exists (X,Y,x) such
that they satisfy all the constraints andXf0 andYf0, then

~1! SDP has an optimal solution;
~2! Necessary and sufficient condition for the optim

solution (X* ,Y*, x* ) is

X* "Y* 5F0"Y* 2(
i 51

m

cixi* 50. ~3.5!

C. Set up of DMVT in SDPA

Our object is to solve the DMVT problem~2.19!. It is
equivalent to solve thedual of problem ~3.4!, taking Y as
2-RDM, F0 as the Hamiltonian,F1 as the constraint for the
Downloaded 06 Jun 2002 to 130.54.33.130. Redistribution subject to A
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number of electrons,F2 as the constraint for spin square
operator, etc. Maximization is altered to minimization by ju
changing the sign ofF0 . Problem~2.19! is written as

Minimize TrHG

subjected to TrNG5N

Tr S2G5S~S11!

~3.6!
Tr NaG5Na

Tr Na
2G5Na

2

and G (2)f0, Qf0 and Gf0.

Note that some of the matrices appeared below have
indices, however, we can reduce them to two indices
mapping indices (i , j ) to the composite indexk. Imposing
linear constraints forN or S2, etc., is straightforward. Con
straining the expectation value of the two body operatorA to
be ca (Tr AG5ca) is done as follows:

~1! Explicit expression ofA is give by

A5 (
i 1i 2 j 1 j 2

aj 1 j 2

i 1i 2 ai 1
† ai 2

† aj 2
aj 1

, ~3.7!

whereaj 1 j 2

i 1i 2 is constant.

~2! Set up the constraint matrixFA such that

~FA! j 1 j 2

i 1i 2 5aj 1 j 2

i 1i 2 . ~3.8!

~3! Then, the constraint is given by the equality,

FA"G5 (
i 1i 2 j 1 j 2

aj 1 j 2

i 1i 2 Yj 1 j 2

i 1i 2 5Tr AG5ca . ~3.9!

For example, we set up the constraint matrix for t
number of particlesN. Explicit expression ofN is,

N5(
i

ai
†ai5

N21

2 (
i j

ai
†aj

†ajai . ~3.10!

Then, the constraint matrixFN for the number of particle is
represented by

~FN!kl
i j 5

N21

2
d ikd j l , ~3.11!

and we confirm the following relation:

FN"Y5(
i jkl

~FN!kl
i j Gkl

i j

5(
i jkl

N21

2
d ikd j l Gkl

i j

5
N21

2 (
i j

G i j
i j

5
N21

2 (
i

2

N21
g i

i5(
i

g i
i5N. ~3.12!

Now we consider how to enforce the 2-RDM to satis
theP, Q, andG conditions, simultaneously. We first expla
the case where onlyP andQ conditions are enforced simul
taneously.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We introduce the variable matrixY in which P and Q
matrices are diagonally arranged,

Y5S P 0

0 QD . ~3.13!

It is obvious that

Yf0↔Pf0 and Qf0. ~3.14!

There is a linear relation betweenG andQ matrices,

Qj 1 j 2

i 1i 2 5~d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2!2(
k

N21

2
~d j 1

i 1G j 2k
i 2k

1d j 2

i 2G j 1k
i 1k

!

1(
k

N21

2
~d j 2

i 1G j 1k
i 2k

1d j 1

i 2G j 2k
i 1k

!22G j 1 j 2

i 1i 2 . ~3.15!

Therefore, we can find a set of linear constraints foreach
element of theQ matrix as

Ej 1 j 2

i 1i 2 "Y5cj 1 j 2

i 1i 2 52G j 1 j 2

i 1i 2 1~d j 1

i 1g j 2

i 21d j 2

i 2g j 1

i 1!

2~d j 2

i 1g j 1

i 21d j 1

i 2g j 2

i 1!1Qj 1 j 2

i 1i 2

5d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2. ~3.16!

Using these constraints, the SDP formalism is given by

Minimize H"Y

subject to Fi "Y5ci ~3.17!

Ẽj 1 j 2

i 1i 2 "Y5d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2.

whereẼj 1 j 2

i 1i 2 is a symmetric matrix defined by

Ẽj 1 j 2

i 1i 2 5 1
2 ~Ej 1 j 2

i 1i 2 1Ei 1i 2

j 1 j 2!, ~3.18!

and the explicit expression of the element of the constr
matrix (Ej 1 j 2

i 1i 2 ) l 1l 2

k1k2 is given by

~Ej 1 j 2

i 1i 2 ! l 1l 2

k1k252dk1

i 1 dk2

i 2 d l 1

j 1d l 2

j 21dk1

i 11ndk2

i 21nd l 1

j 11nd l 2

j 21n

1
N21

2
d j 1

i 1dk1

i 2 d l 1

j 2d l 2

k21
N21

2
d j 2

i 2dk1

i 1 d l 1

j 1d l 2

k2

2
N21

2
d j 2

i 1dk1

i 2 d l 1

j 1d l 2

k22
N21

2
d j 1

i 2dk1

i 1 d l 1

j 2d l 2

k2

~3.19!

and the constantcj 1 j 2

i 1i 2 in Eq. ~3.16! is

cj 1 j 2

i 1i 2 5d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2. ~3.20!

We can confirm Eq.~3.21! holds

Ej 1 j 2

i 1i 2 "Y5 (
k1k2l 1l 2

~Ej 1 j 2

i 1i 2 ! l 1l 2

k1k2~Y! l 1l 2

k1k25cj 1 j 2

i 1i 2 ~3.21!

as follows. The first two terms of Eq.~3.21! are

(
k1k2l 1l 2

~2dk1

i 1 dk2

i 2 d l 1

j 1d l 2

j 21dk1

i 11ndk2

i 21nd l 1

j 11nd l 2

j 21n
!~Y! l 1l 2

k1k2

52~Y! j 1 j 2

i 1i 2 1~Y! j 11n, j 21n
i 11n,i 21n

52G j 1 j 2

i 1i 2 1Qj 1 j 2

i 1i 2 , ~3.22!
Downloaded 06 Jun 2002 to 130.54.33.130. Redistribution subject to A
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the second two terms of Eq.~3.21! give,

(
k1k2l 1l 2

S N21

2
d j 1

i 1dk1

i 2 d l 1

j 2d l 2

k21
N21

2
d j 2

i 2dk1

i 1 d l 1

j 1d l 2

k2D ~Y! l 1l 2

k1k2

5
N21

2 (
k

d j 1

i 1G j 2k
i 2k

1
N21

2 (
k

d j 2

i 2G j 1k
i 1k

5d j 1

i 1g j 2

i 21d j 2

i 2g j 1

i 1, ~3.23!

and the last term gives

(
k1k2l 1l 2

S 2
N21

2
d i 1

j 2dk1

i 2 d l 1

j 1d l 2

k22
N21

2
d i 2

j 1dk1

i 1 d l 1

j 2d l 2

k2D ~Y! l 1l 2

k1k2

52
N21

2 (
k

d i 1

j 2G j 1k
i 2k

2
N21

2 (
k

d i 2

j 1G j 2k
i 1k

52d j 2

i 1g j 1

i 22d j 1

i 2g j 2

i 1. ~3.24!

Combining Eq.~3.22! and Eq.~3.24!, we get Eq.~3.16!.
Constraining P, Q, and G matrices to be positive

semidefinite is done in essentially the same way as above
this case, the variable matrixY is defined as

Y5S P 0 0

0 Q 0

0 0 G
D . ~3.25!

We have a linear relation betweenG andG,

Gj 1 j 2

i 1i 2 5d j 2

i 2(
k

N21

2
G j 1k

i 1k
22G j 1i 2

i 1 j 2 , ~3.26!

which is described by a set of linear constraintsJj 1 j 2

i 1i 2 for each

element ofG matrix as

Jj 1 j 2

i 1i 2 "Y5052d j 2

i 2g j 1

i 112G j 1i 2

i 1 j 21Gj 1i 2

i 1 j 2, ~3.27!

and an explicit expression of the constraint matrix (Jj 1 j 2

i 1i 2 ) l 1l 2

k1k2

is given by

~Jj 1 j 2

i 1i 2 ! l 1l 2

k1k252dk1

i 1 dk2

i 2 d l 1

j 1d l 2

j 21dk1

i 112ndk2

i 212nd l 1

j 112nd l 2

j 212n

2
N21

2
d j 2

i 2dk1

i 1 d l 1

i 2d l 2

k2, ~3.28!

which is further symmetrized as

J̃j 1 j 2

i 1i 2 5 1
2 ~Jj 1 j 2

i 1i 2 1Ji 1i 2

j 1 j 2!. ~3.29!

Thus, the DMVT using theP, Q, andG conditions is for-
mulated into SDPA as

Minimize H"Y

subjected toFi "Y5ci

~3.30!
Ẽj 1 j 2

i 1i 2 "Y5d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2

J̃j 1 j 2

i 1i 2 "Y50.

It is convenient to fold our 2-RDM into a compact form

Pj 1 j 2

i 1i 2→Pj
i ~3.31!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 06 J
TABLE I. Total energy and correlation energy in % in parentheses calculated by the DMVT withP1Q and
P1Q1G conditions compared with those obatined by the wave function methods, full CI, and Hartree–
The basis set is STO-6G except for notice.

System State
Active
MOa Ele(a1b)b DM( P1Q) DM( P1Q1G) Full CI Hartree–Fock

Bec 1S 4 4(212) 214.5934(176) 214.5827(100) 214.5827(100) 214.5685(0)
Be 1S 5 4(212) 214.5579(103) 214.5561(100) 214.5561(100) 214.5034(0)
Bed 1S 5 4(212) 214.6064(200) 214.5895(100) 214.5895(100) 214.5725(0)
Bec 3S 4 4(311) 213.3168(120) 213.3146(100) 213.3146(100) 213.3036(0)
Bed 3S 5 4(311) 214.3346(177) 214.3241(100) 214.3241(100) 214.3105(0)
LiHc 1S1 6 4(212) 28.0034(139) 27.9924(100) 27.9922(100) 27.9635(0)
LiH 1S1 6 4(212) 27.9731(104) 27.9724(100) 27.9723(100) 27.9519(0)
LiHc 3S1 6 4(311) 27.8997(167) 27.8939(98) 27.8940(100) 27.8854(0)
LiH 3S1 6 4(311) 27.8554(191) 27.8552(97) 27.8552(100) 27.8549(0)
BeH1 1S1 6 4(212) 214.8452(106) 214.8439(100) 214.8438(100) 214.8226(0)
BH1 2S1 6 5(312) 224.8169(151) 224.8015(100) 224.8015(100) 224.7712(0)
BH 1S1 6 6(313) 225.1234(211) 225.0630(106) 225.0593(100) 225.0015(0)
CH1 1S1 6 6(313) 237.9618(227) 237.8896(107) 237.8853(100) 237.8251(0)
CH2 3S2 6 8(513) 237.9834(148) 237.9714(99) 237.9718(100) 237.9477(0)
CH 2P 6 7(413) 238.2472(240) 238.1917(111) 238.1871(100) 238.1443(0)
NH1 2P 6 7(413) 254.4510(248) 254.3957(111) 254.3914(100) 254.3510(0)
NH2 2P 6 9(514) 254.5292(161) 254.5150(99) 254.5151(100) 254.4920(0)
NH 3S2 6 8(513) 254.8280(144) 254.8160(100) 254.8161(100) 254.7887(0)
OH1 3S2 6 8(513) 274.7805(138) 274.7719(100) 274.7720(100) 274.7491(0)
OH2 1S1 6 10(515) 274.8127(100) 274.8112(95) 274.8127(100) 274.7851(0)
OH 2P 6 9(514) 275.1164(158) 275.1013(99) 275.1014(100) 275.0756(0)
HF1 2P 6 9(514) 299.1376(153) 299.1278(100) 299.1279(100) 299.1096(0)
HF 1S1 6 10(515) 299.5258(100) 299.5229(89) 299.5258(100) 299.4998(0)
BH2

2A1 7 7(413) 225.7549(235) 225.7089(115) 225.7031(100) 225.6649(0)
BH2

2B1 7 7(413) 225.7317(233) 225.6837(113) 225.6783(100) 225.6383(0)
CH2

1A1 7 8(414) 238.9301(294) 238.8228(119) 238.8110(100) 238.7497(0)
CH2

3B1 7 8(513) 238.9043(214) 238.8566(107) 238.8534(100) 238.8089(0)
CH2

3Su
2 7 8(513) 238.8836(187) 238.8358(103) 238.8342(100) 238.7772(0)

NH2
2A1 7 9(514) 255.4134(244) 255.3570(111) 255.3525(100) 255.3101(0)

NH2
2B1 7 9(514) 255.4856(243) 255.4195(108) 255.4157(100) 255.3670(0)

H2O
1A1 7 10(515) 275.7953(232) 275.7310(104) 275.7290(100) 275.6789(0)

H2O
1 2A1 7 9(514) 275.4912(262) 275.4218(106) 275.4192(100) 275.3748(0)

FH2
1 1A1 7 10(515) 299.8894(244) 299.8305(103) 299.8294(100) 299.7879(0)

BH3
1A1 8 8(414) 226.4681(258) 226.3932(120) 226.3827(100) 226.3287(0)

CH3
2A2 8 9(514) 239.6375(290) 239.5283(117) 239.5178(100) 239.4547(0)

NH3
1A1 8 10(515) 256.2061(334) 256.0617(115) 256.0516(100) 255.9855(0)

NH3 ~dis! 1A 8 10(515) 256.1808(326) 256.0394(115) 256.0293(100) 255.9622(0)
H3O

1 1A1 8 10(515) 275.9422(276) 275.8636(103) 275.8621(100) 275.8166(0)

aNumber of active MOs.
bNumber of electrons with the number ofa andb electrons in parentheses.
cBasis set is double-z.
dBasis set is triple-z.
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by renumberingi 5 i 11 $@ i 2( i 221)#/2% if i 1. i 2 and dis-
cardingP when i 1< i 2 . This helps to cut down unnecessa
variables and to automatically assume that 2-RDM has a
symmetric property. Similarly, theQ matrix and other linear
constraints are also folded. Note that theG matrix does not
have such a symmetry property, so that we use all the
ments.

The present method involves very large number of lin
constraints and may not be efficient; a merit is that the SD
program is used without any modification. However, if w
make a problem-specific SDP solver, it would be much m
efficient than the present one, and such study is now
progress.

The DMVT formulated above has been applied to t
ground states of different space and spin symmetries of n
tral and charged species of 16 different atoms and molecu
They are Be(1S), Be(3S), LiH( 1S1), LiH( 3S1), BeH1
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BH1, BH, CH1, CH, CH2, NH1, NH2, NH, OH1, OH2,
OH, HF1, HF, BH2(

2A1), BH2(
2B1), CH2(

1A1), CH2(
3B1),

linear CH2(
3Su

2), NH2(
2A1), NH2(

2B1), H2O, H2O
1, FH2

1 ,
BH3, CH3, NH3, NH3~dis! ~‘‘dis’’ stands for distorted in the
sense that one bond length is shortened by 0.9 time, ano
one is lengthened by 1.1 time! and H3O

1.
We used three different basis sets, double and tripz

s-type GTOs and STO-6G, for Be, and double-z s-type
GTOs by Huzinaga20 and Dunning21 and STO-6G for LiH.
For all the other molecules, we used the STO-6G basis s22

The geometries we used are the experimental ones.23,24

IV. RESULTS AND DISCUSSION

We show in Table I the total energy of the system c
culated by the present method and in parentheses the c
lated correlation energy in percentage relative to
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hartree–Fock~0%! and full-CI ~100%! results. Two types of
SDP relaxation calculations are performed. One uses thP
and Q conditions together with the seven conditions giv
by Eqs. ~2.3!–~2.10!; it is referred to as DM(P1Q). The
other uses theG condition additionally and it is denoted a
DM( P1Q1G).

We first examine the results of DM(P1Q) calculations.
We see that the results for OH2 and HF are excellent, bu
this is not a good news but simply due to the too restrict
variational space: 10 electrons are distributed into six or
als and therefore in this caseP1Q condition gives the com-
plete N-representability condition~2 hole system!.25 Simi-
larly, the extent of overshooting is relatively small becau
the variational space is too restrictive. When the variation
reasonably free, the DM(P1Q) energy overshoots too muc
the full-CI energy up to 334% of the full-CI correlation en
ergy for NH3. This result shows that theP1Q condition
together with the above seven conditions is still too far fro
the completeN-representability condition.

When we impose further theG condition, we obtain the
results shown under DM(P1Q1G). They are much im-
proved in comparison with the results of DM(P1Q). The
calculated correlation energy percentages range wi
100%–110% for atoms and diatomic molecules, while th
range in 110%–120% for triatomic molecules. This mea
that theG condition is a nice restrictive condition for th

TABLE II. Dipole moments calulated by the DMVT withP1Q and P
1Q1G conditions compared with those obtained by the wave funct
method. The basis set is STO-6G except for notice.

Molecule State DM(P1Q) DM( P1Q1G) Full CI Hartree–Fock

LiHa 1S1 1.6445 1.6164 1.6192 2.0764
LiH 1S1 1.7372 1.7523 1.7519 1.9339
LiHa 3S1 0.6225 0.6258 0.6258 0.6261
LiH 3S1 1.5897 1.5906 1.5907 1.5915
BeH1 1S1 1.3203 1.3188 1.3196 1.2987
BH1 2S1 0.0495 0.0223 0.0223 0.0197
BH 1S1 0.2833 0.2935 0.2994 0.3806
CH1 1S1 0.6893 0.6764 0.6905 0.7253
CH2 3S2 0.1826 0.1925 0.1929 0.1669
CH 2P 0.6016 0.4878 0.5044 0.4406
NH1 2P 0.8937 0.8729 0.8804 0.8789
NH2 2P 0.1359 0.1311 0.1321 0.1431
NH 3S2 0.4730 0.4995 0.4996 0.5233
OH1 3S2 0.9988 0.9741 0.9742 0.9875
OH2 1S1 0.0620 0.0637 0.0620 0.0725
OH 2P 0.4497 0.4738 0.4745 0.5166
HF1 2P 0.9600 0.9993 0.9999 1.0786
HF 1S1 0.5420 0.5383 0.5420 0.5228
BH2

2A1 0.0037 0.0328 0.0344 0.0466
CH2

1A1 0.2435 0.5057 0.5293 0.6224
CH2

3B1 0.0838 0.0857 0.0934 0.1006
NH2

2A1 0.5170 0.5407 0.5509 0.5580
NH2

2B1 0.6433 0.6816 0.6896 0.7200
H2O

1A1 0.5993 0.6460 0.6487 0.6927
H2O

1 2A1 0.8718 0.9857 0.9920 1.0724
FH2

1 1A1 1.0368 1.0429 1.0437 1.0560
NH3

1A1 0.6903 0.6901 0.6922 0.6935
NH3 ~dis! 1A 0.6660 0.6634 0.6767 0.6937
H3O

1 1A1 1.4162 1.4286 1.4289 1.4320

aBasis set is double-z.
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N-representability. We investigated distorted ammonia to
amine whether the spatial symmetry affects t
N-representability condition, however, this calculation sho
that there is no effect by such a small distortion; the accu
cies of the two calculations are almost the same.

The SDP variational method should give, in principle
lower bound for energy, however, compared to the full-
results, the breakdown where the calculated SDPA energ
higher than the full-CI energy occurs for LiH(3S, STO-6G),
LiH( 3S, double-z), CH2, NH2, OH, OH2, and HF, though
the violations are within 1 mhartree. It seems that the
breakdowns are related to the numerical errors in the SD
procedure, which we discuss later.

In Table II, we show the~nonzero! dipole moments of
the molecules calculated here. The dipole moment obtai
at the level of DM(P1Q) is not so good. In particular, thos
for CH, NH1, CH2, H2O, and H2O

1 are worse than the
Hartree–Fock results. At the DM(P1Q1G) level, how-

n
TABLE III. Virial coefficients calulated by the DMVT with theP1Q and
P1Q1G conditions compared with those obtained by the wave funct
methods. The basis set is STO-6G except for notice.

System State DM(P1Q) DM( P1Q1G) Full CI Hartree–Fock

Bea 1S 1.9975 1.9989 1.9989 1.9994
Be 1S 1.9621 1.9614 1.9614 1.9558
Beb 1S 2.0017 2.0006 2.0006 2.0000
Bea 3S 1.7459 1.7461 1.7461 1.7464
Beb 3S 1.9774 1.9766 1.9766 1.9759
LiHa 1S1 2.0038 1.9977 1.9977 1.9929
LiH 1S1 1.9832 1.9826 1.9826 1.9837
LiHa 3S1 1.9908 1.9875 1.9875 1.9826
LiH 3S1 1.9579 1.9577 1.9577 1.9574
BeH1 1S1 2.0036 2.0031 2.0031 2.0041
BH1 2S1 1.9918 1.9919 1.9918 1.9931
BH 1S1 1.9574 1.9565 1.9566 1.9550
CH1 1S1 2.0044 2.0040 2.0039 2.0025
CH2 3S2 1.9393 1.9392 1.9393 1.9396
CH 2P 1.9781 1.9778 1.9777 1.9773
NH1 2P 2.0164 2.0156 2.0154 2.0144
NH2 2P 1.9596 1.9597 1.9597 1.9601
NH 3S2 1.9941 1.9939 1.9938 1.9939
OH1 3S2 2.0199 2.0194 2.0194 2.0183
OH2 1S1 1.9672 1.9671 1.9672 1.9678
OH 2P 1.9967 1.9965 1.9965 1.9965
HF1 2P 2.0218 2.0212 2.0212 2.0201
HF 1S1 2.0001 2.0001 2.0001 1.9999
BH2

2A1 1.9722 1.9727 1.9731 1.9738
BH2

2B1 1.9699 1.9702 1.9705 1.9712
CH2

1A1 1.9849 1.9840 1.9840 1.9841
CH2

3B1 1.9889 1.9884 1.9886 1.9886
CH2

3Su
2 1.9882 1.9876 1.9878 1.9877

NH2
2A1 1.9950 1.9943 1.9942 1.9940

NH2
2B1 1.9956 1.9955 1.9955 1.9956

H2O
1A1 1.9966 1.9968 1.9968 1.9967

H2O
1 2A1 2.0176 2.0152 2.0151 2.0138

FH2
1 1A1 2.0183 2.0159 2.0158 2.0143

BH3
1A1 1.9835 1.9836 1.9843 1.9853

CH3
2A2 1.9941 1.9939 1.9944 1.9948

NH3
1A1 1.9981 1.9985 1.9984 1.9985

NH3 ~dis! 1A 1.9973 1.9976 1.9974 1.9976
H3O

1 1A1 1.9972 1.9941 1.9941 1.9934

aBasis set is double-z.
bBasis set is triple-z.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Number of the constraints and the numerical errors of the DM(P1Q) calculations. The basis se
is STO-6G except for notice.

System State
Activea

MOs
Ele(a1b)b

constraints
No. of

constraints
Primal feasible

error
Dual feasible

error Gap

Bec 1S 4 4(212) 183 1.87310214 9.24310211 1.1731029

Be 1S 5 4(212) 440 7.87310214 4.35310211 8.03310213

Bed 1S 5 4(212) 440 5.49310214 1.41310210 1.89310211

Bec 3S 4 4(311) 183 4.12310211 1.1731027 3.8731028

Bed 3S 5 4(311) 440 7.86310212 1.1231027 9.5831029

LiHc 1S1 6 4(212) 911 7.24310214 9.2431029 3.4631029

LiH 1S1 6 4(212) 911 8.52310214 1.0831029 4.76310211

LiHc 3S1 6 4(311) 911 3.80310212 1.7531026 3.6431027

LiH 3S1 6 4(311) 911 3.41310211 4.5731028 1.8931028

BeH1 1S1 6 4(212) 911 1.16310213 3.02310211 5.73310213

BH1 2S1 6 5(312) 911 6.69310214 1.86310210 3.26310212

BH 1S1 6 6(313) 911 4.43310214 8.29310210 2.41310211

CH1 1S1 6 6(313) 911 3.62310214 1.3031029 9.62310212

CH2 3S2 6 8(513) 911 5.49310212 8.9731028 6.0531029

CH 2P 6 7(413) 911 5.91310214 2.2331029 2.80310211

NH1 2P 6 7(413) 911 3.15310214 9.98310210 1.49310211

NH2 2P 6 9(514) 911 8.57310212 7.0631028 3.7031029

NH 3S2 6 8(513) 911 9.79310212 4.9731027 1.8531028

OH1 3S2 6 8(513) 911 6.77310212 8.1631028 2.4931029

OH2 1S1 6 10(515) 911 7.50310212 5.2531027 7.3231028

OH 2P 6 9(514) 911 5.54310212 1.3531027 3.4831029

HF1 2P 6 9(514) 911 2.36310212 8.4231028 2.9631029

HF 1S1 6 10(515) 911 6.82310212 1.1231027 6.6531029

BH2
2A1 7 7(413) 1692 6.43310214 4.94310210 4.65310211

BH2
2B1 7 7(413) 1692 5.66310214 8.16310212 3.20310212

CH2
1A1 7 8(414) 1692 3.25310214 3.26310211 3.19310210

CH2
3B1 7 8(513) 1692 3.98310214 5.94310211 5.75310210

CH2
3Su

2 7 8(513) 1692 4.12310214 6.59310211 5.88310211

NH2
2A1 7 9(514) 1692 3.63310214 1.2131029 1.22310210

NH2
2B1 7 9(514) 1692 3.99310214 2.46310211 3.91310210

H2O
1A1 7 10(515) 1692 3.33310214 2.88310210 1.29310210

H2O
1 2A1 7 9(514) 1692 3.31310214 3.02310211 2.64310210

FH2
1 1A1 7 10(515) 1692 3.46310214 3.19310210 1.12310210

BH3
1A1 8 8(414) 2897 6.57310214 7.62310210 3.37310211

CH3
2A2 8 9(514) 2897 3.87310214 1.12310211 8.68310210

NH3
1A1 8 10(515) 2897 4.07310214 5.16310211 1.02310210

NH3 ~dis! 1A 8 10(515) 2897 4.38310214 5.87310210 1.62310210

H3O
1 1A1 8 10(515) 2897 4.13310214 5.29310210 6.77310211

aNumber of active MOs.
bNumber of electrons with the number ofa andb electrons in parentheses.
cBasis set is double-z.
dBasis set is triple-z.
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ever, the dipole moments are drastically improved and all
results well reproduce the full-CI ones, except for NH3 and
NH3~dis! for which even Hartree–Fock calculations giv
good results and the deviations are very small.

In Table III, we show the virial coefficient̂V&/^T&,
where^V& and ^T& denote average potential and kinetic e
ergies, respectively, which must be two for completely var
tional wave function. When we use DM(P1Q1G) approxi-
mation, the calculated virial is almost completely identic
with the full-CI result.

Next, we discuss the numerical accuracy of the S
method. In Tables IV and V, we summarize the number
the constraints and the numerical errors of the DM(P1Q)
and DM(P1Q1G) calculations. The primal feasible erro
is defined by
un 2002 to 130.54.33.130. Redistribution subject to A
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pq
U : p,q51,2,...,nJ ~4.1!

and the dual feasible error is defined by

max$uFi "Y2ci u : i 51,2,...,m%. ~4.2!

The gap denotes the difference between the primal and
functions defined by

U(
i 51

m

cixi2F0"YU. ~4.3!

These three quantities give criteria of the accuracy of
SDPA. In the SDPA, our object is the minimization of th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE V. Number of the constraints and the numerical errors of the DM(P1Q1G) calculations. The basis
set is STO-6G except for notice.

System State
Activea

MOs Ele(a1b)b
No. of

constraints
Primal feasible

error
Dual feasible

error Gap

Bec 1S 4 4(212) 983 6.55310211 1.8731027 2.8731026

Be 1S 5 4(212) 2365 7.02310212 4.9331027 1.4231026

Bed 1S 5 4(212) 2365 7.92310211 4.1531027 2.4831026

Bec 3S 4 4(311) 983 1.12310210 7.4431027 3.0831026

Bed 3S 5 4(311) 2365 1.41310211 1.6531027 2.9431027

LiHc 1S1 6 4(212) 4871 5.72310212 2.3331025 4.5031026

LiH 1S1 6 4(212) 4871 5.77310212 7.5531028 1.6931026

LiHc 3S1 6 4(311) 4871 3.53310211 6.3531027 2.4131025

LiH 3S1 6 4(311) 4871 5.79310211 6.5631027 2.5831026

BeH1 1S1 6 4(212) 4871 2.42310211 1.8831027 1.9331026

BH1 2S1 6 5(312) 4871 7.84310212 7.5031028 7.8231027

BH 1S1 6 6(313) 4871 2.80310211 1.4331025 1.6131028

CH1 1S1 6 6(313) 4871 3.75310212 2.4131027 9.6831027

CH2 3S2 6 8(513) 4871 1.43310211 3.7331027 2.1331025

CH 2P 6 7(413) 4871 6.06310212 8.5431026 1.9131027

NH1 2P 6 7(413) 4871 4.15310212 3.6431026 4.9831027

NH2 2P 6 9(514) 4871 6.89310212 3.3931026 1.3731025

NH 3S2 6 8(513) 4871 8.69310211 1.8831025 2.9031026

OH1 3S2 6 8(513) 4871 7.98310212 4.0531027 1.9031026

OH2 1S1 6 10(515) 4871 2.54310211 5.6531026 2.7231025

OH 2P 6 9(514) 4871 1.01310211 2.7831026 6.1531026

HF1 2P 6 9(514) 4871 1.09310211 1.4031026 6.0731026

HF 1S1 6 10(515) 4871 1.39310211 7.3731026 3.9931025

BH2
2A1 7 7(413) 8993 2.50310212 8.8431028 8.0031027

BH2
2B1 7 7(413) 8993 9.48310212 1.2331026 1.5931026

CH2
1A1 7 8(414) 8993 4.14310212 3.5431026 2.6931027

CH2
3B1 7 8(513) 8993 1.57310210 4.0531025 1.2831027

CH2
3Su

2 7 8(513) 8993 4.72310212 3.9831027 1.5831026

NH2
2A1 7 9(514) 8993 7.65310212 4.3031026 1.3031026

NH2
2B1 7 9(514) 8993 2.36310212 3.2231028 2.1631026

H2O
1A1 7 10(515) 8993 1.54310212 1.0531027 3.6331027

H2O
1 2A1 7 9(514) 8993 1.12310211 6.8631026 7.6331027

FH2
1 1A1 7 10(515) 8993 3.78310212 5.1431027 6.0731027

BH3
1A1 8 8(414) 15 313 5.02310211 5.3431027 2.8831027

CH3
2A2 8 9(514) 15 313 4.26310212 6.1631027 9.0131028

NH3
1A1 8 10(515) 15 313 1.65310212 4.6231027 4.3931027

NH3 ~dis! 1A 8 10(515) 15 313 3.29310212 1.4231026 4.1431026

H3O
1 1A1 8 10(515) 15 313 1.59310212 2.3031027 2.2431026

aNumber of active MOs.
bNumber of electrons with the number ofa andb electrons in parentheses.
cBasis set is double-z.
dBasis set is triple-z.
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dual form of the problem, so that the dual feasible error is
important quantity, indicating the numerical accuracy of t
calculation.

For DM(P1Q), the dual feasible error is in the range
1027– 10212, while for DM(P1Q1G), it ranges
1025– 1028. As the number of the constraints increases dr
tically in the P1Q1G calculations, the numerical accurac
becomes much worse in the DM(P1Q1G) results. The gap
value shows the same tendency. The worst five
HF(3.9931025), OH2 (2.7231025), LiH~double-z, 3S;
2.4131025!, CH2 (2.3131025), and NH2 (1.3731025).
We notice that they have the DM(P1Q1G) energies
higher than the full-CI ones, though these values must
lower than the full-CI values. There seems to be some re
tion between the gap value and the numerical accuracy in
SDPA technique. Another reason is certainly the too sm
un 2002 to 130.54.33.130. Redistribution subject to A
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variational freedom in the calculations of HF and OH2; ac-
tually in these casesP and Q conditions are already suffi
cient; the number of holes is 2, so the 2-hole system withQ
condition is just like performing variational calculation fo
the 2-electron system with theP condition. Therefore en-
forcing P, Q, and G conditions is essentially the same
enforcingP andQ conditions.

The primal feasible values are very sma
(10212– 10214) for DM( P1Q) calculations and also sma
(10210– 10212) for DM( P1Q1G) calculations. We do not
find any relationship between the accuracies of the pre
calculations and the primal feasible errors. So the accur
of the present calculation seems to be related only to tha
the primal problem.

In Table VI, we show the occupation numbers~eigenval-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE VI. Occupation number calculated by the DMVT withP1Q andP1Q1G conditions compared with
those obatined by the wave function methods, full CI, and Hartree–Fock, for Be, H2O, and CH2.

System, state, basis DM(P1Q) DM( P1Q1G) Full CI Hartree–Fock

Be, 1S, STO-6G 0.036 64134,0.036 64232 0.035 90936 0.035 90136 036
0.890 24332 0.892 27532 0.892 29832 134
0.999 83232 0.999 99732 0.999 99832

Be, 1S, triple-z 0.000 20232 0.000 06432 0.000 05532 036
0.001 04132 0.000 59532 0.000 59032
0.006 14932 0.004 15332 0.004 11932
0.993 64932 0.995 83732 0.995 87932 134
0.998 95932 0.999 35232 0.999 35732

Be, 3S, triple-z 0.000 004 0.000 000 0.000 000 036
0.000 187 0.000 001 0.000 000
0.000 573 0.000 011 0.000 007
0.000 645 0.000 013 0.000 009
0.000 702 0.000 707 0.000 707
0.001 511 0.000 712 0.000 711
0.998 534 0.999 280 0.999 284 134
0.999 252 0.999 286 0.999 287
0.999 293 0.999 990 0.999 995
0.999 299 0.999 998 1.000 000

H2O, 1A1 , STO-6G 0.029 79532 0.013 85032 0.013 30432 034
0.031 58532 0.014 76632 0.013 50932
0.970 20532 0.986 43332 0.986 73232 1310
0.970 57032 0.987 47532 0.988 32332
0.998 73332 0.998 70232 0.998 97332
0.999 11432 0.998 77632 0.999 16132
0.999 99832 0.999 99932 0.999 99932

CH2, 1A1 , STO-6G 0.037 79634 0.014 33632 0.010 85432 036
0.314 25132 0.016 29432 0.012 97932
0.685 80432 0.069 50132 0.050 58932
0.962 20434 0.929 48032 0.947 80932 138
0.999 94532 0.984 09832 0.987 47032

0.986 29732 0.990 30732
0.999 99332 0.999 99332
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ues of 1-RDM! for Be(1S, STO-6G), Be(1S, triple-z),
Be(3S, triple-z), H2O(1A1 , STO-6G), and CH2(

1A1 ,
STO-6G). For Be(1S, STO-6G), the occupation numbers
the 2p orbitals should be sixfold degenerate. Although w
did not impose such constraints, this degeneracy accura
holds in both DM(P1Q) and DM(P1Q1G) calculations.
For singlet states, both DM(P1Q) and DM(P1Q1G) cal-
culations reproduced the degeneracy of the twofold occu
tion without constraints. Generally, the occupation numb
of the DM calculations are much more distributed over
the natural orbitals than those of the full CI. Although such
trend is reduced for the DM(P1Q1G) calculation, it con-
tradicts our expectation; the occupation numbers are
un 2002 to 130.54.33.130. Redistribution subject to A
ly

a-
s
l
a

x-

pected to be less distributed in the calculations with l
sufficient N-representability conditions. An extreme ca
was CH2, this tendency is very amplified and the acciden
degeneracy of occupation are found in the DM(P1Q) cal-
culation.

In Table VII, the root-mean-square~rms! deviationd of
the 2-RDM from the full CI,

d5A (
i 1i 2 j 1 j 2

$~Gcalculated! j 1 j 2

i 1i 2 2~G full CI ! j 1 j 2

i 1i 2 %2 ~4.4!

is presented for the systems examined in Table VI. The
viations of the 2-RDM are quite small in DM(P1Q1G)
TABLE VII. RMS deviations of the 2-RDMs calculated by DMVT withP1Q andP1Q1G conditions from
those by full CI for Be, H2O, and CH2.

System, state, basis DM(P1Q) DM( P1Q1G) Full CI Hartree–Fock

Be, 1S, STO-6G 0.049 208 0.000 162 0 0.526 569
Be, 1S, triple-z 0.049 615 0.003 567 0 0.100 331
Be, 3S, triple-z 0.029 401 0.000 715 0 0.039 123
H2O, 1A1 , STO-6G 0.467 084 0.029 694 0 0.266 154
CH2, 1A1 , STO-6G 1.604 712 0.153 503 0 0.484 788
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calculation especially for small systems, where DM(P1Q
1G) give the identical total energy and virial coefficient
full CI. However, DM(P1Q) calculations gave worse re
sults and even worse than Hartree–Fock for H2O and CH2.

In Table VIII, we compare the largest eigenvalues ofP,
Q, andG-matrices and smallest eigenvalues ofG-matrix, for
the same systems. Largest eigenvalues ofP andQ-matrices
become smaller as the calculation quality becomes be
while those ofG-matrix become larger. In DM(P1Q) cal-
culations, smallest eigenvalues ofG-matrix are negative. As
we expected, smallest eigenvalue ofG-matrix becomes
smaller when electron correlation gets larger. We did
show the smallest eigenvalues ofP andQ-matrices since in
any case, they are almost zero~absolute values are smalle
than 1026!. The deviation of these values that are large
the CH2 @largest eigenvalue ofG-matrix for DM(P1Q
1G)# calculation is 7.679 238 compared to the full CI’s o
7.746 013, while the SDPA errors are small~primal and dual
feasibilities are 4.14310212 and 3.5431026, respectively,
and gap is 2.6931027!. Therefore, we conclude that the e
ror originates from the insufficiency of theN-representability
conditions rather than that of the SDPA.

The trace of theQ matrix is normalized to (r 2N)3(r
2N11), wherer is number of MO~or rank of 1-RDM! and
N is the number of the electrons. This condition is satisfi
when we impose the constraint for the number of the e
trons.

Lastly, we note that we find essentially no problem

TABLE VIII. Comparison of largest eigenvaluesP, Q, G-matrices and
smallestG-matrix calculated by DMVT withP1Q and P1Q1G condi-
tions compared with those obtained by the wave function methods, full
and Hartree–Fock for Be, H2O, and CH2.

System, state,
basis DM(P1Q) DM( P1Q1G) Full CI Hartree–Fock

Be, 1S, STO-6G
LargestP 1.005 284 1.000 907 1.000 874 1
LargestQ 2.264 502 2.259 861 2.259 834 2
LargestG 3.675 970 3.682 340 3.682 407 4
SmallestG 20.007 288 0.000 000 0.000 000 0

Be, 1S, triple-z
LargestP 1.004 751 1.000 672 1.000 612 1
LargestQ 2.008 541 2.002 209 2.002 072 2
LargestG 3.978 475 3.985 686 3.985 726 4
SmallestG 20.002 482 0.000 000 0.000 000 0

Be, 3S, triple-z
LargestP 1.002 019 0.999 991 0.999 995 1
LargestQ 2.005 387 2.000 230 2.000 233 2
LargestG 3.994 883 3.997 833 3.997 849 4
SmallestG 20.001 439 0.000 000 0.000 000 0

H2O, 1A1 , STO-6G
LargestP 1.034 378 1.010 041 1.008 652 1
LargestG 9.805 708 9.900 236 9.904 312 10
SmallestG 20.188 367 0.000 000 0.000 000 0

CH2, 1A1 , STO-6G
LargestP 1.090 030 1.024 402 1.019 529 1
LargestQ 2.227 026 2.059 546 2.042 417 2
LargestG 6.942 144 7.679 238 7.746 013 8
SmallestG 20.208 966 0.000 001 0.000 000 0
Downloaded 06 Jun 2002 to 130.54.33.130. Redistribution subject to A
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finding the minimum and this should be the case for ot
systems. This is certainly a merit of the present method.

V. CONCLUSION

The DMVT is developed systematically by using SDP
as a problem solver. This technique is very stable and th
were no example where we could not get a convergence
addition to several trivial conditions, theP1Q condition is
insufficient, while theP1Q1G condition gives satisfactory
results, the extent of overshooting the full-CI energy be
small for the systems presently examined. The dipole m
ment and the virial coefficient calculated by the DM(P1Q
1G) method are also very close to the full-CI values. Th
method is applicable to the ground state of any spin- a
space symmetry of closed and open-shell systems.

In this DMVT approach, the calculated energy is a low
bound of the exact energy. The errors of the present DMP
1Q1G) method are permissible in both energy and pro
erties. Though most quantum chemical method availa
give the ground-state energy higher than the full-CI one,
present method giving lower energy is equally permissible
an approximate quantum chemical method, if it is stable a
feasible in cost performance. For the second requirement
present stage of the theory is an infant stage, but m
progress is expected in future.
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13C. Garrod, M. V. Mihailović, and M. Rosina, J. Math. Phys.16, 868

~1975!.
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