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Abstract

We present the minimum orbital-deformation (MOD) method which effectively solves the problem intrinsic to the

local approach for calculating the electron correlations. It eliminates the discontinuities in potential energy surfaces

(PES) and properties, and hence the singularities of their derivatives which can occur when the localized MOs are used.

The present method defines smooth invariant transformation of SCF MOs along the geometrical change, which is

similar to the quasidiabatization. We demonstrate the performance of the MOD method for the ground state PES of

benzene, for which artificial errors were reported in the analytical energy gradients of the local MP2. � 2002 Published

by Elsevier Science B.V.

1. Introduction

The computational costs of conventional elec-
tron correlation theories scale as the nth power of
system size, n being 6 for CCSD method, for ex-
ample. One of the strategies to asymptotic linear
scaling calculation is to take advantage of the lo-
cality of electron correlations. Because the fluctu-
ation potential has short-range nature as shown by
Sinano�gglu [1], weak correlations between spatially
distant electrons can be safely neglected or treated
approximately. Several groups have proposed
wavefunctions truncated in the localized MO

(LMO) representation [2–12]. This local approach
to electron correlations has been implemented at
various levels of theory and has successfully re-
produced most of the correlation energies. Local-
ity of correlation is also useful for the perturbation
selection [13] in the LMO representation.
However, this approach has suffered from a

problem; singularities can appear in the derivatives
with respect to external parameters, which origi-
nate from the breakdown of unitary invariance.
Correlation energies obtained by these methods
depend on the invariant transformation of SCF
MOs; namely transformation within the occupied
or unoccupied MO subspaces. This can cause a
serious problem in calculating properties defined
by the derivatives. Since the localizations are not
guaranteed to be smooth functions of the param-
eters, the energy derivatives in the local methods
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can be unphysical. In fact, the development and
application of the derivatives based on the local
methods have been very limited, though analytical
energy gradients for MP2 [14–16] and QCISD [17]
were implemented. Rauhut et al. [15] reported that
the artificial errors might occur in calculating the
ground state of benzene. Thus, the electronic
structure of benzene is one of the good examples
illustrating the singularities.
In this communication, we first explain that the

invariant transformation of the SCF MOs can be
discontinuous when it is defined by only the lo-
calization conditions. Second we propose a simple
method for eliminating this problematic singular-
ity in the derivatives. The pilot application to the
potential energy surface (PES) of benzene is pre-
sented.

2. Singularities in molecular orbital derivatives

In this communication, the following conven-
tions are used; occupied spin-orbitals are denoted
by i; j; k; l, and unoccupied spin-orbitals by
a; b; c; d, and general spin-orbitals by p; q; r; s.
Atomic orbitals (AOs) are denoted by Greek let-
ters l; m; q; r. The MOs are assumed to be real,
orthonormal, and written in the linear combina-
tions of AOs, wp ¼ RlvlClp.
We first introduce some notations to express

derivatives of the MOs. The first derivatives of the
MO coefficients are written in matrix form as [18]

oC

oa
¼ CUa: ð1Þ

All of the N � N matrix elements (N being number
of MOs) of Ua, namely the CPHF coefficients, are
not independent due to the orthonormality of
MOs. Requiring orthonormality up to first order,
we obtain

Ua þ Uay þ Sa ¼ 0; ð2Þ
where

Sa
pq ¼

X
lm

ClpCmq
oSlm

oa
; ð3Þ

Slm ¼ vl j vm

� �
: ð4Þ

Using the anti-symmetric matrix defined by

Ta ¼ Ua � Uay ; ð5Þ

and Sa, we can express Ua as

Ua ¼ �1
2
Sa þ 1

2
Ta: ð6Þ

The anti-symmetric part of the CPHF coefficients
Ta is attributed to a-dependence of unitary trans-
formation of MOs.
Next, we explain the singularities in the deriv-

atives of the canonical MOs (CMOs) [19]. Condi-
tions for occupied CMOs are

CyFC
� �

ij
¼ 0 for i 6¼ j; ð7Þ

where the Fock matrix is denoted by F in AO
representation. Equating derivatives of the left-
hand side with zeroes and applying Eqs. (1) and
(5), we obtain

T a
ij ¼ � 1

ei � ej
2 Cy oF

oa
C

� �
ij

(
� Sa

ij ei
	

þ ej

)

; ð8Þ

where ei is the orbital energy. Apparently, the
singularity occurs in Eq. (8) at ei ¼ ej. Among the
degenerate orbitals we cannot define a particular
set of MOs without any additional condition. Eq.
(8) implies that the derivatives of the degenerate
orbitals cannot be defined because the perturbed
orbitals do not converge to a unique set of func-
tions in the unperturbed limit. This is not prob-
lematic for conventional methods because of the
unitary invariance, but can cause serious discon-
tinuities in PES if the wavefunction is truncated by
the perturbation selection.
The LMO has advantage in the sense that the

singularity in Eq. (8) may be circumvented.
Boughton and Pulay compared the Boys [20]
and Pipek-Mezey [21] localizations and sug-
gested that the latter method has some advan-
tages for calculating electron correlations [22].
These two localizations can be written in com-
mon formX
A

X
i

GA
ii

�� ��2 ¼ max; ð9Þ

where GA
ii denote diagonal elements of the matrices

fG1;G2;G3g ¼ fhxi; hyi; hzig
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and

fG1;G2; . . . ;GNAg ¼ fhq̂q1i; hq̂q2i; . . . ; hq̂qNAig

for the Boys and Pipek-Mezey localizations, re-
spectively. In the latter case, NA is the number of
atoms and

q̂qA ¼ 1
2

X
l2A

X
m

fjvliðS�1Þlmhvmj þ jvmiðS�1Þmlhvljg:

ð10Þ
Unfortunately, these localization conditions do

not necessarily define uniquely a suitable orbital
set as in the case of CMOs. We show this with il-
lustrative example. Three p LMOs of benzene in
D6h and D3h are sketched in Fig. 1. Let us imagine
two directions of distorting the D6h equilibrium
structure to D3h skeletons:
(a) shorten r, three C–C bonds appearing alter-
nately, leaving r0, the other CAC distances, un-
changed,
(b) lengthen r leaving r0 unchanged.

Since the localization of three p orbitals occurs in
the shorter three bonds, the different patterns of
localization are obtained for the cases (a) and (b).
In D6h unperturbed limit, they do not converge to

the same unique set as shown by the arrows. This
is due to the existence of ‘degenerate’ three p
LMOs; different linear combinations of them can
give equal value for the function defined by Eq. (9)
in D6h. The p LMOs of benzene change their
shapes discontinuously with respect to r and thus,
the PES becomes discontinuous and the deriva-
tives have the singularities at D6h. It should be
noted that this kind of ‘degeneracy’ can also occur
accidentally even in non-degenerate symmetry.
Linear equation to determine T a

ij for the
Pipek-Mezey localization was proposed by El
Azhary et al. [14]. Recently we implemented
these linear equations to analytical energy gra-
dients [23,24] of the SAC/SAC-CI method [25–
28] in which the perturbation selection is avail-
able in LMO representation [29], and we found
that the solution of the linear equation does not
exist in particular systems. Rauhut et al. [15] had
also suggested that some additional conditions
should be introduced to the Pipek-Mezey local-
izations to overcome the degeneracy problem
[15], but it has not yet been solved to the best of
our knowledge.

3. Minimum orbital-deformation (MOD) method

We now consider how we can define the de-
rivatives of the invariant transformations of SCF
MOs without singularity. Let us examine three p
LMOs of benzene again. The localization crite-
rion naturally cannot select either of the two sets
of p LMOs at D6h as ‘more localized’. But, the
singularity-free method must choose one set of
LMOs to connect the perturbed orbitals in D3h
smoothly to their unperturbed limit in D6h. De-
fining the perturbed MOs as those most similar to
the unperturbed MOs is one possibility to satisfy
this requirement. For the infinitesimal perturba-
tions, the minimum change in orbital shape may
be expressed by Ta ¼ 0, because Ta, anti-sym-
metric component of Ua, represents the infinites-
imal unitary transformation induced by the
perturbation. For example, assuming the per-
turbation to affect only unitary transforma-
tionW ¼ Wy�1 , namely oS=oa ¼ 0, we can replace
Eq. (1) with

Fig. 1. Three p LMOs of benzene in D3h and D6h are shown for
regions: (a) r < r0; (b) r > r0; and (c) the D6h equilibrium
structure, r ¼ r0. As the three p LMOs are localized into the
shorter three bonds, different patterns of the localization are

obtained for regions (a) and (b). In D6h limit (c), they do not

converge to unique set of the MOs.
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oC

oa
¼ C0

oW

oa
¼ 1
2
CTa ¼ �1

2
CTay : ð11Þ

The matrix Ta is anti-symmetric as

Ta ¼ 2Wy oW

oa
¼ �2 oW

y

oa
W: ð12Þ

Since most perturbations affect also the AO part,
the general expression of Ua has not only anti-
symmetric Ta part, but also symmetric Sa part.
Though it is hard to calculate the MOs satis-

fying the condition Ta ¼ 0 for arbitrary geometry,
we can introduce a simple but good-approximate
method. Using a given set of unperturbed orbitals,
we define

M ¼ C�1
0 C; ð13Þ

which represents the transformation of MOs in
the perturbed region. Subscript 0 denotes unper-
turbed matrix. Truncating the Taylor expansion
of M up to the first order of perturbation a, we
obtain

M ’ 1 þ oM

oa

����
a¼0

a ¼ 1 þ ð�1
2
Sa þ 1

2
TaÞa; ð14Þ

We require that M is symmetric with respect to ij
and ab index pairs as

Mij �Mji ¼ 0 for all i; j and

Mab �Mba ¼ 0 for all a; b;
ð15Þ

so that T a
ij ¼ 0 and T a

ab ¼ 0 are approximately sat-
isfied for all i, j and for all a, b, respectively, for
small a. The condition Ta ¼ 0 is obtained by in-
serting Eq. (14) into Eq. (15), which is correct in
the limit a ! 0. The approximation of Eq. (14) is
justified for geometry optimization since the cal-
culations are performed only in the neighborhood
of the initial geometry.
Using a given set of initial orbitals ~CC, we can

calculate the MOs satisfying the conditions of Eq.
(15) as

C ¼ ~CC ~MMy ~MM

 ��1=2

~MMy; ð16Þ

where ~MM denotes ij or ab block of the matrix ob-
tained by substituting ~CC for C in Eq. (13). Note
that the occupied and unoccupied MOs are
transformed separately.

We call the present scheme approximately sat-
isfying Ta ¼ 0 as minimum orbital-deformation
(MOD) method because it is characterized as
keeping the orbital shape against the perturbation.
The MOD method is conceptually similar to the
quasidiabatization employed in the studies of di-
abatic electronic states [30,31].

4. Test calculation

The PES of the ground state of benzene with
respect to aforementioned coordinate r was cal-
culated to examine the performance of the MOD
method. The perturbation selection [13,29,32] was
performed for the double excitation operators of
CISD in the LMO representation. We used 10�6

hartree as the energy threshold and the Hartree–
Fock determinant as the zeroth order wavefunc-
tion. The minimum basis set of STO-3G was
adopted to see clearly the problematic singularity,
though the MOD method is applicable and effec-
tive for arbitrary basis set. The D6h equilibrium
geometry was optimized by the full (conventional)
CISD. We fixed r0, the length of three CAC bonds
appearing alternately, to be the optimized value of
1.4068 �AA and also the CAH lengths to be the op-
timized one, 1.0981 �AA. The PES was calculated as
the function of r, the other three CAC bond
lengths, from 1.3868 to 1.4268 �AA (�0:02 <
Dr ¼ r � r0 < 0:02 �AA). The perturbation selection
was performed at Dr ¼ �0:02 �AA (D3h) and the set
of selected operators was used throughout the
PES.
In Fig. 2, the PES by the CISD with the per-

turbation selection in which the Pipek-Mezey lo-
calization is performed at each geometry is
compared with full CISD. Fig. 3 gives the PES by
the CISD with the MOD method. In the MOD
method, the Pipek-Mezey LMOs at Dr ¼ �0:02 �AA
were used as the reference orbitals C0. The PES in
which only the Pipek-Mezey localization is used
has distinct discontinuity at Dr ¼ 0 stemming from
the degeneracy of the p LMOs illustrated in Fig. 1.
It can be understood as the physically meaningless
loss of the correlation energies due to the drastic
change of the orbital shapes. Selected excitation
operators are not sufficient after the drastic change
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of orbital shapes because they are selected using a
reference set of the MOs at particular geometry.
As the energies must be smooth functions of

external parameters, it is essential to eliminate the

effects of the physically meaningless change of
orbital shapes on the energy functions. The MOD
method can do this as shown in Fig. 3. The PES
calculated using the MOD method behaves cor-
rectly over the entire region of the calculation. It is
also noted that the energy difference from the full
CISD shown together is almost constant
throughout the PES.
Thus, the MOD method eliminates the discon-

tinuities in the PES and the related properties and
hence the singularities of their derivatives, which
can occur when the LMOs are used together with
the perturbation selection method. This is very
useful in the automatic optimization procedure
currently used in the SAC/SAC-CI program.
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