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Quasirelativistic theory for the magnetic shielding constant.
I. Formulation of Douglas–Kroll–Hess transformation for the magnetic
field and its application to atomic systems

Ryoichi Fukuda, Masahiko Hada, and Hiroshi Nakatsujia)

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Sakyou-ku, Kyoto, 606-8501, Japan

~Received 12 August 2002; accepted 22 October 2002!

A two-component quasirelativistic theory based on the Douglas–Kroll–Hess~DKH! transformation
has been developed to study magnetic properties of molecules. The proposed Hamiltonian includes
the relativistic magnetic vector potential in the framework of the DKH theory, and is applicable to
the calculations of magnetic properties without further expansion in powers ofc21. By combining
with the finite-perturbation theory and the generalized-UHF method, new pictures of the magnetic
shielding constant are derived. We apply the theory to calculations of the magnetic shielding
constants of He isoelectronic systems, Ne isoelectronic systems, and noble gas atoms. The results of
the present theory compare well with those of the four-component Dirac–Hartree–Fock
calculations; the differences were within 3%. We note that the quasirelativistic theory that handles
the magnetic vector potential at a nonrelativistic level greatly underestimates the relativistic effect.
The so-called ‘‘picture change’’ effect is quite important for the magnetic shielding constant of
heavy elements. The change in the orbital picture plays a significant role in the valence-orbital
magnetic response as well as the core-orbital one. The effect of the finite nucleus is also studied
using Gaussian nucleus model. The present theory reproduces the correct behavior of the
finite-nucleus effect that has been reported with the Dirac theory. In contrast, the nonrelativistic
theory and the quasirelativistic theory with the nonrelativistic vector potential underestimate the
finite-nucleus effect. ©2003 American Institute of Physics.@DOI: 10.1063/1.1528933#
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I. INTRODUCTION

Magnetic shielding constants observed by nuclear m
netic resonance~NMR! spectroscopy sensitively reflect th
valence electronic structures of molecules. Multinucle
NMR experiments have been conducted for almost all of
elements in the Periodic Table, and a large body of exp
mental data has been accumulated.1,2 A series of studies by
our group on the electronic mechanism of NMR chemi
shifts have shown that the major electronic mechanism of
chemical shifts is an intrinsic property of the resonance a
itself,3,4 and therefore is closely related to its position in t
Periodic Table. To elucidate the mechanism of the chem
shift for various nuclei, we need a quantitative theory th
can deal with all of the elements in the periodic tableseam-
lesslyin a sufficient accuracy. Since magnetic shielding co
stants strongly reflect the contributions from the angular m
menta of valence electrons in the vicinity of the nuclei, t
relativistic effect is quite important for molecules that i
clude heavy elements.5

Since the relativistic electronic structures of molecu
are described by the four-component Dirac theory, it is
vorable to use this theory for theoretical studies of NM
parameters. The theory of NMR parameters in a nonrela
istic framework was developed by Ramsey.6 Pyper,7

Pyykkö,8 Zhang and Webb9 have formulated the relativistic

a!Author to whom correspondence should be addressed. Fax: 81-75
5653; Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp
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theory for magnetic shielding constants based on the D
theory, but until recently these theories have actually b
applied only in the semiempirical framework.10

Ab initio four-component relativistic calculations of th
magnetic shielding constants of molecules were perform
by Ishikawaet al.11 and Quineyet al.12 in 1998. Ishikawa
et al. developed a theory of magnetic shielding constants
ing finite-perturbation theory in the Dirac–Hartree–Fo
method, and calculated hydrides of group 16 and group
elements.13,14 Quiney et al. used sum-over-state formalism
with a gauge invariant orbital and calculated H2O
molecules.12 Another method using relativistic random pha
approximation for magnetic shielding constants was p
posed by Visscheret al. and applied to hydrogen halides.15

Despite such theoretical developments, the fo
component theory has actually been applied only to sm
molecules. The main problem in the four-component cal
lations arises from the requirement for a small-compon
space. Since the magnetic vector potential is an odd oper
which directly connects the large-component space with
small-component one, the small components should be a
rately described to obtain reliable magnetic properties.7,16

Consequently, the computational size becomes large eve
relatively small molecules.

One way to avoid this problem is to use a quasirelat
istic formalism in which the small-component contribution
described in an explicit operator form. In the quasirelativis
theories, the relativistic effects are usually classified in
3-
5 © 2003 American Institute of Physics
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spin-free~scalar! relativistic ~SFR! term and spin-dependen
term.17 Among the spin-dependent terms, the spin–or
~SO! interaction is often discussed separately. In 19
Morishima, Endo, and Yonezawa showed the importance
the SO interaction for magnetic shielding constants by
semiempirical method,18 but this study has been overlooke
for a long time. In 1995, Nakatsujiet al. presented anab
initio UHF formalism for calculating the SO effect on th
magnetic shielding constant19 and showed that the SO inte
action is certainly an essential source of the chemical sh
in hydrogen halides and methyl halides.19 A series of studies
have confirmed this findings.20–23 Theoretical calculations
including electron-correlation and the SO effect have b
developed using density functional theory~DFT! ~Ref. 24!
and multiconfiguration self-constant field~MC-SCF!
theory.25

Regarding the magnetic shielding constants of heavy
ements such as mercury26 and tungsten,27 the SFR terms are
very important as well as the SO term, and furthermo
these two effects couple strongly with each other.26 There-
fore, the theory that includes both the SO and SFR term
necessary for calculating the magnetic shielding constan
heavy elements. Fukuiet al.28 and Wolff and Zieglar29 devel-
oped a quasirelativistic theory for magnetic shielding co
stants at the Pauli approximation level. However, such the
is not reliable for calculations of magnetic shielding co
stants of heavy elements.

Douglas–Kroll transformation30 of the Dirac Hamil-
tonian into a two-component form gives a variationa
stable formalism.32–34 Sucher provided a theoretical bac
ground of quantum electrodynamics for this Douglas–Kr
~DK! transformation.31 Hess32,33 developed the DK transfor
mation in quantum chemistry and presented a method
evaluating the matrix elements in the DK transformation34

Thus, the Douglas–Kroll–Hess~DKH! method has an attrac
tive feature in the relativistic quantum chemistry. Balla
et al.applied the DKH method to the calculation of magne
shielding constants,35 but used only the spin-free parts of th
DKH Hamiltonian and the SO term and the magnetic int
action term remained in the Pauli form. Fukui and Baba a
suggested a DKH transformation including magnetic vec
potential,36 but they did not propose an explicit workin
equation for the magnetic shielding constant. In these s
ies, the relativistic corrections to the zeroth order Ham
tonian were considered, but the magnetic interaction te
remained nonrelativistic. Our recent studies37,38 have shown
that the relativistic correction to the magnetic interaction
significant for the magnetic shielding constants of heavy
ements. Therefore, the magnetic vector potential should
addressed in the DKH theory to formulate a consistent q
sirelativistic theory of magnetic shielding constants.

The difficulty in adapting the DKH transformation to th
magnetic field lies in the presence of the magnetic vec
potential in a square-root operator. Therefore, an additio
expansion becomes necessary to extract the terms in th
sired order in the magnetic perturbations.39 In this study, we
propose a different formulation of the DKH transformatio
to calculate magnetic properties that avoids the presenc
the magnetic vector potential in a square-root operato
Downloaded 10 Feb 2003 to 130.54.33.130. Redistribution subject to A
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feature of the DKH transformation is that the operator
expanded in powers of an external potentialV. In this study,
we choose the electromagnetic potential,V1A as an expan-
sion parameter. With this choice, linear and quadratic te
in V1A appear within the second-order transformation, a
the vector potential does not appear in square-root form.
treatA as an external perturbation and our formula is clos
related to the method proposed by Kello¨ et al.,40 who calcu-
lated the electrostatic property. The choice ofA as an expan-
sion parameter is natural for the theory of magnetic prop
ties. The so-called ‘‘picture change’’ effect,41 which is the
change in the representation from the Dirac picture to
Schrödinger–Pauli picture, is taken into account in th
present formula. All of the terms in the Pauli approximati
are involved in the present formula as its nonrelativis
limit. The Hamiltonian derived by our formula is analogou
to that in the nonrelativistic theory and the NMR paramet
are obtained as second-order properties. Consequently
theoretical and computational methods for calculating m
netic properties, for example, the coupled-perturb
Hartree–Fock method42 and the finite-perturbation method,43

developed in nonrelativistic studies can also be adapte
the present relativistic formalism.

A finite size of the nucleus may also affect the magne
shielding constant in the relativistic theory. It has been
ported that the finite nucleus model affects the hyperfi
structures of heavy atoms.44 In the relativistic theory, the
magnetic shielding constant includes the spin-dipolar a
Fermi contact terms and the mechanisms of these terms
similar to those in the hyperfine structure. The Gauss
nucleus model45 is used in this study, and the effect of th
nucleus model on the magnetic shielding constant is ex
ined.

In this paper, we formulate a quasirelativistic theory f
magnetic properties based on the DKH transformation
cluding magnetic field. We utilize the generalized-UH
~GUHF! formalism46,47 to accurately describe the SO inte
action and the magnetic field effect at the Hartree–Fo
level. We use the Gaussian nucleus model. The resu
theory is are applied to several atomic systems to calcu
their magnetic shielding constants. The calculated results
compared with the results of the four-component theory, a
the reliability of the present theory is confirmed. We al
perform the calculations with the previous DKH quasire
tivistic model in which the magnetic interaction is treated
the nonrelativistic level and thereby show the importance
the relativistic effect on the magnetic interaction term.

II. THEORY

A. Douglas–Kroll–Hess transformation including
the magnetic field

In the DKH formulation of magnetic properties, two di
ferent transformations are possible, depending on how
deal with the vector potentialA.

In our first approach, we regardA as an external poten
tial, like V, and expand the operator in powers of the ext
nal potentialsA andV together. This formulation leads to th
DKH Hamiltonian in powers ofV and A. For the present
purpose to calculate the magnetic shielding constan
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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second-order property, we need the Hamiltonian which
correct up to the second order inA. For this purpose, we star
from the one-electron Dirac Hamiltonian includingV andA,

HD5ca"p1bc21V1ca"A, ~1!

wherea and b represent the usual Dirac matrices andc is
the velocity of light. First, we apply free-particle Foldy
Wouthuysen transformation of the Dirac Hamiltonian usi
the unitary operator48

U05K~11bRa"p!, ~2!

whereK andR are the operators defined by

K5S Ep1c2

2Ep
D 1/2

, ~3!

R5
c

Ep1c2 , ~4!

with

Ep5c~p21c2!1/2. ~5!

The transformed Hamiltonian is written as

U0HDU0
215bEp1E 1

V1E 1
A1O 1

V1O 1
A[H1 . ~6!

Here,E 1
V andE 1

A are, respectively, the first-order even ope
tors in the scalar potentialV and the vector potentialA as
given by

E 1
V5K~V1Ra"pVa"pR!K, ~7!

E 1
A5bK@Ra"p~ca"A!1~ca"A!a"pR#K. ~8!

Similarly, O 1
V andO 1

A are the first-order odd operators in th
potentialsV andA as

O 1
V5bK~Ra"pV2Va"pR!K, ~9!

O 1
A5K@ca"A2Ra"p~ca"A!a"pR#K. ~10!

The generalization of the second-order DK
transformation33 for the magnetic vector potential is realize
by introducing the termW1 , which arises from the secon
unitary transformation using the operator,

U15@11~W1
V1W1

A!2#1/21~W1
V1W1

A!. ~11!

The transformed Hamiltonian is written as

U1H1U1
215bEp1E 1

V1E 1
A1O 1

V1O 1
A1@~W1

V

1W1
A!,bEp#1@~W1

V1W1
A!,~O 1

V1O 1
A!#

1 1
2 ~W1

V1W1
A!2bEp1~W1

V1W1
A!bEp~W1

V

1W1
A!1 1

2 bEp~W1
V1W1

A!21¯ . ~12!

To eliminate the odd terms,O 1
X (X5V,A!, in the trans-

formed Hamiltonian,W1
X should satisfy the relation,

bEpW1
X2W1

XbEp5O 1
X . ~13!

Substituting this relation into Eq.~12! and collecting terms
up to the second-order in the external potentialV1A, we
obtain the transformed Hamiltonian that is correct to sec
order inA andV,
Downloaded 10 Feb 2003 to 130.54.33.130. Redistribution subject to A
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H25bEp1E 1
V1E 1

A1 1
2 ~W1

V1W1
A!2bEp

1~W1
V1W1

A!bEp~W1
V1W1

A!1 1
2 bEp~W1

V1W1
A!2.

~14!

Since the term@W1
X ,O 1

X] is odd, such terms are not include
in H2 ; they are involved in the next-order~third order! term
of the DKH transformation.33,61 For magnetic properties, th
term up to the second order inA is sufficient, but for the
potential V, the contribution of the third and higher orde
terms may not be negligible.61,62 However, in the presen
paper, we terminate our DKH transformation only up to t
second order. Then, the two-component positive ene
Hamiltonian valid to second-order DKH transformation
obtained by taking only the upper two components ofH2

give by Eq.~14!.
Thus, in this approximation, the total Hamiltonian for

many-electron system is given by

H5(
j

~Ej1Vj
eff1H j

mag!1(
j .k

Vjk , ~15!

whereEj denotes the kinetic energy,

Ej5Epj
5c~pj

21c2!1/2, ~16!

andVj
eff denotes the effective scalar potential term32–34given

by

Vj
eff5K j~Vj1Rjsj•pjVjsj•pjRj !K j

2 1
2 @~Wj

V!2Ej12Wj
VEjWj

V1Ej~Wj
V!2#. ~17!

The magnetic interactionH j
mag with the relativistic correc-

tion, which involves the first-order termH1 j
mag and the

second-order termH2 j
mag, is given by

H j
mag5H1 j

mag1H2 j
mag5K j~Rjsj•pj~csj•A j !

1~csj•A j !sj•pjRj !K j1
1
2 @~Wj

VWj
A2Wj

AWj
V!Ej

12~Wj
VEjWj

A2Wj
AEjWj

V!1Ej~Wj
VWj

A2Wj
AWj

V!#

1 1
2 @~Wj

A!2Ej12Wj
AEjWj

A1Ej~Wj
A!2#. ~18!

Vjk denotes the electron–electron interaction term that
cludes the electron repulsion and the two-electron spin–o
interaction in the present approximation,

Vjk5
1

r jk
2

1

4c2

~r jk3pj !•sj2~r jk3pk!•sk

r jk
3 , ~19!

where the Breit–Pauli form for the two-electron spin–or
interaction is used for simplicity, though the electron
electron interaction in the DKH form is more favorable.W is
the integral operator defined in the momentum space re
sentation with the kernel as follows:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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WV~p,p8!5^puWVup8&

5KpRp~s"pV̄pp8!Kp8

2Kp~V̄pp8s"p!Rp8Kp8 , ~20!

WA~p,p8!5Kp~cs"Āpp8!Kp82KpRps"p~cs"Āpp8!

3s"pRp8Kp8 , ~21!

with

V̄pp85
^puVup8&
Ep1Ep8

, ~22!

Āpp85
^puAup8&
Ep1Ep8

. ~23!

Another approach to treat magnetic vector potentialA in
the DKH transformation is to replace the momentum ope
tor p with the mechanical momentum operatorp5p1A,
according to Dirac’s original proposal,49 and so this formu-
lation may seem to be more natural than the above one in
first sight. Using this replacement, we obtain the magn
field-dependent kinetic operator as

Ep~A!5@~cs"p!21c4#1/2

5c@~p21c2!1~p"A1A"p1A2!

1a•~p3A1A3p!#1/2. ~24!

If there is no scalar potential (V50), this operator repro-
duces exactly the relativistic positive energy. However,
order to apply Eq.~24! to calculate derivative properties suc
as the magnetic shielding constant, we have to expand
~24! in terms ofA. Expansion of Eq.~24! in powers ofA is
not obvious because the operators do not commute. With
use of a momentum space representation in whichEp is di-
agonal, Eq.~24! may be expanded in powers ofA as

~a1b!1/25^puaup&1
^pubup8&

^puaup&1^p8uaup8&
1¯ , ~25!

where

a5p21c2, ~26!

b5~p"A1A"p1A2!1a•~p3A1A3p!. ~27!

Replacing all the momentum operators in the usual D
Hamiltonian by Eq.~25!, we can obtain the operators for th
magnetic perturbation in the DKH theory. However, sin
the kinetic operatorEp appears everywhere in the DKH
Hamiltonian and we have to take special care for commu
tion relation of the operators, this approach is quite tedio
and moreover, the physical simplicity will be lost, though t
two methods should finally give the same results. Th
choosing the potentialA as an expansion parameter in t
DKH transformation is natural for the theory of magne
properties.

B. Magnetic shielding constant

To study nuclear magnetic shielding constants, the m
netic vector potentials generated from the uniform magn
Downloaded 10 Feb 2003 to 130.54.33.130. Redistribution subject to A
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field B and the nuclear magnetic momentmA of nucleusA
should be considered. Then, the vector potential is written

A5A01AN, ~28!

with

A05 1
2 B3rd , ~29!

AN52
1

c2 (
A

nuc

mA3¹GA , ~30!

where

GA5E wA~RA!

ur2Ru
dR . ~31!

Here, rd5r2d is the position vector from the gauge orig
d, nucleusA is located at positionA, andRA5uR2Au. The
weight functionwA(RA) is related to the finite size of the
nucleus.50 In this study, we use Gaussian nucleus mod
where the nucleus has the following finite distribution:

wA~RA!5~hA /p!3/2exp~2hARA
2 !. ~32!

The nuclear exponenthA is taken from Ref. 51. The poin
nucleus model, which has a delta function distribution,
also used for comparison,

wA~RA!5d~RA! ~33!

and we obtain

2¹E d~RA!

ur2Ru
dR52¹

1

ur2Au
5

rA

r A
3 . ~34!

We also consider the nuclear charge distribution in
Gaussian model according to Chandra and Hess.52 The
Gaussian charge distribution affects not only the effect
scalar potentialVeff but also the magnetic interactionHmag

through the vector-scalar cross terms inH2
mag.

The magnetic shielding tensor of nucleusA in the tu
component (t,u5x,y,z) is given by Ramsey6 as a second-
order property,

sA,tu5
]2E

]Bt]mA,u
U

mA,u5Bt50

. ~35!

To calculate this property, we adopt the finite perturbat
theory along with the Hellmann–Feynman theorem.19,43 Ex-
panding the Hamiltonian of Eq.~15! in powers ofB andmA ,
we obtain

H5H (0,0)1(
t

Ht
(1,0)Bt1(

A
(

u
HA,u

(0,1)mA,u

1(
A

(
u

BtHA,tu
(1,1)mA,u1¯ . ~36!

For variational wave functions, such as the Hartree–F
SCF wave function used in this study, the Hellman
Feynman theorem holds and Eq.~35! becomes

sA,tu5^C (0)uHA,tu
(1,1)uC (0)&

1
]

]Bt
@^C (Bt)uHA,u

(0,1)uC (Bt)&#Bt50 , ~37!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereC (0) is the unperturbed wave function andC (Bt) is the
wave function under the external magnetic fieldBt . In a
quasirelativistic theory, the four-component wave function
transformed into the two-component form, and according
the perturbation operator should be transformed into
same representation as the wave function. This transfor
tion is known as the ‘‘change of picture’’ effect.41 To use the
Hellmann–Feynman theorem in the quasi relativistic fram
work, the change of the picture effect should be conside
Thus,H (0,1) andH (1,1) in Eq. ~37! @and alsoH (1,0)] are dif-
ferent from the nonrelativistic operators used in the previ
studies.26,27 These terms are derived fromHmag in Eq. ~18!
which involves the quasirelativistic transformation operat
K, R, andWX. The operatorsH (1,0), H (0,1), andH (1,1) also
involve these transformation operators@e.g.,K andR appear
in Eqs. ~38!, ~45!, and ~48!#. Thus, the change of pictur
effect of the magnetic perturbation is taken into account
the Hellmann–Feynman theorem holds in our formula wit
the quasirelativistic framework.

In our derivation of the Hamiltonian, the kinetic facto
Ep does not include the vector potential and ourH includes
the terms up to quadratic inB and m. H (0,0) is the DKH
Hamiltonian without the magnetic field.32–34 The magnetic
Zeeman termH (1,0) is given as

Ht
(1,0)5(

j
~H1,j t

(1,0)1H2,j t
(1,0)!

5(
j

K j~Rjhjt
(1,0)1hjt

(1,0)†Rj !K j1(
j

H2,j t
(1,0) , ~38!

with

hjt
(1,0)52

1

2
c~pj3r jd! t1

i

2
c@s j t~pj•r jd!2pjt~sj•r jd!#.

~39!

The termH1
(1,0) corresponds to the Zeeman term in the no

relativistic theory and involves the mass–velocity correct
through theRj term. The termH2

(1,0) arises from the opera
tors that include bothWV and WA in Eq. ~18!. Using an
anticommutator,$X,Y%5XY1YX, this term can be written
as

H2,j t
(1,0)52 1

2 ~$Ū j ,Ej%h̄ j t
(1,0)1Ū j$h̄ j t

(1,0) ,Ej%

1h̄ j t
(1,0)†$Ū j

† ,Ej%1$h̄ j t
(1,0)†,Ej%Ū j

†!

1 1
2~ h̄ j t

(1,0)$T̄j ,Ej%1$h̄ j t
(1,0) ,Ej%T̄j

1$T̄j
† ,Ej%h̄ j t

(1,0)†1T̄j
†$h̄ j t

(1,0)†,Ej%!, ~40!

where the momentum space integral operators are define

Ū~p,p8!5KpV̄pp8Kp82KpRps"pV̄pp8s"pRp8Kp8Xp8
21 ,
~41!

T̄~p,p8!5XpKpV̄pp8Kp82KpRps"pV̄pp8s"pRp8Kp8 ,
~42!

h̄t
(1,0)~p,p8!5

KpRp^puht
(1,0)up8&Kp8

Ep1Ep8
, ~43!

with
Downloaded 10 Feb 2003 to 130.54.33.130. Redistribution subject to A
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H2
(1,0) includes the magnetic correction to the SO interacti

The paramagnetic shielding termH (0,1) is given as

HA,u
(0,1)5(

j
~H1,jAu

(0,1) 1H2,jAu
(0,1) !

5(
j

K j~RjhjAu
(0,1)1hjAu

(0,1)†Rj !K j1(
j

H2,jAu
(0,1) , ~45!

with

hjAu
(0,1)5

1

c
~pj3¹jGjA!u1

i

c
@s ju~pj•¹jGjA!

2pju~sj•¹jGjA!#. ~46!

The first term in Eq.~46! is spin-free and corresponds to th
usual one of the paramagnetic shielding. The second ter
the SO-induced shielding term and it can be decompo
into two terms as follows:

2i

3c
s ju~pj•¹jGjA!2

i

c Fpju~sj•¹jGjA!2
1

3
s ju~pj•¹jGjA!G .

~47!

The first term is isotropic and corresponds to the Fermi c
tact term in its nonrelativistic limit;53 the second term corre
sponds to the spin-dipolar term. Similar toH2

(1,0) , the cross
terms ofWV and WA give H2

(0,1) ; the explicit form of this
term is the same as Eq.~40!, but h(1,0) is replaced byh(0,1).
H2

(0,1) can be decomposed into the paramagnetic shield
Fermi contact, and spin-dipolar terms similarly to Eqs.~46!
and ~47!. The diamagnetic shielding termH (1,1) arises from
the cross terms ofWA0 andWAN. SinceA0 can be commuted
with the momentum operatorp, the diamagnetic shielding
term can be written as

HA,tu
(1,1)5(

j
~2EjK j

2h̄1,jAtu
(1,1) 2h̄1,jAtu

(1,1) K j
2Ej1EjK j

2h̄2,jAtu
(1,1)

1h̄2,jAtu
(1,1) K j

2Ej2EjK j
2Rj

2h̄3,jAtu
(1,1) 2h̄3,jAtu

(1,1) Rj
2K j

2Ej !,

~48!

where the momentum space integral operators are define

h̄1,Atu
(1,1) ~p,p8!5

Kp^puhAtu
(1,1)up8&Kp8

~Ep1Ep8!
2 , ~49!

h̄2,Atu
(1,1) ~p,p8!5

KpRp^pup2hAtu
(1,1)1hAtu

(1,1)p2up8&Rp8Kp8
~Ep1Ep8!

2 ,

~50!

h̄3,Atu
(1,1) ~p,p8!5

KpRp^pup2hAtu
(1,1)p2up8&Rp8Kp8

~Ep1Ep8!
2 , ~51!

with

hAtu
(1,1)5 1

2 @d tu~rd•¹GA!2r d,u~¹GA! t#. ~52!

Equation~52! corresponds to the nonrelativistic diamagne
shielding operator with the Gaussian nucleus model exc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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for the constantc22. In the Dirac theory, the factorc22 in
the diamagnetic shielding arises from the energy gap
tween positive and negative energy states.54 In this theory,
this factor arises due to the free-particle kinetic energyEp in
the denominator of Eq.~49! and Eq.~48!. The first and sec-
ond terms in Eq.~48! correspond to the diamagnetic shiel
ing term in its nonrelativistic limit. The next two terms co
respond to the mass–velocity correction to the diamagn
shielding term in the Pauli approximation. The last two ter
are in the order ofc26, and therefore there are no analogs
the Pauli approximation.28,29

To evaluate the matrix elements, we use the matrix tra
formation technique and adopt the resolution of iden
method developed by Hesset al.34 An operator^puOup8&
represented in the eigenvector ofp2 is transformed from the
representation in the coordinate space basisx(r ) as

^puOup8&5 (
x,x8

^pux&^xuOux8&^x8up8&. ~53!

The matrix elements are calculated inp space and the result
ing matrix elements are back-transformed to thex(r ) space.

Since the Hamiltonian includes the spin operator,
wave function must have the generalized UHF~GUHF!
~Refs. 45, 46! form in the Hartree–Fock approximation. Fo
anN electron system, the GUHF wave function can be w
ten using a single Slater determinant as

CGUHF5if1f2¯fNi , ~54!

wheref j is a general spin–orbital,

f j5f j
aa1f j

bb. ~55!

The above orbital is allowed to be occupied by a single e
tron. The spatial part of the orbital is described by a line
combination of the basis functionx as

f j
v5(

l
Cl j

v xl ~v5a,b!, ~56!

whereC is the orbital expansion coefficient, which is a com
plex number, determined by the SCF procedure. To calcu
the magnetic shielding constant, we use the finite pertu
tion theory.19,43 In the finite perturbation theory, the unpe
turbed SCF procedure

F jf j
(0)5« j

(0)f j
(0) ~57!

and the SCF procedure with finite perturbation,Bt ,

~F j1BtH jt
(1,0)!f j

(Bt)5« j
(Bt)f j

(Bt) ~58!

are performed, andf j is differentiated numerically with re
spect toBt . The magnetic shielding tensor is expressed a
sum of the occupied orbital contributions,

sA,tu5(
j

occ H ^f j
(0)uH jAtu

(1,1)uf j
(0)&

1
]

]Bt
@^f j

(Bt)uH jAu
(0,1)uf j

(Bt)&#Bt50J . ~59!
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III. NUMERICAL CALCULATIONS AND THE RESULTS

To study the relativistic effect on the magnetic intera
tion operatorHmag, we use three different levels of approx
mations of the quasirelativistic~QR! calculations. At the QR
level 0 ~QR-0! approximation, the DKH transformation i
applied to the nonmagnetic HamiltonianH (0,0) and the mag-
netic interaction is treated in the nonrelativistic manner,H0

mag

which includes the spin-dipolar and Fermi contact terms.
the QR level 1~QR-1! approximation, we used the first
order DKH magnetic interactionH1

mag and the nonrelativistic
diamagnetic term. At the QR level 2~QR-2! approximation,
we used the second-order DKH magnetic interactionH1

mag

1H2
mag. The QR Hamiltonians used in this section are th

summarized as follows:

QR level 0,

HQR205(
j

~Ej1Vj
eff!1(

j .k
Vjk1(

j
H0 j

mag; ~60!

QR level 1,

HQR215(
j

~Ej1Vj
eff!1(

j .k
Vjk1(

j
H1 j

mag

1
1

2c2 (
j

hj
(1,1) ; ~61!

QR level 2,

HQR225(
j

~Ej1Vj
eff!1(

j .k
Vjk1(

j
~H1 j

mag1H2 j
mag!.

~62!

The explicit form of the nonrelativistic magnetic termH0
mag

is given in Ref. 19. The nonrelativistic diamagnetic ter
h(1,1) is given by Eq.~52!. The QR-0 approximation has bee
used by our laboratory in studies of the1H,35 199Hg,26 and
183W ~Ref. 27! chemical shifts within the SO-UHF frame
work; in this study, the GUHF wave function was used for
levels of approximations. The DKH transformation is appli
only to the one-electron terms; the two-electron terms u
in this study are

Vjk5
1

r jk
2

1

4c2

~r jk3pj !•sj2~r jk3pk!•sk

r jk
3 . ~63!

The first term is the contribution from convention
electron–electron repulsion; the second term represents
two-electron SO interaction. For comparison with the Dira
Coulomb calculation, the spin–other–orbit interactio
which originates from the Breit interaction, is not included
the QR calculation. Dirac–Hartree–Fock~DHF! ~Ref. 11!
and the nonrelativistic~NR! calculations are also performed
The Breit interaction is not considered in the DHF calcu
tion. A kinetic balanced small-component basis, a derivat
of the large-component basis, is used for the DHF calcu
tion.

A. Helium and neon isoelectronic systems

The magnetic shielding constants of He isoelectro
two-electron systems and Ne isoelectronic 10-electron s
tems with various nuclear charges were calculated. 32s and
32s30p universal Gaussian basis functions55 were used for
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



.9
08.9
18.5
74.1
28.0

183.7
538.1

1021J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Magnetic shielding constants
TABLE I. Magnetic shielding constants of He isoelectronic systems~ppm!.

System Za

Point nucleus model Gaussian nucleus model

DHF

QR

NR DHF

QR

Level 2 Level 1 Level 0 Level 2 Level 1 Level 0 NR

He 2 60.0 60.0 60.0 59.9 59.9 60.0 60.0 60.0 59.9 59.9
Ca181 20 738.8 752.1 770.7 713.5 698.9 738.6 752.0 768.2 713.5 698
Zr381 40 1762.7 1811.2 2109.6 1527.5 1408.9 1757.5 1805.8 2053.7 1526.1 14
Nd581 60 3569.7 3617.0 5372.2 2529.5 2118.6 3513.4 3558.4 4819.9 2524.9 21
Yb681 70 5123.9 5131.2 8611.2 3158.9 2474.3 4962.2 4964.1 7402.3 3141.4 24
Hg781 80 7552.7 7470.9 14048.4 3927.9 2828.4 7107.6 7015.8 11586.0 3904.2 28
Th881 90 11610.2 11356.8 23690.1 4914.3 3184.3 10393.5 10131.7 17769.8 4853.4 3
Fm981 100 18953.8 18374.9 40922.6 6283.2 3539.0 15608.3 15062.8 28581.3 6105.4 3

aNuclear charge.
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re,
He- and Ne-isoelectronic systems, respectively. A Gaus
nucleus model and point nucleus model were used for ca
lations at each level of approximation.

The magnetic shielding constants calculated for H
isoelectronic systems are summarized in Table I. In Fig
we plot the magnetic shielding constants against the nuc
chargeZ. The magnetic shielding constants calculated at
levels of relativistic methods are larger than the correspo
ing nonrelativistic values. However, the amount of the re
tivistic correction is quite different at each level of approx
mations.

By comparing the full relativistic DHF results with th
NR results, we can see the contributions of the total relativ
to the magnetic shielding constants. In heavy systems oZ
.70, the contribution of relativity to the magnetic shieldin
constant is greater than the nonrelativistic contribution, an
significant relativistic effect can be seen even for the lig

FIG. 1. Magnetic shielding constants~ppm! calculated for helium isoelec-
tronic systems with the~a! point nucleus model and~b! Gaussian nucleus
model plotted against the nuclear chargeZ.
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systems ofZ520– 40. The magnetic shielding constants c
culated with the DHF theory increase exponentially with
increase inZ, whereas those calculated by the NR theo
increase almost linearly. This relativistic increase in the m
netic shielding constants of heavy elements is the simp
example of a ‘‘heavy-atom shift of the heavy atom’’~HAHA !
effect that was pointed out by Pyykko¨ and co-workers.56

By comparing the QR-0 approximation with the NR r
sults, we can see the relativistic effect onH (0,0) for magnetic
shielding constants. This approximation includes the SO
teraction and orbital shrinkage due to the SFR term, but d
not include the relativistic effect on magnetic interactio
The relativistic effect onH (0,0) is only around 20% of the
total relativistic effect atZ5100. The remaining relativistic
correction results from the relativistic effect on the magne
interactionHmag, which has been formulated by the DKH
transformation applied to the magnetic field proposed in
preceding section. To study the effects of the first- a
second-order DKH transformations, QR-1 and QR-2 cal
lations were carried out. At the QR-1 level, where the fir
order transformation is considered, a mass–velocity cor
tion is taken into account in theRj term in Eqs.~38! and
~45!. This effect greatly increases the magnetic shield
constants of the heavy systems. The results clearly show
the HAHA effect dominantly arises from the mass–veloc
correction ofHmag. However, the relativistic correction in th
QR-1 approximation is twice as large as the true correct
by the DHF theory. This overestimation of the relativity fro
the first-order transformation is corrected by including t
second-order transformation. The magnetic shielding c
stants calculated by the QR-2 approximation agree well w
the DHF results, with differences of 3% or less.

The relativistic magnetic termHmag takes into account
the so-called ‘‘picture change’’ effect suggested by Bary
and Sadlej;41 the change in the operator representation res
ing from the DKH~relativistic to quasirelativistic, in general!
transformation. Kello¨ and Sadlej found that the pictur
change had a pronounced effect on the electric fi
gradient.57 Our results are consistent with their findings a
confirm the importance of the picture change for the elec
static and magnetic properties. Generally, the wave func
correction through the relativistic effect onH (0,0) signifi-
cantly affects the total energy of the system and furthermo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Magnetic shielding constants of Ne isoelectronic systems~ppm!.

System Za

Point nucleus model Gaussian nucleus model

DHF

QR

NR DHF

QR

Level 2 Level 1 Level 0 Level 2 Level 1 Level 0 NR

Ne 10 558.1 561.0 565.5 554.2 554.2 558.1 561.0 565.3 554.2 55
Ca101 20 1312.4 1328.0 1373.7 1281.7 1264.0 1312.2 1327.8 1370.6 1281.6 12
Zr301 40 3123.8 3179.9 3703.7 2839.6 2684.3 3117.9 3174.0 3627.6 2839.2 26
Nd501 60 5920.3 5975.3 8439.6 4681.2 4104.3 5856.6 5908.4 7856.9 4675.8 41
Yb601 70 8142.7 8144.2 12870.3 5795.5 4814.1 7957.2 7951.1 11480.7 5779.4 48
Hg701 80 11479.7 11356.9 20034.9 7134.6 5524.3 10962.8 10824.0 16921.4 7081.1 5
Th801 90 16915.7 16534.5 32148.7 8870.8 6234.4 15481.8 15076.8 25280.8 8688.7 6
Fm901 100 26642.1 25732.2 51838.2 11474.8 6944.4 22636.1 21712.1 37087.5 10806.7 6
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the picture change of perturbation operators should be c
sidered for the properties.

The direction of the deviation of the QR-2 result fro
the DHF result is not constant. For the systems ofZ
52 – 70, the magnetic shielding constants calculated in
QR-2 approximation are larger than those of the DHF theo
whereas for the systems ofZ580– 100, the QR2 approxima
tion underestimates the magnetic shielding constants c
pared to the DHF results. This trend is due to the differe
in the effects ofH1

mag and H2
mag. The first-order termH1

mag

always increases the magnetic shielding constant. The m
correction inH1

mag has a significant effect even in relative
light systems. The second-order termH2

mag, which contains
cross terms of the scalar and vector potentials, diminishes
shielding constant. The effect of this term increases with
increase in the nuclear potential. The deviations from
DHF results can be corrected by considering the higher-o
DKH transformation.

The calculated magnetic shielding constants of the
isoelectronic systems are summarized in Table II. In Fig
we plot the magnetic shielding constants against the nuc
chargeZ. The differences between QR-0 and NR in the N
isoelectronic systems are larger than those in H
isoelectronic systems. This difference is 4530 ppm forZ
5100 in the Ne-isoelectronic system with a point nucle
model, which is about 65% larger than the value in the H
isoelectronic system. In contrast, the differences betw
QR-1 and QR-0 in the Ne-isoelectronic systems are no
large compared to those in the He-isoelectronic systems.
difference is 40363 ppm forZ5100 in a Ne-isoelectronic
system with a point nucleus model, which is about 14
larger than that in the He-isoelectronic system. The diff
ence between QR-2 and QR-1 is also about 14% greater
that in the He-isoelectronic system. This result indicates
the relativistic correction of the 2s- and 2p-orbitals, which is
considered by the QR-0 approximation throughH (0,0), is also
significant compared to that of the 1s-orbitals. The relativis-
tic effect on Hmag, which is considered by the QR-1 an
QR-2 approximations, is quite important for the 1s electrons,
but not so much for the 2s and 2p electrons, even though
there is a large effect on the absolute value. The relativi
effect on Hmag arises mainly near the nuclear region a
dominantly affects the Fermi contact term. The contribut
Downloaded 10 Feb 2003 to 130.54.33.130. Redistribution subject to A
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of the 2s electron to the Fermi contact term is smaller th
that of the 1s electron, and the contribution of the 2p elec-
trons is zero because they have a nodal plane at the nuc
Thus, the relativistic effects ofHmag on the 2s and 2p elec-
trons are relatively small.

Figure 3 shows the effect of the finite nucleus mod
The finite nucleus correction factor« is defined bysg5(1
1«)sp, wheresp and sg are the magnetic shielding con
stants of the point nucleus and Gaussian finite nucl
model, respectively. The QR-2 results agree well with
DHF results and the plots of« in Fig. 3 using both methods
almost overlap. With both methods,« increases exponen
tially with an increase inZ. A similar trend has been reporte
in the hyperfine coupling constants of one-electron ato
with largeZ values.44 In the magnetic shielding constant, th
finiteness of nuclei dominantly affects the Fermi conta

FIG. 2. Magnetic shielding constants~ppm! calculated for neon isoelec
tronic systems with the~a! point nucleus model and~b! Gaussian nucleus
model plotted against the nuclear chargeZ.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1023J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Magnetic shielding constants
term. The Fermi contact term originates from the hyperfi
coupling of the electron spin-polarization and the nucl
magnetic moment caused by SO interaction and magn
Zeeman interaction.10,18This mechanism is closely related
that of the hyperfine coupling constant. In the NR theory,
Fermi contact term is zero for closed-shell systems beca
there is no SO interaction. Only the diamagnetic shield
term contributes to the NR magnetic shielding constants
the nucleus model has very little effect. The QR-1 appro
mation largely overestimates the« value and the QR-0 ap
proximation underestimates the« value. Relativistic correc-
tion of the magnetic interaction strongly affects the magne
response of electrons at the nucleus. A finite nucleus ef
can not be neglected for the accurate calculation of a la
nuclear charge system with a few electrons such as
present models in which 1s electrons account for a signifi
cant amount of the total magnetic shielding constant. T
effect would be less important in many-electron systems
which the valence electrons have a significant contributio

FIG. 3. Finite nucleus correction~see text! plotted against the nuclea
chargeZ. ~a! Helium isoelectronic systems and~b! neon isoelectronic sys-
tems.
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B. Noble gas atoms

The 9s4p Gaussian basis set for Ne, the 12s8p set for
Ar, the 15s11p6d set for Kr, the 19s15p9d set for Xe, and
the 24s20p13d8 f set for Rn were used for calculations. Th
exponent parameters for Ne and Ar were taken from
pVDZ sets.58,59For Kr, Xe, and Rn, the exponent paramete
were taken from Dyall’s relativistic double-zeta sets.60

The calculated magnetic shielding constants of noble
atoms are summarized in Table III. By comparing the DH
results with the NR values, we can see the magnitude of
HAHA effect that originates in relativity in heavy atoms.
we consider the point nucleus model, the effect gives
increase of 1500 ppm in the magnetic shielding constan
Xe, and an increase of 9000 ppm in that of Rn. Even with
we cannot neglect the effect of relativity. The magne
shielding constants calculated with the QR-2 approximat
are in good agreement with the DHF values. The differen
between the QR-2 results and the DHF results are 1.5%
less. Even though the basis sets used for these calcula
are insufficient, and an accurate comparison should be
ried out with a complete basis limit, our results suggest t
QR-2 is a good approximation of the DHF theory.

The QR-1 approximation overestimates the magne
shielding constants of heavy elements and QR-0 under
mates. The QR-0 result for Rn with a point nucleus mo
seem to be adequate compared to the DHF results. Howe
at the QR-0 approximation, the Gaussian nucleus mo
gives a decrease of 2385 ppm in the magnetic shielding c
stant of Rn. In comparison to the DHF and QR-2 values,
effect of the Gaussian nucleus on Rn seems to be too larg
the QR-0 approximation.

To provide detailed insight into the magnetic shieldi
constants of heavy noble gases, the total shielding cons
was decomposed into the contributions from each occup
orbital according to Eq.~59!. The orbital contributions to the
magnetic shielding constants of Xe and Rn are shown
Tables IV and V, respectively. In the magnetic shielding co
stant of Xe, relativity predominantly affects the inners- and
p-orbitals. In contrast, relativity only slightly affects the co
tribution of thed-orbital. In comparison to the DHF results
QR-0 underestimates the contribution of the 1s orbital
about 700 ppm and QR-1 overestimates the contribution
the 1s orbital by about 1000 ppm. On the other hand, t
QR-0 approximation overestimates the contribution of
outers-orbitals, particularly that of the 5s-orbital.
.0
3.7
4.5
6.6
727.1
TABLE III. Magnetic shielding constants of noble gas atoms~ppm!.

System Za

Point nucleus model Gaussian nucleus model

DHF

QR

NR DHF

QR

Level 2 Level 1 Level 0 Level 2 Level 1 Level 0 NR

Ne 10 557.5 560.5 560.3 554.1 552.0 557.5 560.5 560.3 554.1 552
Ar 18 1271.8 1284.4 1288.4 1250.6 1233.7 1271.8 1284.4 1288.3 1250.6 123
Kr 36 3572.6 3625.0 3772.9 3367.8 3155.2 3571.6 3624.0 3768.7 3367.7 315
Xe 54 6982.2 7070.1 8176.1 6180.8 5328.2 6957.8 7044.7 7956.7 6166.9 532
Rn 86 19906.1 19959.8 31877.4 18895.1 10728.2 19162.9 19074.6 26888.6 16510.4 10

aNuclear charge.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Orbital contribution in the magnetic shielding constant of the Xe atom~ppm!.

Orbital

Point nucleus model Gaussian nucleus model

DHF

QR

NR DHF

QR

Level 2 Level 1 Level 0 Level 2 Level 1 Level 0 NR

1s 2882.5 2953.9 3885.7 2182.0 1623.1 2861.6 2932.7 3701.7 2181.6 16
2s 583.7 600.7 719.9 497.8 402.6 580.9 597.8 695.3 497.5 40
3s 196.9 206.8 238.6 183.5 151.6 196.3 206.1 232.2 182.4 15
4s 75.1 83.3 95.6 91.8 62.4 74.9 83.1 93.3 88.7 62
5s 25.9 37.4 47.1 87.5 21.9 25.9 37.2 45.2 78.4 21
2p 1413.1 1403.7 1392.5 1364.7 1311.9 14130 1403.7 1392.5 1364.7 13
3p 503.1 487.5 497.2 490.4 474.5 503.1 487.5 497.2 490.4 47
4p 194.4 193.1 192.8 190.1 186.0 194.4 193.1 192.8 190.4 18
5p 59.8 59.6 59.9 59.4 58.6 59.8 59.6 59.9 59.4 58
3d 777.8 774.7 777.0 766.8 766.3 777.8 774.7 777.0 766.8 76
4d 270.0 269.3 269.8 266.9 296.3 270.0 269.3 269.8 260.9 26

Total 6982.2 7070.1 8176.1 6180.8 5328.2 6957.8 7044.7 7956.7 6166.9 53
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In Rn, the relativity affects the contributions of the inn
s- and p-orbitals, and is also important for the contributio
of the 3d-orbital. Relativity only slightly affects the contri
bution of the 4f -orbital. Compared to the DHF results, QR
underestimates the contribution of the 1s-orbital by about
5000 ppm. This approximation also underestimates the c
tribution of the 2s-orbital by about 700 ppm. On the othe
hand, the contributions of the outer 5s- and 6s-orbitals are
overestimated by 1000 ppm. The finite nucleus effects
these orbitals are too large compared to the DHF results,
the finite nucleus effects on outers-orbitals are larger than
those on inner orbitals. The QR-0 approximation undere
mates the contribution of the 2p-orbital by about 400 ppm
and greatly underestimates the contribution of the 6p-orbital.
This suggests that the QR-0 approximation cannot corre
treat the orbital response to a magnetic field at the nuc
position. Since the errors from the inner and outer orbit
are cancelled, the total shielding constant happens to be c
to the DHF value in case of the point nucleus model.
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The QR-2 approximation, which also considers a relat
istic effect onHmag, increases the contributions of the inn
orbital and diminishes the contributions of the out
s-orbital; thus, the total shielding constant of QR-2 a
proaches the DHF values. This result clearly shows the
portance of the relativistic effect on the magnetic interact
term to the magnetic shielding constants of heavy eleme
It is inadequate to consider only the relativistic effect on t
wave function. The change in the orbital picture due to DK
transformation significantly changes the magnetic respo
of orbitals. An approximation such as QR-0, in which t
picture change effect on the magnetic perturbation is
glected, introduces errors not only to core electrons but a
to valence electrons. Using the QR-0 approximation for t
oretical studies of the chemical shifts of heavy elements w
lead to serious error because the valence electrons play
portant roles in the chemical shifts of molecules. A theo
that considers the picture changes ofHmag andH (0.0) equally
32.3
17.6
1.1
5.5
4.8
0.8
54.2
7.8
7.5
4.3
.8
83.3
2.6
7.6
4.8
727.1
TABLE V. Orbital contribution in the magnetic shielding constant of the Rn atom~ppm!.

Orbital

Point nucleus model Gaussian nucleus model

DHF

QR

NR DHF

QR

Level 2 Level 1 Level 0 Level 2 Level 1 Level 0 NR

1s 9566.6 9491.2 18827.7 4445.0 3033.3 8975.1 8810.5 14945.4 4417.5 30
2s 1856.2 1929.1 3420.0 1103.0 717.7 1753.8 1806.7 2765.5 1075.8 7
3s 590.4 645.9 1081.6 611.5 281.2 563.7 610.8 891.6 515.1 28
4s 232.0 293.0 494.5 720.8 125.5 223.3 277.9 409.1 494.9 12
5s 86.4 168.6 309.6 1368.5 54.8 84.0 158.8 251.4 849.8 5
6s 48.3 250.7 538.0 3813.0 20.8 46.0 230.8 419.3 2309.4 2
2p 2792.5 2628.5 2572.4 2403.0 2154.2 2786.4 2625.3 2572.0 2404.4 21
3p 1029.9 913.4 967.2 923.8 837.8 1027.7 913.8 967.1 924.5 83
4p 436.5 416.6 416.0 393.8 367.5 435.7 416.4 416.0 394.6 36
5p 174.2 163.7 167.6 153.6 154.3 174.0 163.9 167.7 155.4 15
6p 52.5 48.6 49.8 5.9 52.8 52.5 49.0 50.2 15.8 52
3d 1461.1 1439.3 1452.2 1412.6 1383.3 1461.1 1439.3 1454.2 1412.6 13
4d 611.3 603.8 608.4 592.1 582.6 611.3 603.9 608.4 592.1 58
5d 221.3 219.4 220.0 215.5 217.6 221.3 219.4 220.1 215.6 21
4f 747.1 748.1 750.6 732.9 744.8 747.2 748.1 750.7 732.9 74

Total 19906.1 19959.8 31877.4 18895.1 10728.2 19162.9 19074.6 26888.6 16510.4 10
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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is essential for studying the chemical shifts of heavy e
ments.

The QR-2 approximation greatly improves the magne
shielding constants and their orbital contributions in hea
elements. However, in Rn, the contributions of the 5s- and
6s-orbitals still overshoot the DHF results. One reason
this difference may be the lack of the higher-order relativis
effect: the third- or higher-order DKH transformation ma
describe the effect.61,62 The basis set incompleteness err
may also be a reason. The basis sets used in the calcula
for noble gases are double-zeta quality, and the basis
dependence is different between the QR approximation
the DHF; the results of different theories should be compa
in a complete basis limit. Calculations using a large ev
tempered basis should be performed for a more reliable c
parison. However, such a large-scale DHF calculation
magnetic shielding constants is still very difficult at prese

At the end of this section, we refer to the computati
time. The calculations were performed on a COMPA
XP1000 workstation. The CPU times~in seconds! and SCF
dimensions~dimension of the Fock matrix! are summarized
in Table VI. The dimension of the QR calculation is the sa
as the large-component dimension of the corresponding D
calculation. Any symmetry reduction is not used. The co
vergence of QR method may be accelerated by using
trapolation method; the DIIS extrapolation63 was used in
DHF calculation to accelerate the convergence.

IV. CONCLUSIONS

We have proposed a quasirelativistic theory for calcu
ing NMR magnetic shielding constants. The present theor
based on the second-order Douglas–Kroll transforma
that was extended to include the magnetic vector poten
The present theory expands the Hamiltonian in terms of
electromagnetic potentialV1A, instead ofV. The resulting
Hamiltonian includes both linear and quadratic terms in
external magnetic field; it is suitable for calculations of ma
netic properties. The present formulation of the DKH tran
formation including the magnetic field is combined with t
matrix-transformation method developed by Hesset al., the
GUHF-SCF method, and the finite perturbation method
gether with the Hellmann–Feynman theorem, and applie
the calculations of the nuclear magnetic shielding consta
We have obtained the various terms as the origins of
nuclear shielding constants in a change of picture fram
work; their physical meanings are of considerable interes

We applied the present theory to the magnetic shield
constants of helium-isoelectronic ions, neon-isoelectro
ions, and noble gas atoms. We also performed the calc

TABLE VI. Computational time and SCF dimension for DHF and quasi
lativistic ~QR-2! calculations.

System Method CPU seconds Dimension Iteration

Xe DHF 4080 776 20
QR-2 862 218 24

Rn DHF 63900 1492 24
QR-2 10300 410 32
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tions using the four-component Dirac–Hartree–Fock theo
the nonrelativistic theory, and the DKH transformation of t
lower level in which the magnetic interaction was appro
mated at the nonrelativistic level. The results of the pres
calculations may be summarized as follows:

~1! The results of the present two-component quasi rela
istic theory compare well with those of the fou
component Dirac–Hartree–Fock theory; the differenc
were within only 3%.

~2! In the helium isoelectronic systems ofZ.70, the contri-
bution of the relativity to the magnetic shielding consta
is larger than the nonrelativistic contribution. The rel
tivistic wave function correction arising from the relativ
istic terms inH (0,0) is not the dominant origin of this
relativistic increase in the magnetic shielding constan
Instead, the dominant origin of this relativistic increa
is the relativistic correction to the magnetic interacti
operator, Hmag. The effect of the so-called ‘‘picture
change’’ is quite important for the magnetic shieldin
constant of the heavy nucleus.

~3! In the neon isoelectronic systems, the relativistic corr
tion of Hmag mainly affects the 1s electrons. The effects
of relativistic Hmag on the 2s and 2p electrons are rela-
tively small.

~4! The finite nucleus effect on magnetic shielding consta
was studied using the Gaussian nucleus model.
present theory reproduces well the DHF results. The
fect on helium isoelectronic systems ofZ.90 is 10% or
more. The finite nucleus model has almost no effect
the nonrelativistic theory.

~5! The present theory can well reproduce the relativis
increase in the magnetic shielding constants of noble
atoms. The differences between the present theory
the DHF results are,1.5%. The change in the orbita
picture due to the DKH transformation affects the v
lence orbitals as well as the cores.

The present theory provides a foundation for the rela
istic study of molecular magnetic properties. Adaptation
the present theory to other magnetic properties such as s
spin coupling constant and hyperfine structure should
straightforward with only some modifications on the on
electron matrix elements according to the DKH transform
tion. To apply this method to the study of molecular NM
chemical shifts, we need a gauge-origin-independent the
The electron correlation effects may also be important. I
subsequent paper,64 London’s gauge-including atomic orbit
als ~GIAOs! are incorporated into the present DKH transfo
mation, and the resultant theory is applied to the calculati
of the NMR chemical shifts of molecular systems. An incl
sion of the electron correlation effect, using the energy g
dient method for the many-body theory developed in
nonrelativistic framework, is also straightforward becau
the present theory keeps the framework of the nonrelativi
theory.

-
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