
Singularity-free analytical energy gradients for the
SAC/SAC-CI method: coupled perturbed minimum

orbital-deformation (CPMOD) approach

Kazuo Toyota a, Mayumi Ishida b, Masahiro Ehara b,
Michael J. Frisch c, Hiroshi Nakatsuji b,*

a Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
b Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University,

Sakyou-ku, Kyoto 606-8501, Japan
c Gaussian, Inc., 140 Washington Avenue, North Haven, CT 06473 USA

Received 23 February 2002; in final form 9 September 2002

Abstract

A new procedure for evaluating energy gradients in a singularity-free manner is presented for use in the SAC/SAC-

CI program in which computational dimensions are reduced by the perturbation selection method. The singularity in

the energy gradients stemming from a breakdown of the unitary invariance is effectively removed by the minimum

orbital-deformation (MOD) method proposed in the previous study. All calculations can be done analytically via new

two sets of linear equations combined with the coupled-perturbed Hartree–Fock method. Geometry optimizations for

malonaldehyde in the ground and lowest singlet excited states are performed by the new method.

� 2002 Published by Elsevier Science B.V.

1. Introduction

The SAC/SAC-CI method [1–9] proposed by
Nakatsuji in 1978 is an elegant theory of elec-

tronic structure for the ground and the excited

states, however, computational cost for solving

the SAC/SAC-CI equations formally scales as

OðN 6Þ, N being the number of basis functions, if

all single and double R excitation operators are

considered. This scaling property can be relaxed

by suitable selections of the excitation operators,

for example, the so-called perturbation selection,
but the efficiency of such selections strongly de-

pends on the choice of the MO set. To exploit the

short-range nature [10] of the correlation effects, it

is rational to choose the localized MOs (LMOs) as

the basis.

Use of the localizability of electron correlation

[11–14] has been extensively studied but limited to

single point calculation except for a few examples
[15–18]. This may be partly because that the lo-

calization of occupied or unoccupied MOs is no

longer invariant transformation for the energies
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and properties of a wavefunction determined

within selected operators. If the localization de-

grees of freedom are determined by such standard

procedures as the Boys [19] and the Pipek–Mezey

[20] methods, the MOs are not necessarily con-

tinuous functions of external parameters [21].
Therefore, singularities may appear in the first

derivatives of wavefunctions described by the se-

lected operators. Needless to say, the singularities

are pure artifact and must be eliminated. This is

why the minimum orbital-deformation (MOD)

method was proposed in the previous work [21].

In this communication, we present new ex-

pressions for evaluating the SAC/SAC-CI energy
gradients [5–8], by which the divergence of the

CPHF coefficients is effectively circumvented. This

realizes an economical calculation of the gradients

by virtue of the localizability in a singularity-free

manner.

2. Theory

The following conventions are used throughout

the text: doubly occupied orbitals are denoted by i,

j, k, l, unoccupied orbitals by a, b, c, d, and general

orbitals by p, q, r, s. Atomic orbitals (AOs) are

denoted by Greek letters l, m, q, r. We assume the

MOs to be real, orthonormal, and the linear

combinations of AOs, wp ¼
P

l vlClp.
The analytical energy gradients for the SAC/

SAC-CI method were formulated by Nakajima

and Nakatsuji [5,6] and implemented in the SAC/

SAC-CI code for singlet, doublet, and triplet states

within SD-R, i.e., the singles and doubles excita-

tions from the SAC wavefunction. Recently, the

method was extended to the higher order R oper-

ators up to sextuples [7] and spin multiplicities up
to septet state [8]. The SAC/SAC-CI energy gra-

dients with respect to the external parameters a
such as nuclear coordinates, electric field, etc., can

be expressed in common form as

oEcorr:

oa
¼
X
pq

cpqF
a
pq þ

X
pq;rs

Cpq;rs pqjrsð Þa

�
X
pq

XpqSa
pq þ

X
p>q

Xpq

�
� Xqp

�
T a
pq; ð1Þ

where the skeleton Fock, two-electron, and over-

lap derivative integrals [22] are denoted by F a
pq,

ðpqjrsÞa and Sa
pq , respectively. The elements of the

effective one- and two-electron density matrices

(EDMs) [5–8] are denoted by cpq and Cpq;rs, re-
spectively. The matrix elements Xpq are given by

Xpq ¼
X
r

Fprcrq þ 2
X
rst

ðprjstÞCqr;st

þ 1

2

X
irs

dqi 4ðpqjrsÞf � ðprjqsÞ � ðpsjqrÞgcrs;

ð2Þ

where Fpq and ðpqjrsÞ denote the Fock and two-
electron integrals, respectively. The symmetries

of the EDMs, i.e., cpq ¼ cqp and Cpq;rs ¼ Cpq;sr ¼
Cqp;rs ¼ Crs;pq, are used in deriving Eq. (2). In this

communication, we assume that all MOs are

correlated to avoid unnecessary complexity. The

anti-symmetric matrix Ta ¼ Ua �Uay represents

dynamical mixing among MOs, where the matrix

elements U a
pq denote the CPHF coefficients [23].

When the MOs are determined by the SCF proce-

dure, the ai elements of the matrix Ta are attributed

to the a-dependence of the SCF MOs and are ex-

plicitly obtained by solving a set of CPHF equa-

tions [23]. On the other hand, the ij and ab elements

of the matrix Ta are redundant, i.e., Xij � Xji ¼ 0

and Xab � Xba ¼ 0 for all i, j and a, b in such con-

ventional theories as MP2, CISD [15,24] and CCSD
[18]. However, to exploit the localizability, we must

allow energies to depend on the localization degrees

of freedom. Thus, T a
ij and T a

ab elements become non-

redundant in the local approach.

Explicit equations for the Pipek–Mezey local-

izations were derived by El Azhary et al. [15] and

adopted for analytical energy gradients [15–18] of

the local methods originally proposed by Pulay
[11]. Rauhut et al. [16] mentioned that in calcu-

lating the local MP2 energies and gradients for

benzene, artificial errors might be caused by re-

dundant degrees of freedom for the Pipek–Mezey

localization. The redundant degrees of freedom

may cause divergence of some ij and ab elements of

the matrix Ta, and hence the energy gradients may

diverge to the infinity. To avoid this behavior, an
alternative procedure, the MOD method was

proposed in the previous work [21].
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The spirit of the MOD method is a suppression

of orbital rotation among occupied or unoccupied

MOs against external perturbations. That is

achieved by imposing the conditions, T a
ij ¼ 0 and

T a
ab ¼ 0 for all i > j and a > b since the elements of

Ta represent the �speed� of orbital rotation induced
by the perturbation. Satisfying these conditions for

arbitrary geometry is practically difficult, but al-

ternative conditions

Mij �Mji ¼ 0 and Mab �Mba ¼ 0 ð3Þ
for all i > j and a > b, can be very easily imposed

on the MOs. The matrix elements ofM are defined

by the overlap between MOs for the current a and
externally given constant a0 as

M ¼ Cyða0ÞSða0ÞCðaÞ; ð4Þ

where S denotes the overlap matrix in the AO

representation. Imposing Eq. (3) on the MOs ef-

fectively suppresses orbital rotation for small

a � a0 because ðM�MyÞ=ða � a0Þ coincides with

Ta in the limit of a ! a0 . In the practical geometry

optimization, the initial guess calculated at the

lower level of theory may be a good choice of a0.
Requiring Eq. (3) to the first-order, we obtain

two sets of equations to determine ij and ab ele-

ments of Ta for the MOD method, which we call

�coupled perturbed MOD (CPMOD)� equations

o

oa
Mwxð �MxwÞ ¼

X
y>z

Kwx;yzT a
yz þ

X
lm

Hwx;lm
oSlm

oa

þ
X
ck

Nwx;ck
~UU a
ck ¼ 0 ð5Þ

for all w > x, where fw; x; y; zg stands for fi; j; k; lg
or fa; b; c; dg, and the CPHF coefficients in the

CMO representation are denoted by ~UU a
ck. The co-

efficients Kwxyz, Hwx;lm, and Nwx;ck are given by

Kwx;yz ¼
1

2
ð1 � syzÞð1 � swxÞdxzMwy ; ð6Þ

Hij;lm ¼ � 1

2
ð1 � sijÞCmj

X
k

ClkMki; ð7Þ

Hab;lm ¼�1

2
ð1�sabÞCmb 2

X
k

ClkMka

 
þ
X
c

ClcMca

!
;

ð8Þ

Nij;ck ¼ ð1 � sijÞWkj
~MMic; ð9Þ

Nab;ck ¼ �ð1 � sabÞWcb
~MMak; ð10Þ

~MM ¼ Cyða0ÞSða0Þ~CCðaÞ ¼MWy; ð11Þ

where the CMO coefficients are denoted by ~CC and

the localization by W. The operator syz permutes

the indices y and z.
Substituting the formal solutions of the CPHF

[23] and the CPMOD equations (Eq. (5)) for the

elements of the matrix Ta and introducing the so-

called Z-vectors [26], we can rearrange Eq. (1) in

the usual form [27]

oEcorr:

oa
¼
X
lm

PpqF a
pq þ

X
pq;rs

Cpq;rsðpqjrsÞa

�
X
lm

Qlm
oSlm

oa
: ð12Þ

The matrix elements Ppq and Qlm [25] can be eval-

uated before generating the derivatives of the AO

integrals.

A note here is that the present analytical ex-

pressions are independent of the structure of the

post-SCF wavefunction, which is implicit in the
matrix elements cpq and Cpq;rs. The present method

is examined for the CISD and the SAC/SAC-CI in

the next section.

The present method have been implemented in

the development version of the GAUSSIANAUSSIAN 01

system of programs [28], as the SAC/SAC-CI

gradients code, and used to perform geometry

optimizations of molecules in the ground and ex-
cited states.

3. Test calculation

The equilibrium structures of malonaldehyde

ðC3O2H4Þ in the ground ð11A0Þ and the lowest

singlet excited ð11A00Þ states were optimized by the
CISD and the SAC/SAC-CI methods. For SAC-

CI, approximately variational (SAC-CI-V) solu-

tions were used [4]. The basis set was the double-f
set of Huzinaga–Dunning [29,30] plus single po-

larization function with exponents 0.85, 0.75 (d)

and 1.0 (p) on each oxygen, carbon and hydrogen

732 K. Toyota et al. / Chemical Physics Letters 367 (2003) 730–736



atoms, respectively, designated D95(d,p). All 100

MOs were correlated in the post-SCF calcula-

tions. The localizability of electron correlations

was exploited through the perturbation selection

[31] of double excitation operators in the LMO

representation. The HF and CIS wavefunctions
were chosen as the zeroth-order approximation of

the ground and excited states, respectively. The

energy thresholds for perturbation selection of

10�6 and 10�7 a.u. were used for the ground state

(kg), and 10�7 and 10�8 a.u. for the excited state

(ke). In the SAC/SAC-CI calculations, some less

important integrals for the non-linear terms of

the SAC and SAC-CI expansions were neglected
[9]. A set of excitation operators selected at the

initial geometry was used until the optimization

procedure was completed. The geometries opti-

mized by the conventional CISD and CIS were

used as the initial geometry for the ground and

the excited states, respectively. The MOs were

determined by the Pipek–Mezey localizations for

the initial geometries and by the MOD method
during the optimization. In the latter case, the

LMOs of the former geometry were used as

Cða0Þ.
The perturbation selection depends on the ini-

tial geometry and chosen orbital set Cða0Þ. This

causes to some extent ambiguity of the optimized

results, however, the optimized energies and ge-

ometries converge to the exact ones when the
thresholds becomes zeroes and their convergence is

very fast with respect to the thresholds in the

present calculations. The localization of MOs for

the initial geometry may be not necessarily pre-

served by the MOD method in the final point of

optimization if the starting point is not a good

guess. Such difficulties may occur in the very flat

potential energy surfaces. A possible prescription

to this problem is re-localizing MOs and re-

selecting operators at the final point, and then
re-optimizing geometry as suggested by Rauhut

et al. [16]. We are planning to examine this method

in the forthcoming Letter [25].

3.1. Ground state

The localizability of electron correlations for

the ground state is clearly seen in Table 1. More
than 95% and 98% of the correlation energies were

obtained for the CISD at the levels of kg ¼ 10�6

and 10�7, respectively, while the computational

dimensions were drastically reduced to 1.8% and

5.1% of the conventional calculations, respectively.

At the latter level, the SAC reproduces more than

90% of the CCSD correlation energy, though the

ratio is lower than that for the CISD due to the
partial neglect of integrals mentioned above.

Effect of the perturbation selection on the geo-

metrical parameters of the ground state is very

small as shown in Table 2. The RMS error is as

small as 0.002 �AA in bond lengths and 0.26� in va-

lence angles for the CISD, and 0.009 �AA and 0.48�
for the SAC. The errors in the geometries are

larger for the SAC than for the CISD, but are
expected to decrease when all the integrals for the

non-linear terms of the SAC and SAC-CI expan-

sions are included. Such study is in progress in our

laboratory.

Table 1

Computational dimensions and energies of the ground (11A0) state of malonaldehyde at the geometry optimized by the CISD

CISD SACa CCSD

kg:
b 10�6 10�7 0.0 10�6 10�7 0.0

Dimension 22 257 60 811 1 186 569 22 257 60 811 1 186 569

(%) (1.8) (5.1) (100.0) (1.8) (5.1) (100.0)

E(total) (a.u.) )266.379453 )266.398617 )266.409056 )266.442328 )266.462622 )266.543753

E(corr.) (a.u.) )0.682411 )0.701574 )0.712013 )0.745285 )0.765579 )0.846710

(%) (95.84) (98.53) (100.00) (88.02) (90.42) (100.00)

a In calculating the SAC wavefunction, some less important integrals were neglected in addition to the perturbation selection of the

excitation operators (see text).
b Energy threshold in a.u.
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3.2. Excited state

As seen in Table 3, the correlation effects seem

to be localizable for the 11A00 ðnp�Þ excited state as

well as for the ground state. Most of the correla-

tion effects, DEðtotal � CISÞ, over 94% and 98%

were obtained for the CISD at the levels of

ke ¼ 10�7 and 10�8, while the computational di-
mensions were drastically reduced to 1.6% and

3.9% of the conventional calculations, respectively.

This is quite an impressive result.

The optimized geometrical parameters for the

excited state are given in Table 4. Very fast con-

vergence of the geometry with respect to the en-
ergy threshold is observed for the CISD. The RMS

error is as small as 0.003 �AA and 0.71� for the CISD

at ke ¼ 10�8. The SAC-CI calculation without se-

lection is not presented since it takes large cpu time

at present, however, fast convergence of the results

is expected from the small difference between the

two levels of calculations, namely, 0.007 �AA and

0.2�.
The adiabatic (0–0) excitation energies DE0–0

were obtained in consistent accuracy by subtract-

ing energies of the ground state shown in Table 2

from the corresponding energies of the excited

Table 2

Optimized geometrical parameters and energies for the ground (11A0) state of malonaldehyde

Parameter CISD SAC CCSD

kg:
a 10�6 10�7 0.0 10�6 10�7 0.0

C(2)@O(1) (�AA) 1.226 1.226 1.226 1.233 1.233 1.240

C(3)AC(2) 1.463 1.456 1.452 1.477 1.471 1.455

C(4)@C(3) 1.358 1.356 1.355 1.365 1.363 1.365

O(5)AC(4) 1.328 1.324 1.321 1.342 1.339 1.337

H(6)AO(5) 0.968 0.970 0.972 0.969 0.971 0.982

RMS error (0.006) (0.002) (0.000) (0.012) (0.009) (0.000)

O(1)@C(2)AC(3) (�) 123.7 123.7 123.6 123.7 123.6 123.4

C(2)AC(3)@C(4) 120.7 120.4 120.0 121.1 120.8 120.4

C(3)@C(4)AO(5) 125.7 125.5 125.2 125.8 125.7 125.2

C(4)AO(5)AH(6) 107.6 107.5 107.4 107.4 107.4 106.7

RMS error (0.44) (0.26) (0.0) (0.60) (0.48) (0.0)

E(total) (a.u.) )266.379759 )266.398674 )266.409056 )266.443919 )266.463611 )266.544670

a Energy threshold in a.u.

Table 3

Computational dimensions and energies of the excited (11A00) state of malonaldehyde at the geometry optimized by the CIS

CISD SAC-CIa

kg:
b – – – 10�6 10�7

ke:
b 10�7 10�8 0.0 10�7 10�8

Dimension #S – – – 21 286 57 369

(%) – – – (1.8) (4.8)

#R 18 887 46 225 1 186 569 18 887 46 225

(%) (1.6) (3.9) (100.0) (1.6) (3.9)

E(total) (a.u.) )265.679825 )265.685821 )265.689220 )266.304411 )266.325374

DEðtotal � CISÞ (a.u.) )0.164587 )0.170583 )0.1739815 )0.789173 )0.810136

(%) (94.60) (98.05) (100.00)

a In the present calculations, some less important integrals were neglected in addition to the perturbation selection of the excitation

operators (see text).
b Energy threshold in a.u.
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state shown in Table 4. The correction of the zero-
point energy (ZPE) was estimated to be )0.15 eV

by HF and CIS. The adiabatic excitation energies

predicted by CISD vary from 18.68 to 19.19 eV

with the decrease of ke and are much higher

than the experimental value of 3.504 eV [32].

The overestimation, however, is not attributed to

the perturbation selection. The DE0–0 values by the

SAC-CI are 3.42 and 3.39 eV at the levels of
kg ¼ 10�6=ke ¼ 10�7 and kg ¼ 10�7=ke ¼ 10�8, re-

spectively, in excellent agreement with the experi-

mental value, and fairly insensitive to the

thresholds.

The above results suggest that Eq. (3) can be

safely used instead of the standard localization

conditions for calculating geometries when the

good initial guess is accessible, for example,
through a lower level theory giving a good zeroth-

order description of the state.
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