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Abstract

A correlation method in the relativistic theory using four-component spinors is proposed for the calculations of magnetic shielding

constants. The relativistic effects are included by solving Dirac–Fock equation, and the electron-correlation effects are included by the

SDCImethod and theCCSDmethod. Some improvement on the integral transformation algorithm and the use of the direct CImethod

were essential for a performance of this method. It is applied to the calculations of themagnetic shielding constants of hydrogen halides

and methyl halides. For hydrogen halides the calculated values excellently reproduce the experimental values to within 0.8 ppm.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Nuclear magnetic resonance (NMR) is one of the

most popular spectroscopic procedures in chemistry

and numerous data have been accumulated. It is very
sensitive to a change of the chemical environment

around the resonant nucleus and reflects an interesting

electronic mechanisms of the valence electrons of mole-

cules [1,2]. Since the magnetic shielding constant

strongly reflects the valence electron state in the region

close to the nucleus, where the electron has high veloc-

ity, the relativistic effect is sometimes very important

and even dominant in some cases [3]. Therefore, the rel-
ativistic theory is essential for the quantitative calcula-

tion of the magnetic shielding constant.
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Nakatsuji et al. [4] reported in 1995 the first ab ini-

tio relativistic calculations of magnetic shielding con-

stants. They adopted the finite-perturbation UHF

method and demonstrated that the spin–orbit (SO)

interaction, originating from the relativistic theory, is
an essential origin of the chemical shifts in the HX

and CH3X (X = F, Cl, Br, I) series. They further car-

ried out a series of calculations for many different mol-

ecules and confirmed that the SO interaction is an

essential origin of the chemical shifts in many series

of molecules [5–7]. They then proposed a method that

could take into account the SO term and the spin-free-

relativistic (SFR) term simultaneously [8] and showed
that both terms were important and strongly coupled

in the heavy nuclear systems like mercury compounds

[9] and tungsten compounds [10].

Recently, the method has been improved along the

line of the Douglas–Kroll–Hess (DKH) theory [11–14]

by including the relativistic magnetic interaction opera-

tor incorporated into the generalized UHF scheme
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[15,16]. We have figured out that the effect of the so-

called �picture change� is so important for the Hg chem-

ical shifts in mercury dihalides that it is not able to

reproduce the experimental results without this correc-

tion [16]. In the framework of the density functional the-

ory, Wolff et al. [17] made use of the zeroth-order
regular approximation to incorporate the relativistic ef-

fects into the calculations of the NMR shielding of Hg,

W, and Pb.

The theory using four-component spinors is neces-

sary to consider the exact relativistic effects. Nakatsuji

and coworkers [18,19] calculated the NMR chemical

shifts using the Dirac–Fock (DF) theory. The DF cal-

culations showed that the second-order DKH theory
slightly breaks down even in moderately heavy ele-

ments, such as Te [19]. Quiney et al. [20] used the

sum-over-state method in the four-component formal-

ism to calculate the magnetic shielding constants in

water. Visscher et al. [21] studied magnetic shielding

and spin–spin coupling constants of HX (X = F, Cl,

Br, and I) using the relativistic random phase

approximation.
In addition to the relativistic effect, the correlation ef-

fect is important for precise calculations of magnetic

shielding constants. Nakatsuji and coworkers [22] sug-

gested the relativistic coupled cluster (CCSD) theory in

the DKH level, and applied to the proton and carbon

shielding constants of HX (X = F, Cl, Br, and I), H2X

(X = O, S, Se, and Te), and CH3X (X = F, Cl, Br, and

I). They concluded that the coupling of the relativistic
effect and the electron correlation is significant for the

compounds including heavy elements. Visscher et al.

[23] applied the relativistic CCSD and CCSD(T) theories

to some properties of hydrogen halides and examined

the relativistic effect by the four-component correlation

methods [24].

In this Letter, we describe the relativistic singles and

doubles configuration interaction (SDCI) method and
the relativistic CCSD method using four-component

spinors. The reference function is written with the sin-

gle determinant that is constructed from the spinors

belonging to the so-called �electron state�, because our

interest is focused only on electron behaviors. This the-

ory is applied to the calculations of the magnetic

shielding constants of hydrogen halides and methyl

halides.
2. Theory

Our starting point is the no-pair Dirac–Coulomb–

Breit (DCB) Hamiltonian described by Sucher [12] and

Mittleman [25]. In the presence of the magnetic vector

potential, the effective many-body Hamiltonian is given
by
HDCB
þ B0ð Þ ¼

X
i

ca � Pi þ Aið Þ þ b0c2 þ
X
n

V n ið Þ
" #

þ Lþ
1

2

X
i6¼j

1

rij

 !
Lþ; ð1Þ

where c is the speed of light and a and b 0 are the Dirac

matrices. Vn is the nuclear attraction term due to the nu-

cleus n. L+ is the product multiplied n times by K+(i),
i = 1, . . ., n, which is the projection operator onto the

space spanned by the positive-energy eigenfunctions of

the matrix DF equation. Throughout this study, atomic

units are used. The Breit interaction was not considered

here.

The vector potential Ai arising from a uniform exter-

nal field B0 and the nuclear magnetic moment of the nth

nucleus ln is given by

Ai ¼
1

2
B0 � ri � dð Þ � 1

c2
X
n

ln �rGn; ð2Þ

where

Gn ¼
Z

wn Rnð Þ
jr� Rj dR. ð3Þ

Here, the position of the nth nucleus is N and

Rn = |R � N|. The weight function wn(Rn) of the Gauss-

ian nucleus model is given by

wn Rnð Þ ¼ gn
p

� �3=2
exp �gnR

2
n

� �
. ð4Þ

The nuclear exponent gn was taken from [26].

Molecular DF spinors are obtained from the Dirac–
Fock equation

ca � Pþ b0c2 þ
X
n

V n þ
1

2
cB0t r� dð Þ � af gt

"

� 1

c

X
n

lnt rGn � af gt þ J� K

#
/DF

i ¼ ei/
DF
i ; ð5Þ

where J and K are Coulomb and exchange operators,

respectively. In Eq. (5), the nuclear magnetic moment

term is included explicitly. In the SCF level of calcula-

tions, the Hellmann–Feynman theorem is satisfied and
utilized, but in this study the calculations are done in

the post-SCF levels of SDCI and CCSD, where the Hell-

mann–Feynman theorem is not satisfied. This is why the

perturbation of the nuclear magnetic moment must be

considered.

We are interested only in the positive energy solutions

of Eq. (5), which is the so-called �electronic state�. The
zero-order wave function in the electron-correlation cal-
culations is approximated by a single Slater determinant

of the molecular DF spinors belonging to the �electronic
state�.

For the electron-correlation calculations of relativis-

tic treatment, we used SDCI method and CCSD
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method. Since the relativistic effects are already taken

into account at the SCF level, the post-SCF method

can be similar to the non-relativistic one. But in the

case of the relativistic calculation, especially with

four-component spinors, the computational cost is so

big that its application is limited to a small system.
Therefore, we implement direct SDCI algorithm [27]

and an efficient integral transformation algorithm,

which are written in the following section in some

detail.

The magnetic shielding constant rn,tu (t, u = x, y, z) is

given by Ramsey [28] as

rn;tu ¼
o2E

oB0toln;u

����
B0t¼ln;u¼0

; ð6Þ

where E is the total energy. In this Letter, we calculate

the isotropic term given by

rn ¼
rn;xx þ rn;yy þ rn;zz

3
. ð7Þ
3. Computational details

The step to transform one-electron and two-electron

atomic integrals to molecular ones is costly even in the

non-relativistic theory. In the relativistic theory, four-

component spinors are used and the cost is bigger than

that in the non-relativistic theory. We propose a new

efficient scheme of the integral transformation. The

number of one-electron integrals is small and its treat-
ment is easy. Therefore, we concentrate on the two-elec-

tron integrals. The molecular spinors are designed for

the symmetry adapted Kramers� restricted calculation.

However, we have to employ the unrestricted DF calcu-

lation because magnetic field breaks the Kramers�
degeneracy. Thus, we design an efficient scheme of inte-

gral transformation for unrestricted four-component

spinors.
A scalar basis set consists of linear combinations of

primitive cartesian Gaussian basis functions, gLu ; g
S
v ,

where the superscripts �L� and �S� represent large and

small components, respectively,

gLp ¼
X
u

cLupg
L
u ; gSq ¼

X
v

cSvqg
S
v . ð8Þ

The four-component spinor is constructed with this

scalar basis set in the following way:

vLl ¼

vLal
vLbl
0

0

0
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1
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1
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.

ð9Þ
The transformation coefficients, dLa
pl and dSa

ql , is de-

fined as complex numbers. One-electron and two-elec-

tron integrals are calculated and stored using the basis

of the form in Eq. (8)

rX sXktY uY
� �
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X ; Y ¼ L or S. ð10Þ

But the molecular spinors are expanded with the basis

of the form in Eq. (9)
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Therefore, a transformation from the form in Eq. (8)

to the form in Eq. (9) is needed. The four-component

spinors in Eq. (9) are adapted for the point group sym-

metry. There is no restriction for the coefficients, C in

the unrestricted DF calculation. Therefore, the compu-

tation scheme is rather straightforward. A simple idea
is that four atomic bases are transformed into four spi-

nors at once
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Generally, the integral transformation can be divided

into four stages

iSkTU½ � ¼
X
r

C�
ri RSkTU½ �;

ijkTU½ � ¼
X
s

Csj iSkTU½ �;

ijkkU½ � ¼
X
t

C�
tk ijkTU½ �;

ijkkl½ � ¼
X
u

Cul ijkkU½ �.

ð13Þ

where i, j, k, l are molecular four-component spinors ex-

pressed by Eq. (9). The first step is most costly because

the number of [RSiTU] is the biggest of other integrals



Table 1

Molecular geometries used in the calculationsa

X HX CH3X

rHX rCX rCH hHCX

F 0.9175 1.3907 1.0979 108.81

Cl 1.2747 1.7859 1.0944 108.43

Br 1.4141 1.9434 1.0930 107.69

I 1.6046 2.1417 1.0939 107.66

a Bond lengths in Å and angles in degrees.
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and in addition, four-component spinors are used. Here,

we note that the two latter spinors, t and u, are not chan-

ged during the first two steps and we implemented so

that these spinors are not transformed during the first

two steps

rLsLktLuL
� �

! RLSLktLuL
� �

; . . . ;

iSktu½ � ¼
X
r

C�
ri RSktu½ �;

ijktu½ � ¼
X
s

Csj iSktu½ �;
ð14Þ

ijktLuL
� �

! ijkT LUL
� �

; . . . ;

ijkkU½ � ¼
X
t

C�
tk ijkTU½ �;

ijkkl½ � ¼
X
u

Cul ijkkU½ �.
ð15Þ

The number of operations in the first-half transforma-

tion is reduced to 1/4 with using Eq. (14) because |TU]

includes four elements. The core memory required for

the step is also reduced to 1/4. The efficient use of mem-

ory further accelerated computations. The CPU time for

the integral transformation step was shown in Table 4.

The computations with Eq. (14) were approximately

six times faster than those with Eq. (13). In the four-
component method, the first-half transformation is

much more costly than the second-half transformation;

therefore, the present scheme has worked very

efficiently.

The direct CI method for the relativistic theory was

implemented. The direct method diminished the disk

I/O of matrix elements which was a bottleneck of CI

calculations.
4. Calculation

We calculated the magnetic shielding constants of 1H

in HX (X = F, Cl, Br, I) and 13C in CH3X (X = F, Cl,

Br, I). In the calculation of hydrogen halides, uncon-

tracted Csizmadia and coworkers [29] (6s3p), (9s6p),
(14s11p5d), and (15s11p6d) sets were used for the

large-components of F, Cl, Br, and I, respectively. For

the large-component of hydrogen, the uncontracted

Huzinaga–Dunning�s (4s) plus their first-order basis

function (FOBFs) [30] (4p) was used: improving basis

functions by adding the FOBFs is a systematic method

for reducing the gauge origin dependence. The small-

component basis sets were the first derivatives of the
large-component basis functions so as to satisfy the con-

dition of �kinetic balance�. In the calculation of methyl

halides, we used the same basis functions for hydrogen.

For the large-component of C, F, and Cl, Dunning�s cc-
pVDZ [31] sets were used, and for the small-component

the first derivatives of the large-component basis func-
tions were included. For Br and I, Dyall�s [32] sets were
used. The molecular geometries used are collected in

Table 1, which are taken from [33]. The gauge center

was located on the halogen atom.

In the calculations of 1H magnetic shielding constants

eight occupied electrons were correlated. In the calcula-

tions of CH3F and CH3Cl, all 18 and 26 electrons,

respectively, and in the calculations of CH3Br and
CH3I, 18 and 24 electrons, respectively, were correlated.

The virtual orbitals with energies below 2 hartree were

included, except for CH3F and CH3Cl for which all vir-

tual orbitals were correlated. The number of active orbi-

tals were then 32 for HF, 32 for HCl, 42 for HBr, 48 for

HI, 76 for CH3F, 76 for CH3Cl, 44 for CH3Br, and 44

for CH3I.

We chose the field strength of ln so that the perturba-
tion energies due to the applied B0 and ln come to the

same magnitude: we used the field strengths that change

the energy around 10�6 hartree. The accuracy of the

numerical differentiations was confirmed with these field

strengths. The field strengths used in this study were

then B0 = 0.005, ln = 50.0 for HF and HCl, B0 =

0.001, ln = 10.0 for HBr, and B0 = 0.0005, ln = 10.0

for HI, all in a.u.
5. Results and discussion

5.1. 1H Magnetic shielding constants of HX (X = F, Cl,

Br, I)

The calculations of 1H magnetic shielding constants
were carried out for HX (X = F, Cl, Br, I) using SDCI

and CCSD methods. Table 2 shows the calculated 1H

magnetic shielding constants. The calculated values in

the quasi-relativistic theory and non-relativistic theory

were taken from [22], and the experimental values were

taken from [33]. All experimental values are the results

of gas-phase NMR measurements with respect to CH4.

The absolute value of CH4 was estimated by a measure-
ment of the rotational constant of CH4, and then the

NMR chemical shifts of CH3X were converted into

the absolute values with this value.

Fig. 1 shows the relativistic effects on the 1H magnetic

shielding constants: the vertical axis is the difference



Table 2
1H magnetic shielding constants of HX (in ppm)

Non-relativistica Quasi-relativistica Relativistic Experimentalb

SCF MP2 SCF CCSD SCF SDCI CCSD

HF 28.83 29.39 29.06 29.87 27.17 28.47 28.53 28.50 ± 0.2c

HCl 30.76 30.96 31.88 32.90 30.07 31.12 31.14 31.06

HBr 31.09 31.20 36.87 36.39 34.09 34.19 34.20 34.96

HI 31.77 31.81 48.01 44.29 45.10 44.03 43.92 43.86

a Ref. [22].
b Ref. [33].
c The rovibrational contribution at T = 300 K was estimated at �0.52 ppm.
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between the experimental and calculated values, and d,

n, and m represent the results of the non-relativistic,

quasi-relativistic, and relativistic methods, respectively.

The results of the relativistic method agree somewhat

badly with the experimental values in HF and HCl,

but agree fairly well in HBr and HI. This behavior is

opposite to the behaviors of the non-relativistic and

the quasi-relativistic method, which agree better with
the experimental values in HF and HCl than in HBr

and HI. It is expected that as the atom becomes heavier,

the relativistic effect becomes larger, so the result of the

relativistic method is most reasonable.

Fig. 2 shows the electron-correlation effects on the 1H

magnetic shielding constants: the vertical axis is the dif-

ference between the experimental and calculated values,

and m,¤,d, and n represent the result of the quasi-rel-
ativistic SCF, the quasi-relativistic CCSD, the relativis-

tic SCF, and the relativistic CCSD method,

respectively. The relativistic CCSD values obtained in

this study reproduce well the experimental values, and
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Fig. 1. The difference between theory and experiment for the 1H

magnetic shielding constants of HX at the SCF level.
the biggest error is only 0.76 ppm in HBr. It is seen from

Table 2 that the SDCI method already includes the elec-

tron-correlation effects appropriately. The results of the

relativistic SCF theory for HF and HCl, which agree

somewhat badly, are corrected excellently at the CCSD

level in close agreement with the experimental values.

This behavior is opposite to the behavior of the quasi-

relativistic CCSD method, which disagrees for HF and
HCl. It is expected that the electron-correlation effects

would also increase as the atom becomes heavier, and

so the present study expresses appropriately the cou-

pling between the electron-correlation effects and the rel-

ativistic effects.

The relativistic SCF result of the same series using

larger basis sets was reported by Visscher et al. [21].

Their results of HBr and HI are around 2 ppm larger
than ours. The basis set convergence is not good in the

single gauge-origin calculation and the basis set should

be systematically improved. We use the FOBF

method for improving basis set. The SCF calculation
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Fig. 2. The differences between theory and experiment for the 1H

magnetic shielding constants of HX at the CCSD level.
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overestimates the relativistic effect. The coupling be-

tween the electron-correlation effect and relativistic ef-

fect, which reduces the 1H shielding constants in heavy

halides, supports our results and does not contradict

with the findings of Visscher et al. [21].

5.2. 13C Magnetic shielding constants of CH3X (X = F,

Cl, Br, I)

The calculations of 13C NMR chemical shifts were

carried out for CH3X (X = F, Cl, Br, I) using the SDCI

method and the results are summarized in Table 3 to-

gether with the experimental value. The reference mole-

cule is CH3F. All the experimental values except for
CH3F are due to the NMR measurements in neat liquid

and that of CH3F is due to the gas-phase NMR

measurement.

The SCF results reproduce the experimental values

qualitatively, but the agreement is not satisfactory.

Unfortunately, the electron-correlation effect did not

improve these results, in particular for CH3I. We think

that the reason of the deviation at the SCF level is the
lack of the basis functions, especially tight s-type func-

tions, because in the quasi-relativistic study of the

NMR chemical shifts, the Fermi-Contact term was the

most important origin [4–10] and the tight s-type func-

tions are necessary to describe the Fermi-Contact term

appropriately. The deviation at the SDCI level would

also be due to the lack of the basis functions, especially

tight p-type functions, because these are necessary to de-
scribe the reorganization of the orbitals in the correla-

tion of core electrons. For the CH3X series, it was
Table 4

Computational time for the integral transformation step

Basisa Active space CPU timeb (h)

Eq. (13) Eq. (14)

CH3F 336 18 · 76 26 4

CH3Cl 364 26 · 76 67 13

CH3Br 488 18 · 44 200 32

a The number of spinor basis.
b COMPAQ XP1000 workstation (2 GB memory).

Table 3
13C NMR chemical shifts of CH3X (in ppm)

Relativistic Experimentala

SCF SDCI

CH3F 0 0 0

CH3Cl �39.34 �43.25 �51.30

CH3Br �51.48 �45.41 �66.80

CH3I �77.68 �82.62 �98.50

a Ref. [33].
severe to include these basis functions up to the SDCI

level because of the heavy demands on computers.
6. Conclusion

We have performed the relativistic electron-correla-

tion calculations of the magnetic shielding constants

and chemical shifts. The relativistic effect is considered

at the Dirac–Fock level, and the electron correlation ef-

fect is considered at the SDCI and the CCSD levels. An

improvement in the integral transformation step and the

direct CI algorithm were necessary to perform this cal-

culation. We have applied the method to the calcula-
tions of the 1H magnetic shielding constants of HX

(X = F, Cl, Br, I) and 13C chemical shifts of CH3X

(X = F, Cl, Br, I). For the HX series, the calculated val-

ues reproduced excellently the experimental values: the

differences were within 0.8 ppm. For the CH3X series,

the results were not so satisfactory mainly because we

could not use large enough basis set for severe demand

of the relativistic correlation method on computational
facilities.
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