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A two-component quasirelativistic theory based on the Douglas—Kroll-Hasl) transformation

has been developed to study magnetic properties of molecules. The proposed Hamiltonian includes
the relativistic magnetic vector potential in the framework of the DKH theory, and is applicable to
the calculations of magnetic properties without further expansion in powears’ofBy combining

with the finite-perturbation theory and the generalized-UHF method, new pictures of the magnetic
shielding constant are derived. We apply the theory to calculations of the magnetic shielding
constants of He isoelectronic systems, Ne isoelectronic systems, and noble gas atoms. The results of
the present theory compare well with those of the four-component Dirac—Hartree—Fock
calculations; the differences were within 3%. We note that the quasirelativistic theory that handles
the magnetic vector potential at a nonrelativistic level greatly underestimates the relativistic effect.
The so-called “picture change” effect is quite important for the magnetic shielding constant of
heavy elements. The change in the orbital picture plays a significant role in the valence-orbital
magnetic response as well as the core-orbital one. The effect of the finite nucleus is also studied
using Gaussian nucleus model. The present theory reproduces the correct behavior of the
finite-nucleus effect that has been reported with the Dirac theory. In contrast, the nonrelativistic
theory and the quasirelativistic theory with the nonrelativistic vector potential underestimate the
finite-nucleus effect. ©@2003 American Institute of Physic§DOI: 10.1063/1.1528933

I. INTRODUCTION theory for magnetic shielding constants based on the Dirac

Magnetic shielding constants observed by nuclear magt_heow, but until recently these theories have actually been

netic resonancéNMR) spectroscopy sensitively reflect the applled_o_n_ly in the semiempirical Tr?‘”?ew"]’% .
valence electronic structures of molecules. Multinuclear AP initio four-component relativistic calculations of the

NMR experiments have been conducted for almost all of thdh@dnetic shielding constants of molecules were performed

; 11 H 12 ; H
elements in the Periodic Table, and a large body of experity IShikawaet al. and Quineyet al:* in 1998. Ishikawa

mental data has been accumulat@eh series of studies by et al. developed a theory of magnetic shielding constants us-
our group on the electronic mechanism of NMR chemicaling finite-perturbation theor){ in the Dirac—Hartree—Fock
shifts have shown that the major electronic mechanism of thg1ethod, and calculated hydrides of group 16 and group 17
chemical shifts is an intrinsic property of the resonance atonlements='“ Quiney et al. used sum-over-state formalism
itself > and therefore is closely related to its position in theWith @ gauge invariant orbital and calculated,CH
Periodic Table. To elucidate the mechanism of the chemicanolecules:” Another method using relativistic random phase
shift for various nuclei, we need a quantitative theory thatapproximation for magnetic shielding constants was pro-
can deal with all of the elements in the periodic tabtam- posed by Visscheet al. and applied to hydrogen halidé&s.
lesslyin a sufficient accuracy. Since magnetic shielding con- ~ Despite such theoretical developments, the four-
stants strongly reflect the contributions from the angular mocomponent theory has actually been applied only to small
menta of valence electrons in the vicinity of the nuclei, themolecules. The main problem in the four-component calcu-
relativistic effect is quite important for molecules that in- lations arises from the requirement for a small-component
clude heavy elements. space. Since the magnetic vector potential is an odd operator,
Since the relativistic electronic structures of moleculeswhich directly connects the large-component space with the
are described by the four-component Dirac theory, it is fasmall-component one, the small components should be accu-
vorable to use this theory for theoretical studies of NMRrately described to obtain reliable magnetic propertis.
parameters. The theory of NMR parameters in a nonrelativ€onsequently, the computational size becomes large even for
istic framework was developed by Ram$eyPyper’ relatively small molecules.
Pyykko® zhang and Webbhave formulated the relativistic One way to avoid this problem is to use a quasirelativ-
istic formalism in which the small-component contribution is

3Author to whom correspondence should be addressed. Fax: 81-75-755lescribed in an explicit operator form. In the quasirelativistic
5653; Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp theories, the relativistic effects are usually classified into
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spin-free(scalay relativistic (SFR) term and spin-dependent feature of the DKH transformation is that the operator is
term!’ Among the spin-dependent terms, the spin—orbitexpanded in powers of an external potentialin this study,
(SO interaction is often discussed separately. In 1973we choose the electromagnetic potentiah A as an expan-
Morishima, Endo, and Yonezawa showed the importance o$ion parameter. With this choice, linear and quadratic terms
the SO interaction for magnetic shielding constants by dn V+A appear within the second-order transformation, and
semiempirical methodf but this study has been overlooked the vector potential does not appear in square-root form. We
for a long time. In 1995, Nakatsupt al. presented amb  treatA as an external perturbation and our formula is closely
initio UHF formalism for calculating the SO effect on the related to the method proposed by Ketibal,*® who calcu-
magnetic shielding constdiitand showed that the SO inter- lated the electrostatic property. The choiceAofis an expan-
action is certainly an essential source of the chemical shiftsion parameter is natural for the theory of magnetic proper-
in hydrogen halides and methyl halidés series of studies ties. The so-called “picture change” effett,which is the
have confirmed this finding®-2® Theoretical calculations change in the representation from the Dirac picture to the
including electron-correlation and the SO effect have beefschralinger—Pauli picture, is taken into account in the
developed using density functional thedi®FT) (Ref. 24 present formula. All of the terms in the Pauli approximation
and multiconfiguration self-constant fieldMC-SCH  are involved in the present formula as its nonrelativistic
theory?® limit. The Hamiltonian derived by our formula is analogous
Regarding the magnetic shielding constants of heavy elto that in the nonrelativistic theory and the NMR parameters
ements such as mercdfyand tungstef’ the SFR terms are are obtained as second-order properties. Consequently, the
very important as well as the SO term, and furthermoretheoretical and computational methods for calculating mag-
these two effects couple strongly with each offfefhere-  netic properties, for example, the coupled-perturbed
fore, the theory that includes both the SO and SFR terms ifartree—Fock methddand the finite-perturbation methdd,
necessary for calculating the magnetic shielding constants ¢feveloped in nonrelativistic studies can also be adapted to
heavy elements. Fukeit al?® and Wolff and Zieglat® devel- ~ the present relativistic formalism.
oped a quasirelativistic theory for magnetic shielding con- A finite size of the nucleus may also affect the magnetic
stants at the Pauli approximation level. However, such theorghielding constant in the relativistic theory. It has been re-
is not reliable for calculations of magnetic shielding con-pPorted that the finite nucleus model affects the hyperfine
stants of heavy elements. structures of heavy atonf8.In the relativistic theory, the

Douglas—Kroll transformatiofl of the Dirac Hamil- Magnetic shielding constant includes the spin-dipolar and
tonian into a two-component form gives a variationally Fermi contact terms and the mechanisms of these terms are
stable formalisni2~34 Sucher provided a theoretical back- Similar to those in the hyperfine structure. The Gaussian
ground of quantum electrodynamics for this Douglas—Krolinucleus modéF is used in this study, and the effect of the
(DK) transformatior’* Hes$233 developed the DK transfor- _nucleus model on the magnetic shielding constant is exam-
mation in quantum chemistry and presented a method foln€d. o
evaluating the matrix elements in the DK transformafion. In this paper, we formulate a quasirelativistic theory for
Thus, the Douglas—Kroll-He$®KH) method has an attrac- Magnetic properties based on the DKH transformation in-
tive feature in the relativistic quantum chemistry. Ballard¢luding magnetic field. We utilize the generalized-UHF
et al. applied the DKH method to the calculation of magnetic (GUHP) formalisnf® to accurately describe the SO inter-
shielding constant® but used only the spin-free parts of the action and the magnetic _ﬂeld effect at the Hartree—Fock
DKH Hamiltonian and the SO term and the magnetic interlevel. We use the Gaussian nucleus model. The resultant
action term remained in the Pauli form. Fukui and Baba alsdn€0ry is are applied to several atomic systems to calculate
suggested a DKH transformation including magnetic vectofheir magnet.ic shielding constants. The calculated results are
potential®® but they did not propose an explicit working compa'red. Wlth the results of the four-.compo'nent theory, and
equation for the magnetic shielding constant. In these studh€ reliability of the present theory is confirmed. We also
ies, the relativistic corrections to the zeroth order Hamil-P€rform the calculations with the previous DKH quasirela-
tonian were considered, but the magnetic interaction ternjvistic model in which the magnetic interaction is treated in

remained nonrelativistic. Our recent studie® have shown the nonrelativistic level and thereby show the importance of

that the relativistic correction to the magnetic interaction ist€ relativistic effect on the magnetic interaction term.

significant for the magnetic shielding constants of heavy ely| THEORY
ements. Therefore, the magnetic vector potential should be L _
addressed in the DKH theory to formulate a consistent qua- Pouglas—Kroli-Hess transformation including
sirelativistic theory of magnetic shielding constants. the magnetic field

The difficulty in adapting the DKH transformation to the In the DKH formulation of magnetic properties, two dif-
magnetic field lies in the presence of the magnetic vectoferent transformations are possible, depending on how we
potential in a square-root operator. Therefore, an additionadeal with the vector potentia.
expansion becomes necessary to extract the terms in the de- In our first approach, we regad as an external poten-
sired order in the magnetic perturbatiofisn this study, we tial, like V, and expand the operator in powers of the exter-
propose a different formulation of the DKH transformation nal potentialsA andV together. This formulation leads to the
to calculate magnetic properties that avoids the presence @KH Hamiltonian in powers ofV and A. For the present
the magnetic vector potential in a square-root operator. Aurpose to calculate the magnetic shielding constant, a
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second-order property, we need the _Hamiltonian which i§‘|2=ﬁEp+5\1/+5/i\+ %(W\l/JrW/lx)zﬁEp
correct up to the second orderAn For this purpose, we start
from the one-electron Dirac Hamiltonian includigandA, + (WY + W/;)BEp(W\lfJFW/lAH %BEp(W\ll+ W42,

Hp=cCap+ Bc®+V+ca-A, (1) (14

where & and B represent the usual Dirac matrices anés . e _
the velocity of light. First, we apply free-particle Foldy— Since the terniWs;,O1] is odd, such terms are not included
Wouthuysen transformation of the Dirac Hamiltonian usingin Hz; they are involved in the next-ordéthird orde) term

the unitary operat4? of the DKH transformatiori®*®* For magnetic properties, the
term up to the second order i is sufficient, but for the

Uo=K(1+BRap), 2) potential V, the contribution of the third and higher order
whereK andR are the operators defined by terms may not be negligibf:%? However, in the present

paper, we terminate our DKH transformation only up to the

2\ 1/2 .
_ Eptc 3) second order. Then, the two-component positive energy
2E, ' Hamiltonian valid to second-order DKH transformation is
c obtained by taking only the upper two componentsHof
R= , (4)  9ive by Eq.(14).
Ept+c Thus, in this approximation, the total Hamiltonian for a
with many-electron system is given by
Ep=c(p?+c)*2 (5) s I
The transformed Hamiltonian is written as H= ] (Bj+Vi+H 9)+J->k Vik: (19
UoHpUg '=BE,+EY+EL+ 0T+ O =H;. (6)

whereE; denotes the kinetic energy,
Here,E\l/ andE’f are, respectively, the first-order even opera-

tqrs in the scalar potentidl and the vector potentigh as Ej:Ep':C(pJZ_i_CZ)l/Z’ (16)
given by ]
£Y=K(V+Ra-pVa-pR)K, (7). andV;" denotes the effective scalar potential t&fn*given
£2= BK[Ra-p(ca-A) +(ca-A) a-pRIK. @

Similarly, (”)\l’ andO’i\ are the first-order odd operators in the v]?ﬁ: Ki(V;+Rjo;-p;V,0;-piR)K;
potentialsV andA as

— 3 L(WY)2E;+ 2WYE;WY + E; (WY)?]. 1
0Y=BK(Ra-pV—-Va-pRIK, (9) AL (W78 + 2WFE W B (W] 0
O*=K[ca-A—Ra-p(ca-A)a-pRIK. (100  The magnetic interactioid|"* with the relativistic correc-
tion, which involves the first-order tern7™ and the

The generalization of the second-order DKH
transformatioft® for the magnetic vector potential is realized
by introducing the termW,, which arises from the second
unitary transformation using the operator,

second-order terri 5, is given by

H]mag:HT}ag‘F Hrznjag: K](RJO']pJ(CO'J A])

Ug=[1+(Wy+ W) 2+ (WY +Wr). (11) +(coj-Ap oy piR)K; + 3[(W/ W) - WiW))E,
The transformed Hamiltonian is written as +2(WY/E;WP = WPE; W) + Ej (W)W —Wiw)) ]
UiH Uy t=BEp+EY+E71+ 07+ O +[(WY + L[ (WA)ZE + 2WAE, WA+ E;(WH)2]. (18)

+W3), BE, 1+ [(WY+W7),(0Y+07)] _ . _
Vi« denotes the electron—electron interaction term that in-

+ 3 (WY +W3)2BE,+ (WY +W7) BE, (W)  cludes the electron repulsion and the two-electron spin—orbit
interaction in the present approximation,

+W) + 3 BE(WY +W7)2+---. (12
To eliminate the odd termsQ} (X=V,A), in the trans- V'k=i——12 (1 Xpj) - ;= (X pi) - o (19
formed HamiltonianW; should satisfy the relation, Fory 4c rj3k '
BE W} —W;BE,=07. (13

where the Breit—Pauli form for the two-electron spin—orbit
Substituting this relation into Eq12) and collecting terms interaction is used for simplicity, though the electron—
up to the second-order in the external potentiat A, we  electron interaction in the DKH form is more favorabi@.is
obtain the transformed Hamiltonian that is correct to secondhe integral operator defined in the momentum space repre-
order inA andV, sentation with the kernel as follows:
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WY(p,p")=(p|W"|p") field B and the nuclear magnetic momemf, of nucleusA
o should be considered. Then, the vector potential is written as
= KpRp(0-pVpp ) Ky A=A+ AN 28)
—Kp(Vpp op)Ry K/, (20 with
WA(p,p") =K y(Co~A ) Ky — K Ryoep(c oA ) A%=1Bxry, (29)
X O"pR Ky , (21) 1 nue
, PP AN=— = 4 XVG,, (30)
with C° A
_ V|p’ where
pp,:<|0| Loy 22
Ep+ Ep/ Wa(Ra)
Azf ——dR. (31
= _(plAlp) 23 r=R]
pp’ E,tEp - Here,ry=r—d is the position vector from the gauge origin

d, nucleusA is located at positio, andR,=|R—A|. The
weight functionw,(R,) is related to the finite size of the
nucleus® In this study, we use Gaussian nucleus model,
where the nucleus has the following finite distribution:

Another approach to treat magnetic vector poteriah
the DKH transformation is to replace the momentum opera
tor p with the mechanical momentum operater=p+ A,
according to Dirac’s original propos&l,and so this formu-
lation may seem to be more natural than the above one inthe w,(R,)=( 77A/77)3’2exq — ﬂARf\)- (32

first sight. Using this replacement, we obtain the magnetic ) ,
field-dependent kinetic operator as The nuclear exponeny, is taken from Ref. 51. The point

nucleus model, which has a delta function distribution, is

Ep(A)=[(co m)?+c*]2 also used for comparison,
=c[(p?+c?)+(p-A+A-p+A?) Wa(Ra)=6(Ra) (33
+a (pXA+Axp)]H2 (24)  and we obtain
If there is no scalar potentiaM=0), this operator repro- 8(Rp) 1 Ma
duces exactly the relativistic positive energy. However, in -V J Ir—R| dR= _Vm: a' (34)

order to apply Eq(24) to calculate derivative properties such ) o
as the magnetic shielding constant, we have to expand E§’e also consider the nuclear charge distribution in the

(24) in terms ofA. Expansion of Eq(24) in powers ofA is aussian model according to Chandra and HesBhe
not obvious because the operators do not commute. With thgaussian charge distribution affects not only the effective
use of a momentum space representation in wHigis di- scalar potentiaV®" but also the magnetic interactida™9
agonal, Eq(24) may be expanded in powers afas through the vector-scalar cross termsHg®d.
(plblp") The magnetic shielding tensor of nucleAsin the tu
pIdip component (,u=x,y,z) is given by Ramséyas a second-
a+b)¥2=(plalp)+ , e 25 p ; Y
(a+b)™=(plalp) (plalp)+(p'lalp") 9" order property,
where 9°E 39
g T — .
a=p’+c?, (26) AT 9B A,y iy =B=0
b=(p-A+A-p+A%)+a (pPXA+AXDp). (27)  To calculate this property, we adopt the finite perturbation

Replacing all the momentum operators in the usual DKcheory along with the Hellmann—Feynman theorerff, Ex-

Hamiltonian by Eq(25), we can obtain the operators for the pandibng_the Hamiltonian of EG15) in powers of8 andu,,
magnetic perturbation in the DKH theory. However, since'Ve obtain

the kinetic operatorE, appears everywhere in the DKH 10 o1

Hamiltonian and we have to take special care for commuta- H= H(O’O)JfEt HE: )Bt+; ; H

tion relation of the operators, this approach is quite tedious,

and moreover, the physical simplicity will be lost, though the (1.1)
two methods should finally give the same results. Thus, +; ; BiHK iimaut - (36)

choosing the potentiad as an expansion parameter in the o .
DKH transformation is natural for the theory of magnetic FOr variational wave functions, such as the Hartree—Fock

properties. SCF wave function used in this study, the Hellmann—
Feynman theorem holds and E§5) becomes

o — (PO @D O
B. Magnetic shielding constant Taw= (YO HARI W)

To study nuclear magnetic shielding constants, the mag- + i[<q,(st)|Hgo,1)|q,(Bl)>]B o, (37)
netic vector potentials generated from the uniform magnetic 9By v t
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where¥ (©) js the unperturbed wave function a#td®? is the X,=R,0-po-pR,=Ryp?R,. (44)
wave function under the external magnetic fi@dd. In a

quasirelativistic theory, the four-component wave function isH"® includes the magnetic correction to the SO interaction.
transformed into the two-component form, and accordingly,The paramagnetic shielding terr{®% is given as

the perturbation operator should be transformed into the

same representation as the wave function. This transforma- HOP=2> (HCAL+HEA)

tion is known as the “change of picture” effett.To use the I

Hellmann—Feynman theorem in the quasi relativistic frame-

work, the change of the picture effect should be considered. = K (RhQD+hQVR)K;+ X HEY,, (45
Thus,H®Y andH®Y in Eq. (37) [and alsoH*9)] are dif- J J

ferent from the nonrelativistic operators used in the previougyith
studies?®?’ These terms are derived from™9in Eq. (18)

which involves the quasirelativistic transformation operators

K, R, andWX. The operator$d(*9 HOY andH®D also
involve these transformation operatdesg.,K andR appear

in Egs. (38), (45), and (48)]. Thus, the change of picture —Pju(0j-ViGja)]. (46)

effect of the magnetic perturbation is tal_<en into accoun'F a_nq-he first term in Eq(46) is spin-free and corresponds to the
the Hellmann—Feynman theorem holds in our formula withingg ;51 one of the paramagnetic shielding. The second term is

the quasirelativistic framework. o the SO-induced shielding term and it can be decomposed
In our derivation of the Hamiltonian, the kinetic factor into two terms as follows:

E, does not include the vector potential and éliincludes
the terms up to quadratic iB and u. H®9 is the DKH  2i i 1
Hamiltonian without the magnetic fiefd=3* The magnetic 3¢ iu(Pi"ViGia) = ¢ | Piu(@)- ViGja) = 305u(P; ViGja) |-

h“’i)—1 X V.G +i— V.G
jAu—C(Pj iGia)u C[O'ju(pj'j ia)

Zeeman ternrH(*9 s given as 47)
H(1,0):2 (H{EO+ H L) The first tferr_n is isotrop?c_ ar_1d _co_rresponds to the Fermi con-
t j Lit 2t tact term in its nonrelativistic limit> the second term corre-

sponds to the spin-dipolar term. Similar rfd;@), the cross
v A i (0,1). L5 .
:E K]_(th](tl,o)Jr hj(tl’o)TRj)Kj+E H(Z%j,to), (3g)  terms of WY and W™ give H} ,(tlhoe)z 'epr|C|t form O]Zot?)ls
] ] term is the same as Eq10), buth'** is replaced byh'™~.
with H(zo’l) can be decomposed into the paramagnetic shielding,
Fermi contact, and spin-dipolar terms similarly to EG6)
1 i i ic shieldi (LD Ay
(LO_ _ T imer L (h ey and (47). The diamagnetic shielding terk'™~ arises from
hji 5 6P > Tia)t 5 Cloju(Py-Tja) =Pi( @y Tia) ] o cross terms iAo andWAN. SinceA® can be commuted
(39 with the momentum operatqgr, the diamagnetic shielding

The termH{:? corresponds to the Zeeman term in the non-{€"M can be written as

relativistic theory and involves the mass—velocity correction
through theR; term. The terrrH(zl'O) arises from the opera- H(Al,{t)=z (— Ejszﬁ(lﬁﬁ)tu—ﬁ(fjﬁ)tquzEj + Ejszﬁ(z%jﬁ)tu
tors that include bothVY and WA in Eq. (18). Using an !

i Cyv4 : : | | |
:rswtlcommutator{X,Y} XY+YX, this term can be written +F(2:h&)tqu2Ej_EjszRjzﬁi(s:,Lji)tu_Hg:,LjﬂuRszszj)’
_ _ (48)

d ! ! where the momentum space integral operators are defined by

+hEONOT EL+ {0 E LU

Ko(plh&D p" YKy
L TOT B T T Rk p,pr) = S PIMA TP Ky 49
+3(hGUT; Ejb+{h§9 E}T; (EptEpr)
+{T] EhEOT+THREOT ED, (40) D (.p7)= KpRo(pIp?hie+ i p? p' )Ry Ky
. . 2At ’ - 2 ’
where the momentum space integral operators are defined by ’ (EptEp) (50
U(p,p,):Kprp/Kp/_KpRpO"pvpprO'opRerer;,l, 20 (L,1) 2] s
(41) F(l'l)(p p,): KpRp<p|p hAtu p |p >Rp’Kp’ (51)
_ _ _ SAWREY (Ep+Ep)? '
T(p,p")=XKoVpp Ky =K Ryo-pVyp 0-pRy Koy _
(42 with
,0 ’ A1)
RUL0(p,p’) = KoRe(PIN D )Ky 3 h&id=3[6u(ra- VGA) ~rau( VG, (52
EptEpr Equation(52) corresponds to the nonrelativistic diamagnetic
with shielding operator with the Gaussian nucleus model except
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for the constant™2. In the Dirac theory, the factor 2 in [Il. NUMERICAL CALCULATIONS AND THE RESULTS

the diamagnetic shielding arises from the energy gap be- To study the relativistic effect on the magnetic interac-
tween positive and negative energy stafes this theory, tion operatorH™9 we use three different levels of approxi-
this factor arises due to the free-particle kinetic endfgyn  mations of the quasirelativisti®QR) calculations. At the QR
the denominator of Eq49) and Eq.(48). The first and sec- |evel 0 (QR-0) approximation, the DKH transformation is
ond terms in Eq(48) correspond to the diamagnetic shield- gpplied to the nonmagnetic Hamiltoni&®? and the mag-
ing term in its nonrelativistic limit. The next two terms cor- netic interaction is treated in the nonrelativistic manie}29
respond to the mass—velocity correction to the diamagnetig/hich includes the spin-dipolar and Fermi contact terms. At
shielding term in the Pauli approximation. The last two termsthe QR level 1(QR-1) approximation, we used the first-
are in the order o ~°, and therefore there are no analogs inorder DKH magnetic interactiod ™ and the nonrelativistic
the Pauli approximatioff>*® diamagnetic term. At the QR level @R-2) approximation,
To evaluate the matrix elements, we use the matrix transye used the second-order DKH magnetic interactitff?

formation technique and adopt the resolution of identity + HT'®9. The QR Hamiltonians used in this section are thus
method developed by Hesat al®* An operator(p|O|p’)  summarized as follows:

represented in the eigenvectorf is transformed from the

representation in the coordinate space bgér9 as QR level 0,
HOR-O= (Ej+ VM + > Vi + >, HI®; (60)
’ ’ 1! - ] : ik - 0j
(plOlp")= 2 (PLx){xIOlx" )}x'Ip")- (53) ] e T
XX QR level 1,
The matrix elements are calculatedarspace and the result-
ing matrix elements are back-transformed to jffe) space. HORTI= (Ej+ VM + X Vj+ > HIP
Since the Hamiltonian includes the spin operator, the ! 1=k J
wave function must have the generalized UKGUHF) 1 "
(Refs. 45, 45 form in the Hartree—Fock approximation. For + ?E hJ( B, (61
anN electron system, the GUHF wave function can be writ- !
ten using a single Slater determinant as QR level 2,
WOEIE= 1y pul, (54 HQR‘2=; (Ej+vfﬁ)+§k vjk+; (HT HT29),
where ¢; is a general spin—orbital, (62
b= ¢+ d)J_B'B_ (55) The explicit form of the nonrelativistic magnetic ter]'®

is given in Ref. 19. The nonrelativistic diamagnetic term
The above orbital is allowed to be occupied by a single elech®? is given by Eq(52). The QR-0 approximation has been
tron. The spatial part of the orbital is described by a linearused by our laboratory in studies of thi,3 °Hg,?® and

combination of the basis functiop as 183V (Ref. 27 chemical shifts within the SO-UHF frame-
work; in this study, the GUHF wave function was used for all
o_ o _ levels of approximations. The DKH transformation is applied
P = C H - ’ H 56
4 Ex: » X (0=a.f) (56) only to the one-electron terms; the two-electron terms used

. ) ) . o in this study are
whereC is the orbital expansion coefficient, which is a com-

plex number, determined by the SCF procedure. To calculate ;. 11 rpeXpy) o (NeXpw) - Ok 63
the magnetic shielding constant, we use the finite perturba- Ik Ik 4c? rj3k
tion theory'®*?In the finite perturbation theory, the unper- Tha first term

turbed SCF procedure

is the contribution from conventional
electron—electron repulsion; the second term represents the

Fj¢§°)=s§°)¢§°) (57) two-electron SO int_eraction. For_comparison v_vith_ the Dir_ac—
Coulomb calculation, the spin—other—orbit interaction,
and the SCF procedure with finite perturbati@q, which originates from the Breit interaction, is not included in
the QR calculation. Dirac—Hartree—Fo¢RHF) (Ref. 11
(F;+BHG?) ¢§Bt)=sz‘) qSJ(B‘) (58 and the nonrelativisti€NR) calculations are also performed.

o _ . _ The Breit interaction is not considered in the DHF calcula-
are performed, ang; is differentiated numerically with re-  tjon. A kinetic balanced small-component basis, a derivative

spect toB, . The magnetic shielding tensor is expressed as @f the large-component basis, is used for the DHF calcula-
sum of the occupied orbital contributions, tion.

occ

()1 La(11)] £(0) A. Helium and neon isoelectronic systems
O'A,tu:; (¢ |HjA’tu|¢j )

The magnetic shielding constants of He isoelectronic
p two-electron systems and Ne isoelectronic 10-electron sys-
¢ By 4 (B tems with various nuclear charges were calculated.&8#
+ o5 [ IHR 6™ e -of - (59 . o Clarges wers
4=h < J | JAU' J ) Bi=0 32s30p universal Gaussian basis functidnsvere used for
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TABLE |. Magnetic shielding constants of He isoelectronic systéppsn).

Point nucleus model Gaussian nucleus model
QR QR

System VA DHF Level 2 Level 1 Level O NR DHF Level 2 Level 1 Level 0 NR
He 2 60.0 60.0 60.0 59.9 59.9 60.0 60.0 60.0 59.9 59.9
catt 20 738.8 752.1 770.7 713.5 698.9 738.6 752.0 768.2 713.5 698.9
Zr38* 40 1762.7 1811.2 2109.6 1527.5 1408.9 1757.5 1805.8 2053.7 1526.1 1408.9
Nd°&* 60 3569.7 3617.0 5372.2 2529.5 2118.6 3513.4 3558.4 4819.9 2524.9 2118.5
Yho8* 70 5123.9 5131.2 8611.2 3158.9 2474.3 4962.2 4964.1 7402.3 3141.4 24741
Hg'®" 80 7552.7 7470.9 14048.4 3927.9 2828.4 7107.6 7015.8 11586.0 3904.2 2828.0
Thoe* 90 11610.2 11356.8 23690.1 4914.3 3184.3 10393.5 10131.7 17769.8 4853.4 3183.7
Fm8* 100 18953.8 18374.9 40922.6 6283.2 3539.0 15608.3 15062.8 28581.3 6105.4 3538.1

Nuclear charge.

He- and Ne-isoelectronic systems, respectively. A Gaussiagystems oZ=20-40. The magnetic shielding constants cal-
nucleus model and point nucleus model were used for calcweulated with the DHF theory increase exponentially with an
lations at each level of approximation. increase inZ, whereas those calculated by the NR theory
The magnetic shielding constants calculated for He-dncrease almost linearly. This relativistic increase in the mag-
isoelectronic systems are summarized in Table I. In Fig. lpetic shielding constants of heavy elements is the simplest
we plot the magnetic shielding constants against the nucleaxample of a “heavy-atom shift of the heavy atoftfAHA)
chargeZ. The magnetic shielding constants calculated at aleffect that was pointed out by Pyyklamd co-workers®
levels of relativistic methods are larger than the correspond- By comparing the QR-0 approximation with the NR re-
ing nonrelativistic values. However, the amount of the rela-sults, we can see the relativistic effect df"? for magnetic
tivistic correction is quite different at each level of approxi- shielding constants. This approximation includes the SO in-
mations. teraction and orbital shrinkage due to the SFR term, but does
By comparing the full relativistic DHF results with the not include the relativistic effect on magnetic interaction.
NR results, we can see the contributions of the total relativityrThe relativistic effect orH(®? is only around 20% of the
to the magnetic shielding constants. In heavy system& of totg| relativistic effect aZ=100. The remaining relativistic
>70, the contribution of relativity to the magnetic shielding correction results from the relativistic effect on the magnetic
constant is greater than the nonrelativistic contribution, and ghteractionH™ which has been formulated by the DKH
significant relativistic effect can be seen even for the lighty 5nsformation applied to the magnetic field proposed in the
preceding section. To study the effects of the first- and
second-order DKH transformations, QR-1 and QR-2 calcu-

50000 lations were carried out. At the QR-1 level, where the first-

- (a) Point nucleus . . . .

g order transformation is considered, a mass—velocity correc-

S 400004 —o— pgF L . . .

2 QR2 tion is taken into account in thR; term in Egs.(38) and

S 300001 —e— OR-1 (45). This effect greatly increases the magnetic shielding

% —»%— NR constants of the heavy systems. The results clearly show that

5 20000 the HAHA effect dominantly arises from the mass—velocity

s correction ofH™29 However, the relativistic correction in the

7 10000- QR-1 approximation is twice as large as the true correction
ok by the DHF theory. This overestimation of the relativity from

30000 the first-order transformation is corrected by including the

- () Gaussian nucleus q second-order transformation. The magnetic shielding con-

8 tant Iculated by the QR-2 approximation agree well with

g DHF stants ca y the pp g

= —a— QR22 the DHF results, with differences of 3% or less.

£ 20000 Q ) ) .

< —+— QR-1 The relativistic magnetic terrid ™9 takes into account

& —— NR the so-called “picture change” effect suggested by Barysz

= 10000 - and Sadlef*! the change in the operator representation result-

ﬁ ing from the DKH(relativistic to quasirelativistic, in genejal

w transformation. Kelloand Sadlej found that the picture
04 i change had a pronounced effect on the electric field

0 20 40 60 80 100 gradient’ Our results are consistent with their findings and

Z confirm the importance of the picture change for the electro-

FIG. 1. Magnetic shielding constanfspm) calculated for helium isoelec- static a_nd magnetic prOpertle_s,' Genera"y’ thf’; X\)/av_e fp_nctlon
tronic systems with théa) point nucleus model antb) Gaussian nucleus  COrTection through the relativistic effect dd'>™ signifi-
model plotted against the nuclear chaiye cantly affects the total energy of the system and furthermore,
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TABLE Il. Magnetic shielding constants of Ne isoelectronic systépgsm).

Point nucleus model Gaussian nucleus model
QR QR
System z@ DHF Level 2 Level 1 Level O NR DHF Level 2 Level 1 Level 0 NR

Ne 10 558.1 561.0 565.5 554.2 554.2 558.1 561.0 565.3 554.2 552.3
caor 20 1312.4 1328.0 1373.7 1281.7 1264.0 1312.2 1327.8 1370.6 1281.6 1264.0
zr30* 40 3123.8 3179.9 3703.7 2839.6 2684.3 3117.9 3174.0 3627.6 2839.2 2684.3
Nd®>°* 60 5920.3 5975.3 8439.6 4681.2 4104.3 5856.6 5908.4 7856.9 4675.8 4104.1
Y80+ 70 8142.7 8144.2 12870.3 5795.5 4814.1 7957.2 7951.1 11480.7 5779.4 4813.9
Hg™*" 80 11479.7 11356.9 20034.9 7134.6 5524.3 10962.8 10824.0 16921.4 7081.1 5523.9
Theo+ 90 16915.7 16534.5 32148.7 8870.8 6234.4 15481.8 15076.8 25280.8 8688.7 6233.8
Fm?0* 100 26642.1 25732.2 51838.2 11474.8 6944.4 22636.1 21712.1 37087.5 10806.7 6943.4

Nuclear charge.

the picture change of perturbation operators should be coref the 2s electron to the Fermi contact term is smaller than
sidered for the properties. that of the & electron, and the contribution of thep2lec-

The direction of the deviation of the QR-2 result from trons is zero because they have a nodal plane at the nucleus.
the DHF result is not constant. For the systems Zof Thus, the relativistic effects di™9on the Z and 2p elec-
=2-70, the magnetic shielding constants calculated in thé&ons are relatively small.
QR-2 approximation are larger than those of the DHF theory, Figure 3 shows the effect of the finite nucleus model.
whereas for the systems @f=80-100, the QR2 approxima- The finite nucleus correction facteris defined byoc9=(1
tion underestimates the magnetic shielding constants com+e)oP, whereoP and o9 are the magnetic shielding con-
pared to the DHF results. This trend is due to the differencestants of the point nucleus and Gaussian finite nucleus
in the effects ofH]"® and HJ'®. The first-order ternH"®  model, respectively. The QR-2 results agree well with the
always increases the magnetic shielding constant. The ma&HF results and the plots efin Fig. 3 using both methods
correction inH"9 has a significant effect even in relatively almost overlap. With both methods, increases exponen-
light systems. The second-order tek§'?, which contains tially with an increase irZ. A similar trend has been reported
cross terms of the scalar and vector potentials, diminishes tha the hyperfine coupling constants of one-electron atoms
shielding constant. The effect of this term increases with awith largeZ values?* In the magnetic shielding constant, the
increase in the nuclear potential. The deviations from thdiniteness of nuclei dominantly affects the Fermi contact
DHF results can be corrected by considering the higher-order
DKH transformation.

The calculated magnetic shielding constants of the Ne-

isoelectronic systems are summarized in Table Il. In Fig. 2, - 30000 (a) Point nucleus
we plot the magnetic shielding constants against the nuclear § 250004 _ DHF
chargeZ. The differences between QR-0 and NR in the Ne- 4 20000 —*— QR-=2
isoelectronic systems are larger than those in He- S —¢— QR-1
isoelectronic systems. This difference is 4530 ppm Zor 80150001 — > NR

=100 in the Ne-isoelectronic system with a point nucleus

model, which is about 65% larger than the value in the He-

isoelectronic system. In contrast, the differences between
QR-1 and QR-0 in the Ne-isoelectronic systems are not so
large compared to those in the He-isoelectronic systems. This
difference is 40363 ppm foZ=100 in a Ne-isoelectronic

(b) Gaussian nucleus

system with a point nucleus model, which is about 14% g250000 e

larger than that in the He-isoelectronic system. The differ- = 20000 > QR-2 !
ence between QR-2 and QR-1 is also about 14% greater than S —*— QR

that in the He-isoelectronic system. This result indicates that &0 150000 —*— NR

the relativistic correction of thes2 and 2p-orbitals, which is S 100004

considered by the QR-0 approximation throudf??, is also 2

significant compared to that of thes-brbitals. The relativis- w1 5000

tic effect onH™ which is considered by the QR-1 and o

QR-2 approximations, is quite important for the dlectrons, "0 20 40 60 80 100
but not so much for the 2and 2o electrons, even though z

there is a large effect on the absolute value. The reIatIVIStI?fIG. 2. Magnetic shielding constanfppm) calculated for neon isoelec-

effec_t on H™ arises main')_’ near the nuclear regio_n a_ndtronic systems with théa) point nucleus model an¢tb) Gaussian nucleus
dominantly affects the Fermi contact term. The contributionmodel plotted against the nuclear cha#je
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-0.30 B. Noble gas atoms
(a) He-like system
— — DHF The 9%4p Gaussian basis set for Ne, thes®p set for
—* QR-2 Ar, the 1511p6d set for Kr, the 1815p9d set for Xe, and
0201 —=— QR-1 the 2420p13d8f set for Rn were used for calculations. The
€ 311:'0 exponent parameters for Ne and Ar were taken from cc-
0.10 pVDZ sets°®°For Kr, Xe, and Rn, the exponent parameters
hana were taken from Dyall’s relativistic double-zeta s&ts.
The calculated magnetic shielding constants of noble gas
0.00 ] ’ atoms are summarized in Table Ill. By comparing the DHF
030 results with the NR values, we can see the magnitude of the
() Ne-like system HAHA effect that originates in relativity in heavy atoms. If
—— DHF we consider the point nucleus model, the effect gives an
020 ] — QR-2 increase of 1500 ppm in the magnetic shielding constant of
QR-1 Xe, and an increase of 9000 ppm in that of Rn. Even with Kr
—*+— QR-0 ' o T,
€ —— NR we cannot neglect the effect of relativity. The magnetic
010 shielding constants calculated with the QR-2 approximation
are in good agreement with the DHF values. The differences
between the QR-2 results and the DHF results are 1.5% or
0.00 - less. Even though the basis sets used for these calculations

0 20 40 60 80 100 are insufficient, and an accurate comparison should be car-
ried out with a complete basis limit, our results suggest that

FIG. 3. Finite nucleus correctiofsee text plotted against the nuclear QR-2 is a good approximation of the DHF theory.

chargeZ. (a) Helium isoelectronic systems arfld) neon isoelectronic sys- . The QR-1 approximation overestimates the magnetig
tems. shielding constants of heavy elements and QR-0 underesti-

mates. The QR-0 result for Rn with a point nucleus model

seem to be adequate compared to the DHF results. However,
term. The Fermi contact term originates from the hyperfineat the QR-O approximation, the Gaussian nucleus model
coupling of the electron spin-polarization and the nucleadives a decrease of 2385 ppm in the magnetic shielding con-
magnetic moment caused by SO interaction and magnetigant of Rn. In comparison to the DHF and QR-2 values, the
Zeeman interactiol*® This mechanism is closely related to €effect of the Gaussian nucleus on Rn seems to be too large at
that of the hyperfine coupling constant. In the NR theory, théhe QR-0 approximation.
Fermi contact term is zero for closed-shell systems because To provide detailed insight into the magnetic shielding
there is no SO interaction. Only the diamagnetic shieldingconstants of heavy noble gases, the total shielding constant
term contributes to the NR magnetic shielding constants an#as decomposed into the contributions from each occupied
the nucleus model has very little effect. The QR-1 approxi-orbital according to Eq(59). The orbital contributions to the
mation largely overestimates thevalue and the QR-0 ap- magnetic shielding constants of Xe and Rn are shown in
proximation underestimates thevalue. Relativistic correc- Tables IV and V, respectively. In the magnetic shielding con-
tion of the magnetic interaction strongly affects the magneticstant of Xe, relativity predominantly affects the inreerand
response of electrons at the nucleus. A finite nucleus effeqv-orbitals. In contrast, relativity only slightly affects the con-
can not be neglected for the accurate calculation of a largtsibution of thed-orbital. In comparison to the DHF results,
nuclear charge system with a few electrons such as th@R-0 underestimates the contribution of the 1s orbital by
present models in whichslelectrons account for a signifi- about 700 ppm and QR-1 overestimates the contribution of
cant amount of the total magnetic shielding constant. Thigshe 1s orbital by about 1000 ppm. On the other hand, the
effect would be less important in many-electron systems ifQR-0 approximation overestimates the contribution of the
which the valence electrons have a significant contribution.outers-orbitals, particularly that of the $orbital.

TABLE Ill. Magnetic shielding constants of noble gas atofppm).

Point nucleus model Gaussian nucleus model
QR QR

System z? DHF Level 2 Level 1 Level O NR DHF Level 2 Level 1 Level O NR
Ne 10 557.5 560.5 560.3 554.1 552.0 557.5 560.5 560.3 554.1 552.0
Ar 18 1271.8 1284.4 1288.4 1250.6 1233.7 1271.8 1284.4 1288.3 1250.6 1233.7
Kr 36 3572.6 3625.0 37729 3367.8 3155.2 3571.6 3624.0 3768.7 3367.7 31545
Xe 54 6982.2 7070.1 8176.1 6180.8 5328.2 6957.8 7044.7 7956.7 6166.9 5326.6
Rn 86 19906.1 19959.8 31877.4 18895.1 10728.2 19162.9 19074.6 26888.6 16510.4 10727.1

aNuclear charge.
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TABLE V. Orbital contribution in the magnetic shielding constant of the Xe atppm).

Point nucleus model Gaussian nucleus model
QR QR
Orbital DHF Level 2 Level 1 Level O NR DHF Level 2 Level 1 Level O NR

1s 2882.5 2953.9 3885.7 2182.0 1623.1 2861.6 2932.7 3701.7 2181.6 1621.7
2s 583.7 600.7 719.9 497.8 402.6 580.9 597.8 695.3 497.5 402.4
3s 196.9 206.8 238.6 183.5 151.6 196.3 206.1 232.2 182.4 151.5
4s 75.1 83.3 95.6 91.8 62.4 74.9 83.1 93.3 88.7 62.4
5s 25.9 37.4 47.1 87.5 21.9 25.9 37.2 45.2 78.4 21.9
2p 1413.1 1403.7 1392.5 1364.7 1311.9 14130 1403.7 1392.5 1364.7 1312.0
3p 503.1 487.5 497.2 490.4 474.5 503.1 487.5 497.2 490.4 474.5
4p 194.4 193.1 192.8 190.1 186.0 194.4 193.1 192.8 190.4 186.0
5p 59.8 59.6 59.9 59.4 58.6 59.8 59.6 59.9 59.4 58.6
3d 777.8 7747 777.0 766.8 766.3 777.8 774.7 777.0 766.8 766.4
4d 270.0 269.3 269.8 266.9 296.3 270.0 269.3 269.8 260.9 269.2
Total 6982.2 7070.1 8176.1 6180.8 5328.2 6957.8 7044.7 7956.7 6166.9 5326.6

In Rn, the relativity affects the contributions of the inner The QR-2 approximation, which also considers a relativ-
s- and p-orbitals, and is also important for the contribution istic effect onH™9 increases the contributions of the inner
of the 3d-orbital. Relativity only slightly affects the contri- orbital and diminishes the contributions of the outer
bution of the 4 -orbital. ComparEd to the DHF results, QR-0 s-orbital; thus, the total Sh|e|d|ng constant of QR-2 ap-
underestimates the contribution of the-drbital by about  nyroaches the DHF values. This result clearly shows the im-
5000 ppm. This approximation also underestimates the consorance of the relativistic effect on the magnetic interaction

Lribu(;[ior;] of the _Zt’.);-o_rbital lfayhabout 7?50 pgmgs OE_ thle Other torm to the magnetic shielding constants of heavy elements.
and, the contributions of the outes-5and G-orbitals are - jq inadequate to consider only the relativistic effect on the

overestimated by 1000 ppm. The finite nucleus effects on

. v(\iave function. The change in the orbital picture due to DKH
these orbitals are too large compared to the DHF results, ar}ransformation significantly changes the magnetic response
the finite nucleus effects on outsrorbitals are larger than 9 y 9 Y P

those on inner orbitals. The QR-0 approximation underestipf orbitals. An approximation such as QR-0, in which the

mates the contribution of thep2orbital by about 400 ppm Picture change effect on the magnetic perturbation is ne-
and greatly underestimates the contribution of theoBbital. glected, introduces errors not only to core electrons but also
This suggests that the QR-0 approximation cannot correctlj© valence electrons. Using the QR-0 approximation for the-
treat the orbital response to a magnetic field at the nuc|eu@retica| studies of the chemical shifts of heavy elements will

position. Since the errors from the inner and outer orbitaldead to serious error because the valence electrons play im-
are cancelled, the total shielding constant happens to be clog@rtant roles in the chemical shifts of molecules. A theory
to the DHF value in case of the point nucleus model. that considers the picture changeg%29andH©? equally

TABLE V. Orbital contribution in the magnetic shielding constant of the Rn atppm).

Point nucleus model Gaussian nucleus model
QR QR
Orbital DHF Level 2 Level 1 Level 0 NR DHF Level 2 Level 1 Level 0 NR

1s 9566.6 9491.2 18827.7 4445.0 3033.3 8975.1 8810.5 14945.4 44175 3032.3
2s 1856.2 1929.1 3420.0 1103.0 717.7 1753.8 1806.7 2765.5 1075.8 717.6
3s 590.4 645.9 1081.6 611.5 281.2 563.7 610.8 891.6 515.1 281.1
4s 232.0 293.0 494.5 720.8 1255 223.3 277.9 409.1 494.9 1255
5s 86.4 168.6 309.6 1368.5 54.8 84.0 158.8 251.4 849.8 54.8
6s 48.3 250.7 538.0 3813.0 20.8 46.0 230.8 419.3 2309.4 20.8
2p 2792.5 2628.5 2572.4 2403.0 2154.2 2786.4 2625.3 2572.0 2404.4 2154.2
3p 1029.9 913.4 967.2 923.8 837.8 1027.7 913.8 967.1 924.5 837.8
4p 436.5 416.6 416.0 393.8 367.5 435.7 416.4 416.0 394.6 367.5
5p 174.2 163.7 167.6 153.6 154.3 174.0 163.9 167.7 155.4 154.3
6p 52.5 48.6 49.8 5.9 52.8 52.5 49.0 50.2 15.8 52.8
3d 1461.1 1439.3 1452.2 1412.6 1383.3 1461.1 1439.3 1454.2 1412.6 1383.3
4d 611.3 603.8 608.4 592.1 582.6 611.3 603.9 608.4 592.1 582.6
5d 221.3 219.4 220.0 2155 217.6 221.3 219.4 220.1 215.6 217.6
4f 747.1 748.1 750.6 732.9 744.8 747.2 748.1 750.7 732.9 744.8
Total 19906.1 19959.8 31877.4 18895.1 10728.2 19162.9 19074.6 26888.6 16510.4 10727.1
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TABLE VI. Computational time and SCF dimension for DHF and quasire- tions using the four-component Dirac—Hartree—Fock theory,
lativistic (QR-2) calculations. the nonrelativistic theory, and the DKH transformation of the

System Method CPU seconds  Dimension lteration lower level in which the magnetic interaction was approxi-

Xe DHF 4080 776 20 mated e_lt the nonrelativistic I(_evel. The results of the present
QR-2 862 218 24 calculations may be summarized as follows:

Rn DHF 63900 1492 24 . .
QR-2 10300 410 32 (1) The results of the present two-component quasi relativ-

istic theory compare well with those of the four-
component Dirac—Hartree—Fock theory; the differences
were within only 3%.

In the helium isoelectronic systems 670, the contri-
bution of the relativity to the magnetic shielding constant
is larger than the nonrelativistic contribution. The rela-
tivistic wave function correction arising from the relativ-
istic terms inH(®9 is not the dominant origin of this
relativistic increase in the magnetic shielding constants.

is essential for studying the chemical shifts of heavy ele-
ments. )
The QR-2 approximation greatly improves the magnetic
shielding constants and their orbital contributions in heavy
elements. However, in Rn, the contributions of the &nd
6s-orbitals still overshoot the DHF results. One reason for
this difference may be the lack of the higher-order relativistic
effect: the third- or higher-order DKH transformation may Instead, the dominant origin of this relativistic increase
describe the effe@:®” The basis set incompleteness error s the relativistic correction to the magnetic interaction
may also be a reason. The basis sets used in the calculations gperator, H™29 The effect of the so-called “picture
for noble gases are double-zeta quality, and the basis set-
dependence is different between the QR approximation and
the DHF; the results of different theories should be compare(iis)
in a complete basis limit. Calculations using a large even-
tempered basis should be performed for a more reliable com-
parison. However, such a large-scale DHF calculation for

change” is quite important for the magnetic shielding
constant of the heavy nucleus.

In the neon isoelectronic systems, the relativistic correc-
tion of HM™ mainly affects the & electrons. The effects
of relativistic H™9 on the % and 2p electrons are rela-

magnetic shielding constants is still very difficult at present.

At the end of this section, we refer to the computation(4)

time. The calculations were performed on a COMPAQ
XP1000 workstation. The CPU timés secondsand SCF
dimensions(dimension of the Fock matrixare summarized

tively small.

The finite nucleus effect on magnetic shielding constants
was studied using the Gaussian nucleus model. The
present theory reproduces well the DHF results. The ef-
fect on helium isoelectronic systems0f90 is 10% or

in Table VI. The dimension of the QR calculation is the same  more. The finite nucleus model has almost no effect in

as the large-component dimension of the corresponding DHF  the nonrelativistic theory.

calculation. Any symmetry reduction is not used. The con-(5) The present theory can well reproduce the relativistic

vergence of QR method may be accelerated by using ex- jncrease in the magnetic shielding constants of noble gas

trapolation method; the DIIS extrapolatfSnwas used in atoms. The differences between the present theory and

DHF calculation to accelerate the convergence. the DHF results are<1.5%. The change in the orbital
picture due to the DKH transformation affects the va-

IV. CONCLUSIONS lence orbitals as well as the cores.

We have proposed a quasirelativistic theory for calculat- ) ) )
ing NMR magnetic shielding constants. The present theory is 1 he present theory provides a foundation for the relativ-
based on the second-order Douglas—Kroll transformatiofstic study of molecular magnetic properties. Adaptation of
that was extended to include the magnetic vector potentiathe present theory to other magnetic properties such as spin—
The present theory expands the Hamiltonian in terms of thepin coupling constant and hyperfine structure should be
electromagnetic potentid+ A, instead ofV. The resulting straightforward with only some modifications on the one-
Hamiltonian includes both linear and quadratic terms in theslectron matrix elements according to the DKH transforma-
external magnetic field; it is suitable for calculations of mag-tion. To apply this method to the study of molecular NMR
netic properties. The present formulation of the DKH trans-chemical shifts, we need a gauge-origin-independent theory.
formation including the magnetic field is combined with the The electron correlation effects may also be important. In a

matrix-transformation method developed by Hessl, the subsequent papét,London’s gauge-including atomic orbit-

GUHF-SCF method, and the finite perturbation method to- . . .
gether with the Hellmann—Feynman theorem, and applied t(z)als (GIAOs) are incorporated into the present DKH transfor

the calculations of the nuclear magnetic shielding constanténat'on’ and the resultant theory is applied to the calculations

We have obtained the various terms as the origins of th8f the NMR chemical shifts of molecular systems. An inclu-

nuclear shielding constants in a change of picture frameSion of the electron correlation effect, using the energy gra-
work; their physical meanings are of considerable interestsdient method for the many-body theory developed in the

We applied the present theory to the magnetic shieldingionrelativistic framework, is also straightforward because
constants of helium-isoelectronic ions, neon-isoelectroni¢he present theory keeps the framework of the nonrelativistic
ions, and noble gas atoms. We also performed the calculdheory.
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