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The ground-state fermion second-order reduced density n{atiRDM) is determined variationally

using itself as a basic variable. As necessary conditions ofNthepresentability, we used the
positive semidefiniteness conditior®, Q, and G conditions that are described in terms of the
2-RDM. The variational calculations are performed by using recently developed semidefinite
programming algorithr{SDPA). The calculated energies of various closed- and open-shell atoms
and molecules are excellent, overshooting only slightly the full-Cl energies. There was no case
where convergence was not achieved. The calculated properties also reproduce well the full-Cl
results. ©2001 American Institute of Physic§DOI: 10.1063/1.1360199

I. INTRODUCTION straightforward consequence of the Ritz variational principle
combined with the fact that the Hamiltonian involves only

The ground state oN-body fermion system is cOM- e and two-body operators. The problem here is how well
pletely described by the second-order reduced density matriq can restrict our variabE® to beN-representabl& The

A :
(2-RDM) I'® because any observaglllt\aa properties of the Sysy_representability condition that is enforced by the Paull
tem can be calculated from the 2-RDM.This fact led us to principle is not completely known fof @ and this is an

desire to use 2-RDM as a basic variable of quantum mechanssiacle of the DMT in general.
ics instead of the wave functiol; if we can determind (?) The P, Q, (Ref. 10 andG (Ref. 11 conditions are the

without using¥’, we have a closed form of quantum mechan-e||.known necessary conditions of tié-representability.

ics where the basic variable is 2-RDM. We refer 10 suchrnay are the semidefiniteness conditions of the matrices de-
formallssm of quantum mechanics as density matrix theoryed from'(®). Though these three conditions are not com-
(DMT). plete, they seem to be quite strong to characterize the

In the nonrelativistic case, the determinative equation forN—representabiIity of the ground-state 2-RDM. First calcula-
W is the Schrdinger equation(SE). Therefore, to establish g along this line were performed in a beautiful way by
DMT, we have to formulate the equation for the RDM that is ; 5rrodet all2 3 for the ground state of Be, and Mihaildvic

equivalent to the SE in the necessary and sufficient §Enseet al for the nuclear ground state 8f0, 160, 10, %0
As such an equation, one of the author derived density equaeng, 24ig. and 25Si. At that time their method was véry

tion (DE) (Refs. 4 and bthat has recently been used suc- e ristic and could hardly be applied to general systems. We
cessfully to calculate the 2-RDMs of atoms ind moleculego ng that this method can be elegantly realized using the
directly _W|th0ut any use of th_e wave functi6n’ This ap-  semidefinite programming algorithtSDPA), 15 recently de-
proach is called density equation thedBET) and a review ygj5neq in the field of mathematical programming. We cal-
on the DET in chemical physics has recently been summagjated the ground-state energies of atoms and molecules

rized together with some later de\{elopme%ts. _using these three necessary conditions and employing SDPA
Another equation that is equivalent to the SE but in-4¢ o r problem solver.

cludes 2-RDM alone as a variable is the variational equation
of the form,

EgSE[F(Z)], (1.1) Il. THEORICAL OUTLINE
, ) First and second order reduced density matri¢es

where E4 is the exact ground-state energy. This methOdZ-RDMs), y andT,, respectively, are defined by

called density matrix variational theoryDMVT) is a )

y=(V|ala]¥), (2.7)

3 Author to whom correspondence should be addressed. and
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r'1'2— 2(\If|a a,zajlmf) (2.2)

wherea' anda denote creation and annihilation operators,and

respectively. Note we have simplifi@d? asT. Throughout

this paper, we assume the elements of 1-RDM and 2-RDM to Il

be real. Completd&l-representability condition is known for These matrices are semidefiditand linear tol” as

%1 but for T, we know only necessary conditiorishe
known complete condition is not practigaBome trivial con-
ditions for 2-RDM are:

(1) Antisymmetric condition,

i1y _ _ pioip _ _ pitin.
AN P W (2.3
(2) Hermiticity,

i1ip 1112
FJ112 F PP (24)
(3) Trace condition,
> TN 17,. (2.5
(4) Number of electrons,
N=20 7 2.6

(5) Eigenstate of the number of (or B) electrons,

TrN, =N, and TrN2['=N2; 2.7
where the operators &, andN? are written as
Na:Z al,aiq, I; alai.a,a,; (2.8
(6) Spin symmetry,
e

wheno,# 07 or o,# 0, and o, # o, Or o, # oy, Whereo
denotes spin variable.
(7) Expectation value 08?,

TrSI'=S(S+1), (2.10
where the spin-squared opera®ris given by
$=S,+S2+S_S,
1 2
:EEi (a a,—a |,Balﬁ)+ E al,a,—azaip
+; alsai.a],8,4; (2.1

(8) Positive semidefiniteness & matrix, which is just
2-RDM,

I i
z Xiji, 1112X1112>0’ (2.12

Wherexili2 is an arbitrary geminal.
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QI1|2—<\I’|8.,18.,28.J2 Jl|\P> (2.13
Gli2=(yl|al a,za ,25,|9). (2.14
ELp 1 2 i1 Ja d2 j1
Qlllz (5;16;2 5;25;1) (5J1712 5 711)
1,20 sz i1y opiiiz
+(5;2y11+5]1yJ2) 21—‘J112 (213
and
i1ip _ do 11 opii2
Gjljz—b‘jz i 2Fj1i2' (2.16

We note that originally theG matrix was written in an
equivalent nonlinear forn?
The Hamiltonian of the system can be written as

igip igip
Hlllz jad2

i1 dp i dp
N 1(vj16jZ+ij§jl), (2.17
wherev andw are 1- and 2-body operators, respectively.
Then, the basic equation of DMVT given by E(L.1) is
written as the variational minimization of the energy within

our constraints,
Enin= min TrHT,
re@p

where @P is the set of 2-RDMs which satisfies the above
necessar\N-representability conditions, namely,

(2.18

@p={T|P,Q,G matrices are non-negative and the

(2.19

Either of theP, Q, andG conditions forms compact convex
set with trace topology’ and a finite combination of com-
pact convex sets is also compact convex set, therefore this
method should find a minimum in energy. This method can
be applied to the ground state of any space and spin symme-

try.

conditions 1-7 are satisfipd

Ill. CALCULATION METHOD

The minimization problem with some linear constraints
can be achieved by using semidefinite programming algo-
rithm (SDPA) (Ref. 15 as a problem solver. The SDPA has
recently been developed in the field of mathematical pro-
gramming. In this section, we explain how to apply SDPA to
our problem of solvingl'® in the constrained variational
method given by Eq(2.19. The dimensions of the matrices
arenXxn, if they are not explicitly defined.

A. Simplified problem

First, we introduce a simplified problem which contains
all the essentials, that is

Problem(a): Minimize the total energy of the 2-RDW
subject to the fixed number of electrons and the positive
semidefiniteness df.

Note that except for the condition 8, all of these condi-The positive semidefiniteness bfis the P condition. Note

tions are linear to 2-RDM.
The Q andG matrices are defined by

that this problem gives the exact solution fér=2. Problem
(a) is written as,
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Minimize TrHT
Problem(a’):{ subject to TINI'=N (3.
and I' is positive semidefinite.
Formal expression of the problépris,
Minimize Fq-Y
Problem(&’):{ subject toF;-Y=c; (3.2

and Y is positive semidefinite,

whereF, andF; are constanhXn symmetric matrices, and
Y is nXn symmetric variable matrix, is real constant, and
- is an operator such that

One can easily confirm that problem’{aand problem (g
are the same when we takeasI’, Fy as the Hamiltonian,

Nakata et al.

number of electronsk, as the constraint for spin squared
operator, etc. Maximization is altered to minimization by just
changing the sign offy. Problem(2.19 is written as

Minimize TrHI
subjected to TNI'=N

TrSr=S(S+1)

TrN, =N, 3.6
TrN2I=N2

and I'®>=0, Q=0 and G>0.

Note that some of the matrices appeared below have four
indices, however, we can reduce them to two indices by
mapping indicesi(,j) to the composite indek. Imposing
linear constraints foN or S?, etc., is straightforward. Con-
straining the expectation value of the two body operatoo

and F, as the number of operator. A generalization of thepq c.(TrAT'=c,) is done as follows:

problem @”) is called semidefinite programmin(&DP.

B. Semidefinite programming algorithm (SDPA)

The SDPA (Ref. 15 solves the following form of
semidefinite programming and its dual:
( m

primal: minimize 21 CiX;
“

m

SDH subject toX= >, Fix;—Fy, X>0
=1
dual:  maximize Fy-Y
L subject to F-Y=c;(1<i=m), Y=0,
(3.9

whereX andY arenXn real symmetric matricess; (1<<i
=m) symmetric constraint matrices, andx; real constant
and variable numbers, respectively-V denotes inner prod-
uct of the matrices)-V==%; ;U; ;V; ;, andX>0 meansX to

(1) Explicit expression ofA is give by

_ ELPPSS IS
A iliZEjljZ a2, 8i,8),8; (3.7
wherea}ﬂz2 is constant.
(2) Set up the constraint matrix, such that
(Fp)it2=a1'2 3.9

ido “iady

(3) Then, the constraint is given by the equality,

Fal= > al2yilz=TrAr=c,.

i1io0gip 102 Jal2

(3.9

For example, we set up the constraint matrix for the
number of particledN. Explicit expression oN is,

N—1
N= Z a'a; =Ti2j alalaa. (3.10

Then, the constraint matriky for the number of particle is

be positive semidefinite. We assume all the constraint matrirepresented by

ces are linearly independent.

Semidefinite programming is usually solved by primal-
dual interior-point method®'° This method is based on the

primal-dual theorem of SDP, which shows an existence Ofamd we confirm the following relation:
the optimal solution and gives a necessary and sufficient con- '

dition for the optimal solutiorfminimum in primal problem,

and maximum in dual problemif there exists K,Y,x) such

that they satisfy all the constraints aK@ 0 andY >0, then
(1) SDP has an optimal solution;

(2) Necessary and sufficient condition for the optimal

solution (X*,Y*, x*) is

m
X*Y* =FpeY* — 21 cixF =0. (3.5
=

C. Set up of DMVT in SDPA

Our object is to solve the DMVT problerf2.19. It is
equivalent to solve thelual of problem (3.4), taking Y as
2-RDM, F, as the Hamiltoniank; as the constraint for the

] N—1
(FN)k|:T5ik5jla (3.11)
FN°Y=% (FN)EIFLJI
N—1 i
:i% — %ol
NS
2 ] 1
N—1 2 ) )
ZTEi m?’FEi yi=N. (3.12

Now we consider how to enforce the 2-RDM to satisfy
theP, Q, andG conditions, simultaneously. We first explain
the case where onll andQ conditions are enforced simul-
taneously.

Downloaded 06 Jun 2002 to 130.54.33.130. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 114, No. 19, 15 May 2001

We introduce the variable matriX in which P and Q
matrices are diagonally arranged,

P O
Y 013
It is obvious that
Y>0-~P>0 and Q>0. (3.19

There is a linear relation betweéhandQ matrices,

-1 _ o
i1ip 162 162 1ok 21k
Q1112 (5J15J2 5J25J) 2 51Fj2k+6ljzrj1k)
+2 (5I1F|2k+5zrllk) 2FI1I (3'13

Therefore, we can find a set of linear constraints éach
element of theQ matrix as

igip '1'2 fi2 | (si1 '2 ip i1
EJJ Y= C 2F11J2 (511 iy 5]. yj)

_(5}1 52 '1) Q'l'

J1 Jz J1lo
— 2 149'2
= o= oo (316

Using these constraints, the SDP formalism is given by
Minimize H-Y

subject to F-Y =c; (3.17
E'l'z Y= 5152 515‘2
J1l2 I2 IPANE]
whereE;ﬂ?2 is a symmetric matrix defined by
Elt2— 1 g2 gli2
Ejljz_ 2(EjljzﬂL I12) (3.18

and the explicit expression of the element of the constraint

matrix (Ei.li.z):(lk2 is given by
(E;ﬂz)klkz 25'152511512 5ik1+n5iz+n§j1+n5j2+n
N— N—1
i 2 ol2 oko 241 qi1
+ a“ a“klalla +— 5 5k15|15|2
-1
J i1 oo ok
——éiﬁki o~ droaliol
(3.19
and the constarcti.li.2 in Eq. (3.19 is
i1ip _ d1do_ o1 4o
i~ 91,9, 9,00 (320

We can confirm Eq(3.21) holds

Elzy=

i1i0\kk kqk ||
& (El )12(Y)12 1l2
r2 kikolqlp

IFIPREL I1l2 1112

(3.21

as follows. The first two terms of E¢3.21) are

i1 do o1 dl i i j j kqk
> (281525152+ 827628 G ()5

1.1
kqkalglp 12

—2(Y)'1'2+(Y)]11';'sz’;—zr;ﬂz Q;i'jzz, (3.22
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the second two terms of E3.21) give,
N-1 5'15'2 5J25k2+ N-1 5'2515115 (Y):<1|k2
k1k2|1| 2 2 2
— 1 '2k 2iak
- E é" + Zk 5]21“ ik
= 513/;2 a“zy;1 (3.23

and the last term gives

— Egjzgz Sligke_ E&jlé‘il sl2ske | (y)kike

kikal1lo 2 ik Tl 2 ik T %, iy
N—1 S
- Jz ik _ j1pnigk
_ E 5T~ Zk ST
i1.)2
R (3.24)

Combining Eq.(3.22 and Eq.(3.24), we get Eq.(3.16).
Constraining P, Q, and G matrices to be positive

semidefinite is done in essentially the same way as above. In

this case, the variable matrik is defined as

P 0 O
Yy={0 Q O (3.25
0 0 G
We have a linear relation betweéhand G,
|1| |2 |1k_ 1o
1112 2 Jlk 21—‘J'1i2’ (3.29

which is described by a set of linear constraLﬂiﬂi for each
element ofG matrix as

J'1'2Y 0=— 52 '1 +orideg Gi_liz

Iz IE1P) IE1PY

(3.27

and an explicit expression of the constraint matﬂ}é i) Kikz

is given by

(J'l'Z)klkz 2516'2 511512_|_ 51+2“52+2n511+2”512+2“

IEIPMETP ka
B io dp oo ok
R RCLICR 328
which is further symmetrized as
'1' '1'2 1112
Jll 2(\]1112 g 2)' (3.29

Thus, the DMVT using thé®, Q, andG conditions is for-
mulated into SDPA as

Minimize H-Y
subjected toF;-Y =c;
Elizy — g1 g2 g1 52 (330
J1lo J1702 I2 7)1
RRERE)
J1o

It is convenient to fold our 2-RDM into a compact form,

pit2_pl (3.3)

1112
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TABLE I. Total energy and correlation energy in % in parentheses calculated by the DMVTPwit@ and
P+ Q+ G conditions compared with those obatined by the wave function methods, full Cl, and Hartree—Fock.
The basis set is STO-6G except for notice.

Active
System State MO? Ele(a+p)*® DM(P+Q) DM(P+Q+G) Full CI Hartree—Fock
Be® s 4 4(2+2) —14.5934(176) —14.5827(100) —14.5827(100) —14.5685(0)
Be s 5 4(2+2) —14.5579(103) —14.5561(100) —14.5561(100) —14.5034(0)
Be' s 5 4(2+2) —14.6064(200) —14.5895(100) —14.5895(100) —14.5725(0)
Be® s 4 4(3+1) —13.3168(120) —13.3146(100) —13.3146(100) —13.3036(0)
Be' S 5 4(3+1) —14.3346(177) —14.3241(100) —14.3241(100) —14.3105(0)
LiH® s+ 6 4(2+2)  —8.0034(139) —7.9924(100) —7.9922(100) —7.9635(0)
LiH s+ 6 4(2+2)  —7.9731(104) —7.9724(100) —7.9723(100) —7.9519(0)
LiH® 35 * 6 4(3+1) —7.8997(167) —7.8939(98) —7.8940(100) —7.8854(0)
LiH 83 * 6 4(3+1)  —7.8554(191) -7.8552(97) —7.8552(100) —7.8549(0)
BeH" I3+ 6 4(2+2) —14.8452(106) —14.8439(100) —14.8438(100) —14.8226(0)
BH* 23+ 6 5(3+2) —24.8169(151) —24.8015(100) —24.8015(100) —24.7712(0)
BH s+ 6 6(3+3) —25.1234(211) —25.0630(106) —25.0593(100) —25.0015(0)
CH* s+ 6 6(3+3) —37.9618(227) —37.8896(107) —37.8853(100) —37.8251(0)
CH™ 8% 6 8(5+3) —37.9834(148) —37.9714(99) —37.9718(100) —37.9477(0)
CH 1 6 7(4+3) —38.2472(240) —38.1917(111) —38.1871(100) —38.1443(0)
NH* a1 6 7(4+3) —54.4510(248) —54.3957(111) —54.3914(100) —54.3510(0)
NH™ 11 6 9(5+4) —54.5292(161) —54.5150(99) —54.5151(100) —54.4920(0)
NH 55,- 6 8(5+3) —54.8280(144) —54.8160(100) —54.8161(100) —54.7887(0)
OH"* 8% 6 8(5+3) —74.7805(138) —74.7719(100) —74.7720(100) —74.7491(0)
OH™ s+ 6 10(5+5) —74.8127(100) —74.8112(95) —74.8127(100) —74.7851(0)
OH 11 6 9(5+4) —75.1164(158) —75.1013(99) —75.1014(100) —75.0756(0)
HF* 211 6 9(5+4) —99.1376(153) —99.1278(100) —99.1279(100) —99.1096(0)
HF s+ 6 10(5+5) —99.5258(100) —99.5229(89) —99.5258(100) —99.4998(0)
BH, 2A, 7 7(4+3) —25.7549(235) —25.7089(115) —25.7031(100) —25.6649(0)
BH, ’B, 7 7(4+3) —25.7317(233) —25.6837(113) —25.6783(100) —25.6383(0)
CH, A, 7 8(4+4) —38.9301(294) —38.8228(119) —38.8110(100) —38.7497(0)
CH, B, 7 8(5+3) —38.9043(214) —38.8566(107) —38.8534(100) —38.8089(0)
CH, 53, 7 8(5+3) —38.8836(187) —38.8358(103) —38.8342(100) —38.7772(0)
NH, 2p, 7 9(5+4) —55.4134(244) —55.3570(111) —55.3525(100) —55.3101(0)
NH, 2B, 7 9(5+4) —55.4856(243) —55.4195(108) —55.4157(100) —55.3670(0)
H,O A, 7 10(5+5) —75.7953(232) —75.7310(104) —75.7290(100) —75.6789(0)
H,O" 2p, 7 9(5+4) —75.4912(262) —75.4218(106) —75.4192(100) — 75.3748(0)
FH; A, 7 10(5+5) —99.8894(244) —99.8305(103) —99.8294(100) —99.7879(0)
BH; A, 8 8(4+4) —26.4681(258) —26.3932(120) —26.3827(100) —26.3287(0)
CH, 2p, 8 9(5+4) —39.6375(290) —39.5283(117) —39.5178(100) —39.4547(0)
NH3 A, 8 10(5+5) —56.2061(334) —56.0617(115) —56.0516(100) —55.9855(0)
NH; (dis) A 8 10(5+5) —56.1808(326) —56.0394(115) —56.0293(100) —55.9622(0)
H,O0" A, 8 10(5+5) —75.9422(276) —75.8636(103) —75.8621(100) —75.8166(0)

Number of active MOs.

®Number of electrons with the number afand 8 electrons in parentheses.
‘Basis set is doublé-

“Basis set is triplez

by renumberingi =i+ {[i,(i,—1)]/2} if i;>i, and dis- BH*, BH, CH", CH, CH, NH", NH™, NH, OH*, OH",
cardingP wheni;=<i,. This helps to cut down unnecessary OH, HF", HF, BH,(?A;), BH,(?B;), CHx(*A;), CH,(°B,),
variables and to automatically assume that 2-RDM has antiinear CH,(%3.), NH,(%A;), NH,(?B;), H,0, H,O", FH; ,
symmetric property. Similarly, th@ matrix and other linear BH,, CH,;, NH;, NHx(dis) (“dis” stands for distorted in the
constraints are also folded. Note that tBematrix does not  sense that one bond length is shortened by 0.9 time, another
have such a symmetry property, so that we use all the elesne is lengthened by 1.1 timand HO™.
ments. We used three different basis sets, double and tgple-
The present method involves very large number of lineak-type GTOs and STO-6G, for Be, and douljles-type
constraints and may not be efficient; a merit is that the SDPASTOs by Huzinag® and Dunning* and STO-6G for LiH.
program is used without any modification. However, if we For all the other molecules, we used the STO-6G basi&set.

make a problem-specific SDP solver, it would be much morerhe geometries we used are the experimental &Hés.
efficient than the present one, and such study is now in

progress.
The DMVT formulated above has been applied to thelv' RESULTS AND DISCUSSION

ground states of different space and spin symmetries of neu- We show in Table | the total energy of the system cal-

tral and charged species of 16 different atoms and moleculesulated by the present method and in parentheses the calcu-

They are BetS), Be(®S), LiH(*S™), LiH(®x"), BeH' lated correlation energy in percentage relative to the
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TABLE Il. Dipole moments calulated by the DMVT witP+Q and P TABLE lll. Virial coefficients calulated by the DMVT with th&+Q and
+Q+ G conditions compared with those obtained by the wave functionP+Q+ G conditions compared with those obtained by the wave function
method. The basis set is STO-6G except for notice. methods. The basis set is STO-6G except for notice.

Molecule State DMP+Q) DM(P+Q+G) Full CI Hartree—Fock System  State DMRP+Q) DM(P+Q-+G) Full Cl Hartree—Fock

LiH® s+t 1.6445 1.6164 1.6192 2.0764 Be? s 1.9975 1.9989 1.9989 1.9994
LiH s+ 1.7372 1.7523 1.7519 1.9339 Be s 1.9621 1.9614 1.9614 1.9558
LiHa 3%+t 0.6225 0.6258 0.6258 0.6261 Be” s 2.0017 2.0006 2.0006 2.0000
LiH 8%+t 1.5897 1.5906 1.5907 1.5915 B&? ES 1.7459 1.7461 1.7461 1.7464
BeH" s+ 1.3203 1.3188 1.3196 1.2987 Be” 33 1.9774 1.9766 1.9766 1.9759
BH* 25+ 0.0495 0.0223 0.0223 0.0197 LiH? s+ 2.0038 1.9977 1.9977 1.9929
BH Iy + 0.2833 0.2935 0.2994 0.3806 LiH 13+ 1.9832 1.9826 1.9826 1.9837
CH* s+ 0.6893 0.6764 0.6905 0.7253 LiH? 3%+ 1.9908 1.9875 1.9875 1.9826
CH™ 3% - 0.1826 0.1925 0.1929 0.1669 LiH st 1.9579 1.9577 1.9577 1.9574
CH 21 0.6016 0.4878 0.5044  0.4406 BeH" I3+t 2.0036 2.0031 2.0031  2.0041
NH* 2] 0.8937 0.8729 0.8804 0.8789 BH" 23+ 1.9918 1.9919 1.9918 1.9931
NH™ 2] 0.1359 0.1311 0.1321 0.1431 BH I3* 19574 1.9565 1.9566 1.9550
NH 33°  0.4730 0.4995 04996  0.5233 CH* 3T 2.0044 2.0040 2.0039  2.0025
OH* 3%~ 0.9988 0.9741 0.9742 0.9875 CH- 3%~ 1.9393 1.9392 1.9393 1.9396
OH~ I+ 0.0620 0.0637 0.0620 0.0725 CH 1 1.9781 1.9778 1.9777 1.9773
OH 1 0.4497 0.4738 04745 05166 NH"* 1 2.0164 2.0156 2.0154  2.0144
HF* ] 0.9600 0.9993 0.9999 1.0786 NH™ 11 1.9596 1.9597 1.9597 1.9601
HF s+ 0.5420 0.5383 0.5420 0.5228 NH %7 1.9941 1.9939 1.9938 1.9939
BH, 25, 0.0037 0.0328 0.0344 0.0466 OH" 3%~ 2.0199 2.0194 2.0194 2.0183
CH, A, 0.2435 0.5057 0.5293 0.6224 OH~ s+ 1.9672 1.9671 1.9672 1.9678
CH, °B, 0.0838 0.0857 0.0934 0.1006 OH 11 1.9967 1.9965 1.9965 1.9965
NH, 2p, 05170 0.5407 0.5509 0.5580 HF* 2[1 2.0218 2.0212 2.0212 2.0201
NH, 2B, 0.6433 0.6816 0.6896 0.7200 HF s+ 2.0001 2.0001 2.0001 1.9999
H,0 A,  0.5993 0.6460 0.6487 0.6927 BH, A, 19722 1.9727 1.9731 1.9738
H,O" 2pn, 08718 0.9857 0.9920 1.0724 BH, ’B;  1.9699 1.9702 1.9705 1.9712
FHy A,  1.0368 1.0429 1.0437 1.0560 CH, A, 1.9849 1.9840 1.9840 1.9841
NH, In,  0.6903 0.6901 0.6922 0.6935 CH;, °B,  1.9889 1.9884 1.9886 1.9886
NH, (dis) A 0.6660 0.6634 0.6767 0.6937 CH, 5y, 19882 1.9876 1.9878 1.9877
HsO" A, 14162 1.4286 1.4289 1.4320 NH; ’A; 19950 1.9943 1.9942 1.9940
NH, 2B, 1.9956 1.9955 1.9955 1.9956
®Basis set is doublé¢- H,O A, 1.9966 1.9968 1.9968 1.9967
H,0* 2p, 2.0176 2.0152 2.0151 2.0138
FHy n,  2.0183 2.0159 2.0158 2.0143
BH, A, 1.9835 1.9836 1.9843 1.9853
Hartree—FocK0%) and full-Cl (10099 results. Two types of  cH, 2p,  1.9941 1.9939 1.9944 1.9948
SDP relaxation calculations are performed. One used’the NH; A, 1.9981 1.9985 1.9984 1.9985
and Q conditions together with the seven conditions given NHs (dis iA 1.9973 1.9976 1.9974  1.9976
by Egs.(2.3-(2.10; it is referred to as DMP+Q). The  M© Ay 19972 19941 1.9941  1.9934
other uses th& condition additionally and it is denoted as agasis set is doublé-
DM(P+Q+G). bBasis set is triples

We first examine the results of DR Q) calculations.
We see that the results for OHand HF are excellent, but
this is not a good news but simply due to the too restrictiveN-representability. We investigated distorted ammonia to ex-
variational space: 10 electrons are distributed into six orbitamine whether the spatial symmetry affects the
als and therefore in this caget+ Q condition gives the com- N-representability condition, however, this calculation shows
plete N-representability conditior{2 hole system? Simi-  that there is no effect by such a small distortion; the accura-
larly, the extent of overshooting is relatively small becausecies of the two calculations are almost the same.
the variational space is too restrictive. When the variation is  The SDP variational method should give, in principle, a
reasonably free, the DNR+ Q) energy overshoots too much lower bound for energy, however, compared to the full-Cl
the full-Cl energy up to 334% of the full-Cl correlation en- results, the breakdown where the calculated SDPA energy is
ergy for NH;. This result shows that thP+Q condition  higherthan the full-Cl energy occurs for LIHE, STO-6G),
together with the above seven conditions is still too far fromLiH( 33, double<), CH™, NH™, OH, OH ", and HF, though
the completeN-representability condition. the violations are within 1 mhartree. It seems that these

When we impose further th& condition, we obtain the breakdowns are related to the numerical errors in the SDPA
results shown under DMR+Q+G). They are much im- procedure, which we discuss later.
proved in comparison with the results of DFI{- Q). The In Table Il, we show thgnonzer9 dipole moments of
calculated correlation energy percentages range withithe molecules calculated here. The dipole moment obtained
100%-110% for atoms and diatomic molecules, while theyat the level of DMP + Q) is not so good. In particular, those
range in 110%-120% for triatomic molecules. This meandor CH, NH*, CH,, H,0, and HO" are worse than the
that the G condition is a nice restrictive condition for the Hartree—Fock results. At the DN#(+ Q-+ G) level, how-
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TABLE IV. Number of the constraints and the numerical errors of the BMQ) calculations. The basis set
is STO-6G except for notice.

Active®  Ele(a+ B)° No. of Primal feasible Dual feasible

System State MOs constraints constraints error error Gap
Be® s 4 4(2+2) 183 1.8x10° %  924x107* 1.17x10°°
Be s 5 4(2+2) 440 7.8K10° % 435101 8.03x10 =
Be! s 5 4(2+2) 440 54%10°*  1.41x10°° 1.89x10 %
Be® s 4 4(3+1) 183 41x10°1  1.47x107 3.87x10°®
Bed s 5 4(3+1) 440 78610  1.12x10°7  9.58x10°°
LiH® s+ 6 4(2+2) 911 72410 9.24x10°°  3.46x10°°
LiH I+ 6 4(2+2) 911 8.5X10° %  1.08x10°° 4.76x10 %
LiH® N 6 4(3+1) 911 38107  1.75x10°% 3.64x10°°
LiH 83+ 6 4(3+1) 911 3.4K10°%  457x10°°%  1.89x10°8
BeH" i3+ 6 4(2+2) 911 1161072 3.02x10°1  5.73x10°18
BH* 25+ 6 5(3+2) 911 6.6%10 1  1.86x10°1° 3.26x10 2
BH DN 6 6(3+3) 911 44%10 % 8.29x101° 241x101
CH" s+ 6 6(3+3) 911 36Xx10°*  1.30x10°° 9.62x10°*?
CH™ 3%~ 6 8(5+3) 911 54% 107 89710  6.05x10°°
CH gl 6 7(4+3) 911 59K10 %  2.23x10°° 2.80x10 1
NH* 11 6 7(4+3) 911 3.1%10° % 998100 1.49x10 ¥
NH™ I 6 9(5+4) 911 85%10°*  7.06x10°® 3.70x10°°
NH 35 6 8(5+3) 911 9.7%10°* 497107 1.85x10°8
OH* 8% 6 8(5+3) 911 6.7K10° 1?2  8.16x10°°%  2.49x10°°
OH™ s+ 6 10(5+5) 911 75102 525107  7.32x10°8
OH 21 6 9(5+4) 911 55410 %  1.35x10°7 3.48x10°°
HF* 211 6 9(5+4) 911 236107 8.42x10°%  2.96x10°°
HF D 6 10(5+5) 911 6.8%x10 1 112107  6.65<10°°
BH, 2A; 7 7(4+3) 1692 6.4%10°*  4.94x10°%° 4.65x10° 1
BH, B, 7 7(4+3) 1692 566107 *  8.16x10° % 3.20x10°*?
CH, A, 7 8(4+4) 1692 32%10° %  326x10°*  3.19x10°1°
CH, B, 7 8(5+3) 1692 3.9%10°*  594x10° % 575x10°1°
CH, 3. 7 8(5+3) 1692 41x10° % 6591071 5.88x10° 1t
NH, 2A; 7 9(5+4) 1692 3.6%10° ¥  1.21x10° 1.22x10°1°
NH, B, 7 9(5+4) 1692 3.9%10°*  246x10°*  3.91x1071°
H,0 A, 7 10(5+5) 1692 3.3%10°*  2.88<10°%0 1.29x1071°
H,O" 2A, 7 9(5+4) 1692 33K10° %  3.02x10°%  2.64x1071°
FH; A, 7 10(5+5) 1692 346107 3.19x10°%°  1.12x1071°
BH; A, 8 8(4+4) 2897 6.5%10°*  7.62x10° % 337x10°4
CH, 2A, 8 9(5+4) 2897 38%10°*  1.12x10°* 8.68x10°1°
NH; A, 8 10(5+5) 2897 40%10° %  516x10°' 1.02x10°1°
NH; (dis)  'A 8 10(5+5) 2897 43%10 % 587x10%° 1.62x10 %
H;O0* A, 8 10(5+5) 2897 41%10 %  529x10°%° 6.77x10 %

aNumber of active MOs.

PNumber of electrons with the number afand 8 electrons in parentheses.
‘Basis set is doublé-

9Basis set is triplez.

m

ever, the dipole moments are drastically improved and all the
X— > Fix;+Fo
=1

results well reproduce the full-Cl ones, except for ]N&ihd max
NHs(dis) for which even Hartree—Fock calculations give
good results and the deviations are very small.

In Table Ill, we show the virial coefficientV)/(T),
where(V) and(T) denote average potential and kinetic en- Wl - =
ergies,<re>spect<ivgly, which must be two for completely varia- max(|Fi-Y el @ 1=1.2...m}. 42
tional wave function. When we use DR+ Q+ G) approxi-  The gap denotes the difference between the primal and dual
mation, the calculated virial is almost completely identicalfunctions defined by
with the full-ClI result.

Next, we discuss the numerical accuracy of the SDP
method. In Tables IV and V, we summarize the number of
the constraints and the numerical errors of the PM(Q)
and DM(P+ Q+G) calculations. The primal feasible error These three quantities give criteria of the accuracy of the
is defined by SDPA. In the SDPA, our object is the minimization of the

p,.g=1,2,..,n 4.1

pq

and the dual feasible error is defined by

m
> cixi—ForY|. (4.3
i=1
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TABLE V. Number of the constraints and the numerical errors of the BMQ+ G) calculations. The basis
set is STO-6G except for notice.

Active? No. of Primal feasible Dual feasible

System State MOs  Ele(@+8)° constraints error error Gap

Be® s 4 4(2+2) 983 6.55¢10° 1.87x10°7 2.87x10°°
Be s 5 4(2+2) 2365 7.0X10 %2 493<107 1.42x10°°
Be! s 5 4(2+2) 2365 7.9%x10° ! 4.15<10°7 2.48<10°°
Be® s 4 4(3+1) 983 1.1x10 % 7.44<10°7 3.08x10°°
Bed s 5 4(3+1) 2365 1.4K10° 1 1.65x10°7  2.94x10°7
LiH® D 6 4(2+2) 4871 57X 10 *? 2.33x10°°  4.50x10°¢
LiH D 6 4(2+2) 4871 57102  7.55<10°% 1.69x10°°
LiH® 33t 6 4(3+1) 4871 3.5x10 6.35<10° 7  2.41x10°°
LiH 33 6 4(3+1) 4871 5.7%10 ! 6.56<107 2.58x10°°
BeH" s+ 6 4(2+2) 4871 2.4%x10° 1! 1.88<10°7 1.93x10°°
BH" 23t 6 5(3+2) 4871 7.8410 12 7.50x10°8  7.82x10°7
BH D 6 6(3+3) 4871 2.8x10 1.43x10°° 1.61x10°8
CH' s+ 6 6(3+3) 4871 3.7% 1012 2411077 9.68<107
CH~ 33~ 6 8(5+3) 4871 1.4%x10 1 3.73x10°7  2.13x10°°
CH 1 6 7(4+3) 4871 6.0610 12 854x10°% 1.91x107
NH* 1 6 7(4+3) 4871 4.1%10 %2 3.64x10°% 4.98<10°7
NH™ 1 6 9(5+4) 4871 6.8% 10 12 3.39x10°% 1.37x10°°
NH 55~ 6 8(5+3) 4871 8.6% 107! 1.88<10°° 2.90x10°°
OH* 83~ 6 8(5+3) 4871 7.98% 10 12 4.05<10°7  1.90x10°°
OH~ i3+ 6 10(5+5) 4871 2.5410 1! 5.65<10°% 2.72x10°°
OH 21 6 9(5+4) 4871 1.0x10 1 2.78<10°% 6.15x10°°
HF" 11 6 9(5+4) 4871 1.0x10 1t 1.40x10° % 6.07x10°®
HF D 6 10(5+5) 4871 1.3%10 1 7.37x10°%  3.99x10°°
BH, 2p, 7 7(4+3) 8993 2.5x 10712 8.84x10°%  8.00x107
BH, 2B, 7 7(4+3) 8993 9.4& 10 12 1.23x10°% 1.59x10°°®
CH, A, 7 8(4+4) 8993 414102  354x10°% 2.69x107
CH, %B, 7 8(5+3) 8993 1.5%10°1°  4.05x10°° 1.28x10°7
CH, 35 7 8(5+3) 8993 47107  3.98x10°7 1.58<10°°
NH, 2A, 7 9(5+4) 8993 7.6510 12 4.30<10°% 1.30x10°°
NH, 2B, 7 9(5+4) 8993 2.36¢ 10712 3.22x10°%  2.16x10°°¢
H,0 A, 7 10(5+5) 8993 1.5410° %2 1.05x1077  3.63x10°7
H,O" A, 7 9(5+4) 8993 1.1x10 1! 6.86x10° 7.63x10°7
FH; A, 7 10(5+5) 8993 371012 514x107 6.07x10°7
BH, A, 8 8(4+4) 15313 5010  534x107 2.88x10°°
CH, 2N, 8 9(5+4) 15313 4.2610 12 6.16x10°7  9.01x10°8
NH; A, 8 10(5+5) 15313 1.6%10 %2 4621077 4.39x1077
NH; (dis)  *A 8 10(5+5) 15313 3.2%10 *? 1.4210°%  4.14x10°®
H;O0* A, 8 10(5+5) 15313 1.5%10 12 230107  2.24x10°°

aNumber of active MOs.

PNumber of electrons with the number afand 8 electrons in parentheses.
‘Basis set is doublé-

9Basis set is triplez.

dual form of the problem, so that the dual feasible error is afvariational freedom in the calculations of HF and QHac-

important quantity, indicating the numerical accuracy of theyally in these caseB and Q conditions are already suffi-

calculation. cient; the number of holes is 2, so the 2-hole system @ith
For DM(P+Q), the dual feasible error is in the range of 4 gition is just like performing variational calculation for

107 7-10*2  while for DM(P+Q+G), it ranges - I
! A the 2-electron system with thEe condition. Therefore en-
10" °-10"8. As the number of the constraints increases dras: y

tically in the P+ Q+ G calculations, the numerical accuracy ];Onrg?gnp’PQa’ngnd So:g.?gﬁfns is essentially the same as
becomes much worse in the DM Q+ G) results. The gap N9 Q ons.

value shows the same tendency. The worst five are :I'lr;e plrjmal feasible values. are very small
HF(399< 10*5) OH™ (272>< 10*5) LIH(dOUb|e{ 32. (10 —-10° ) for DM(P+ Q) calculations and also small

2.41x10°%), CH™ (2.31x10°%), and NH (1.37x10°5).  (107**~10 %) for DM(P+Q+G) calculations. We do not
We notice that they have the DM@ Q+G) energies find any relationship between the accuracies of the present
higher than the full-Cl ones, though these values must becalculations and the primal feasible errors. So the accuracy
lower than the full-Cl values. There seems to be some relaof the present calculation seems to be related only to that of
tion between the gap value and the numerical accuracy in thédne primal problem.

SDPA technique. Another reason is certainly the too small In Table VI, we show the occupation numbéesgenval-
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TABLE VI. Occupation number calculated by the DMVT with+ Q andP + Q+ G conditions compared with
those obatined by the wave function methods, full Cl, and Hartree—Fock, for &, &hd CH.

System, state, basis DV Q) DM(P+Q+G) Full CI Hartree—Fock
Be, 'S, STO-6G 0.036 64% 4,0.036 64X 2 0.035 90% 6 0.035 90Kk 6 0Xx6
0.890 24% 2 0.892 27X 2 0.892 29& 2 1x4
0.999 83% 2 0.999 99Kk 2 0.999 99& 2
Be, IS, triple-¢ 0.000 20 2 0.000 064 2 0.000 05% 2 0x6
0.001 042 0.000 59% 2 0.000 59k 2
0.006 142 0.004 15% 2 0.004 11% 2
0.993 64X 2 0.99583% 2 0.99587% 2 1x4
0.998 95X 2 0.999 35X 2 0.999 35k 2
Be, 3S, triple-¢ 0.000 004 0.000 000 0.000 000 X®
0.000 187 0.000 001 0.000 000
0.000573 0.000 011 0.000 007
0.000 645 0.000 013 0.000 009
0.000 702 0.000 707 0.000 707
0.001511 0.000 712 0.000 711
0.998 534 0.999 280 0.999 284 x4l
0.999 252 0.999 286 0.999 287
0.999 293 0.999 990 0.999 995
0.999 299 0.999 998 1.000 000
H,0, 1A1 , STO-6G 0.029 79% 2 0.01385(x 2 0.013 3042 0x4
0.031585¢2 0.014 766 2 0.01350% 2
0.970 205 2 0.986 43X 2 0.986 73X 2 1x10
0.97057x 2 0.987 47% 2 0.988 32% 2
0.998 73 2 0.998 70X 2 0.998 97X 2
0.999 1142 0.998 776 2 0.999 16X 2
0.999 998&< 2 0.999 99% 2 0.999 99% 2
CH,, 1A1 , STO-6G 0.037 7984 0.014 336<2 0.010 854 2 0X6
0.314 25X 2 0.016 294 2 0.01297% 2
0.685 804 2 0.069 50X 2 0.050 58% 2
0.962 204 4 0.929 48 2 0.947 80X 2 1x8
0.999 945 2 0.984 09& 2 0.987 47X 2

0.986 29K 2 0.990 30% 2
0.999 99% 2 0.999 99% 2

ues of 1-RDM for Be('S, STO-6G), BelS, triple-¢), pected to be less distributed in the calculations with less
Be(®S, triple-¢), H,O(*A;, STO-6G), and CK*A,, sufficient N-representability conditions. An extreme case
STO-6G). For BelS, STO-6G), the occupation numbers of wWas Ch, this tendency is very amplified and the accidental
the 2p orbitals should be sixfold degenerate. Although wedegeneracy of occupation are found in the IMQ) cal-

did not impose such constraints, this degeneracy accuratefplation.

holds in both DMP+ Q) and DM(P+Q+ G) calculations. In Table VII, the root-mean-squarfems) deviationd of

For singlet states, both DN®(+ Q) and DM(P+Q+G) cal-  the 2-RDM from the full Cl,

culations reproduced the degeneracy of the twofold occupa-
tion without constraints. Generally, the occupation numbers _ igin i1i012
of the DM calculations are much more distributed over all 9 il%:ljz (T catcutated ;= (M) 5 S

the natural orbitals than those of the full Cl. Although such a

trend is reduced for the DMR+ Q+ G) calculation, it con- is presented for the systems examined in Table VI. The de-
tradicts our expectation; the occupation numbers are exviations of the 2-RDM are quite small in DN+ Q+ G)

TABLE VII. RMS deviations of the 2-RDMs calculated by DMVT with+ Q andP+ Q+ G conditions from
those by full CI for Be, HO, and CH.

System, state, basis D@+ Q) DM(P+Q+G) Full CI Hartree—Fock
Be, 'S, STO-6G 0.049 208 0.000 162 0 0.526 569
Be, 'S, triple-¢ 0.049 615 0.003 567 0 0.100 331
Be, 3S, triple-¢ 0.029 401 0.000 715 0 0.039 123
H,0, 1A1, STO-6G 0.467 084 0.029 694 0 0.266 154
CH,, A, STO-6G 1.604 712 0.153 503 0 0.484 788
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TABLE VIIl. Comparison of largest eigenvalued, Q, G-matrices and  finding the minimum and this should be the case for other

gmallestG-matrix (_:alculated by _DMVT withP+Q and E+ Q+G condi- systems. This is certainly a merit of the present method.
tions compared with those obtained by the wave function methods, full Cl,

and Hartree—Fock for Be, 4@, and CH.

V. CONCLUSION

System, state, . . .
basis DMP+Q) DM(P+Q+G) Full Cl Hartree—Fock The DMVT is developed systematically by using SDPA

as a problem solver. This technique is very stable and there
were no example where we could not get a convergence. In

Be, 'S, STO-6G

LargestP 1.005284  1.000907  1.000 874 1 o . " 2
LargestQ 2264502 2259861  2.250834 2 addition to several trivial conditions, tieé+Q condition is
LargestG 3.675 970 3.682340  3.682407 4 insufficient, while theP+ Q+ G condition gives satisfactory
SmallestG —0.007288  0.000000  0.000 000 0 results, the extent of overshooting the full-Cl energy being
Be, 1S, triple-¢ small for the sys_tems pr_e_sently examined. The dipole mo-
LargestP 1.004 751 1.000 672 1.000 612 1 ment and the virial coefficient calculated by the DRK Q
LargestQ 2.008541  2.002209  2.002072 2 +G) method are also very close to the full-Cl values. This
LargestG 3978475 3985686  3.985726 4 method is applicable to the ground state of any spin- and
SmallestG —-0.002482  0.000000  0.000 000 0

space symmetry of closed and open-shell systems.
Be, 3S, triple-¢ In this DMVT approach, the calculated energy is a lower

LargestP 1.002019  0.999991  0.999995 1 bound of the exact energy. The errors of the present BM(

tZ:gZ:g g-ggi Zg; g-gg‘; ;gg g-ggg ;313 i +Q+G) method are permissible in both energy and prop-

Smg”estG 0001435 0000000  0.000 000 0 e_rt|es. Though most quantum chemical method available
give the ground-state energy higher than the full-Cl one, the

H,0, *A;, STO-6G present method giving lower energy is equally permissible as

LargestP 1034378 1010041  1.008652 1 an approximate quantum chemical method, if it is stable and

;i:gﬁzts% _gfgg ;gs g:ggg (2)32 g:ggg 2(1)(2) 18 feasible in cost performance. For the second requirement, the
present stage of the theory is an infant stage, but much

CH,, 'A;, STO-6G progress is expected in future.

LargestP 1.090030  1.024402  1.019529 1

LargestQ 2227026  2.059546  2.042417 2

LargestG 6.942144  7.679238  7.746013 8 ACKNOWLEDGMENT
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