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We present a new computational algorithm, called direct algorithm, for the symmetry-adapted
cluster �SAC� and SAC–configuration interaction �SAC-CI� methodology for the ground, excited,
ionized, and electron-attached states. The perturbation-selection technique and the molecular orbital
index based direct sigma-vector algorithm were combined efficiently with the use of the sparse
nature of the matrices involved. The formal computational cost was reduced to O�N2�M� for a
system with N-active orbitals and M-selected excitation operators. The new direct SAC-CI program
has been applied to several small molecules and free-base porphin and has been shown to be more
efficient than the conventional nondirect SAC-CI program for almost all cases. Particularly, the
acceleration was significant for large dimensional computations. The direct SAC-CI algorithm has
achieved an improvement in both accuracy and efficiency. It would open a new possibility in the
SAC/SAC-CI methodology for studying various kinds of ground, excited, and ionized states of
molecules. © 2008 American Institute of Physics. �DOI: 10.1063/1.2832867�

I. INTRODUCTION

The symmetry-adapted cluster �SAC�1 and SAC–
configuration interaction �SAC-CI�2 methodology proposed
and first coded by one of the authors in 1978 is an electron
correlation methodology for ground, excited, ionized, and
electron-attached states of molecules. It has been success-
fully applied to diverse chemistry, physics, and biology in-
volving various kinds of electronic and vibrational states �for
recent reviews, see Ref. 3�. The methodology is based on the
cluster expansion formalism combined with the variational
principle.2 Later, theoretically identical methodologies, such
as coupled-cluster linear response theory4 and equation-of-
motion coupled cluster,5 have been reported. These methods
established a highly accurate way to study excited electronic
structures of molecules.

The earlier version of the SAC/SAC-CI program6 was
published in 1985. A great deal of effort has been made to
the theory and program development, and a lot of new ideas
have been implemented. The SAC-CI general-R method,7

multireference version of the SAC/SAC-CI method,8 expo-
nentially generated wave function idea,9 extension up to sep-
tet spin multiplicity,10 and the analytical energy gradient
method11 were the representative fruits of these efforts. Re-
cently, the giant SAC/SAC-CI theory for giant molecular
crystals has been proposed.12 The SAC/SAC-CI method has
been implemented in the GAUSSIAN03 software program
package

and has been widely used in universities and industries.13 So
far, the SAC/SAC-CI code has been written with the
excitation-operator driven algorithm1,2 with the use of the
perturbation-selection technique.14,15 The integral driven al-
gorithm was introduced to the SAC/SAC-CI method by
Hirao,16 but his algorithm was not combined with the
perturbation-selection technique.

Molecular orbital �MO� integral driven direct algorithm
for electron correlation methods was first proposed by Roos
for singles and doubles �SD� CI method.17 In such a proce-
dure, the iteration vector �usually termed as sigma vector� is
directly constructed from MO integrals, without an explicit
construction of a Hamiltonian matrix. At the same time,
when the SAC/SAC-CI SD code was established,1,2 the
coupled-cluster doubles �CCD� method only for ground state
was formulated by Pople et al. in integral driven form.18 An
efficient computation algorithm of CCSD was designed by
Scuseria et al.,19 who introduced intermediate arrays for ef-
ficiency. These MO integral driven approaches include all
SD or D excitation operators. We consider that this feature
conflicts with the policy of our SAC/SAC-CI program ex-
plained below.

A policy of our SAC/SAC-CI program is that we discard
minor unimportant terms by introducing some selection pro-
cedures with thresholds. Accordingly, depending on the de-
sired accuracy, we introduce appropriate thresholds of selec-
tions, and less important but time-consuming terms are
neglected.20 The perturbation selection of the linked opera-
tors is a particularly important technique.14,15 By virtue of
this technique, we can use a single theory and a single pro-
gram for various research subjects;3 from fine theoretical
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spectroscopy of small molecules21–23 to photobiology of big
biological molecules.24,25 This feature enables us to investi-
gate various chemical phenomena from an equal viewpoint.
The perturbation-selection technique is particularly impor-
tant for excited states. The atomic orbital �AO� basis func-
tions are usually optimized for the ground state. We need a
flexible AO basis to describe various kinds of excited states.
Diffuse functions and/or sizable Rydberg functions are often
required. Therefore, the number of active MOs �N� for
excited-state calculations is much larger than that for ground
state. Order N6 algorithms �the optimal scale of CCSD
method� will soon face the limit of computer. The limitations
of O�N6� algorithms would be much more severe for excited
states than for ground states.

A problem in the algorithm of the conventional SAC-CI
program lies in the calculations of unlinked terms. The
Hamiltonian matrix elements between selected excitation op-
erators are evaluated within the loops driven by the labels of
excitation operators. Consequently, the unlinked integral part
becomes an O�M3� step, where M is the number of selected
excitation operators. This step is so time consuming that the
additional approximation shall be introduced for practical
calculations, and the approximation was to cut less important
excitation operators than a given threshold off the loops. This
cutoff approximation is, however, problematic because the
unlinked terms are essentially important in the SAC/SAC-CI
theory.

An efficient use of the core memory is also very impor-
tant. We use a projective reduction formula26,27 to evaluate
the Hamiltonian matrix elements between selected excitation
operators. The MO integrals are randomly requested from
the projective reduction routine in the loops of the excitation
operator labels. Therefore, we have to load all the MO elec-
tron repulsion integrals �ERIs� on a core memory. If the core
memory is not enough to load them on, we have to use a
multipass algorithm for separated MO ERIs, but this multi-
pass algorithm is inefficient.

In this paper, a solution for these problems is provided
by combining the direct algorithm with the perturbation-
selection technique. We have developed the direct SAC and
SAC-CI algorithm running within the selected excitation op-
erators. The MO based direct algorithm that utilizes the
sparseness of the Hamiltonian matrices provides an efficient
algorithm that works within the selected excitation operators.
This also results in an efficient minimal memory require-
ment.

The theoretical framework and the algorithm of the di-
rect SAC/SAC-CI method are described in the next section.
The implementation of the new direct SAC-CI algorithm is
given in Sec. III, and applications to several test cases are
reported in Sec. IV. The present article focuses on single-
point calculations. The analytical energy gradient of the
SAC/SAC-CI method has been given in GAUSSIAN 03. We
have also adapted the direct algorithm for the analytical en-
ergy gradient calculations, and it will be reported in the
subsequent paper.

II. THEORY

A. SAC/SAC-CI method

The details of the SAC/SAC-CI methodology have been
reviewed in several articles.1–3 Here, we summarize the
points pertinent to the present study. The SAC expansion for
a totally symmetric singlet ground state is written as

�SAC = exp�S��0� , �1�

where �0� is a closed-shell Hartree-Fock �HF� single determi-
nant and

S = �
I

cISI
†. �2�

SI
† is a symmetry-adapted excitation operator. The SAC co-

efficient cI is calculated by solving the nonvariational equa-
tions

�0��H − ESAC���SAC� = 0 �3�

and

�0�SL�H − ESAC���SAC� = 0, �4�

where H is the Hamiltonian and ESAC is the SAC energy.
The SAC theory provides not only the SAC wave func-

tion �SAC, but also a set of functions that constitute the basis
for the excited states. Namely, the set of functions

�K = PSK
† ��SAC� �5�

provides an adequate basis for expanding the excited states.
Here, P is a projection operator P=1− ��SAC���SAC�. There-
fore, we expand our excited states by linear combinations of
	�K
 as

�SAC-CI
�p� = �

K

dK
�p��K, �6�

which is the SAC-CI wave function for the excited states.
Here, the index p labels the excited state. The SAC-CI wave
function can also be defined for the excited state having dif-
ferent symmetries and for the ionized and electron-attached
states. Including these states, Eq. �5� is generalized as

�K = PRK
† ��SAC� , �7�

where 	RK
† 
 denotes a set of excitation, ionization, and

electron-attachment operators. The SAC-CI coefficients and
energies are calculated by solving the nonvariational equa-
tion

�0�RL�H − ESAC-CI
�p� ���SAC-CI

�p� � = 0. �8�

In the SAC/SAC-CI program, we can use the
perturbation-selection method. We select only important ex-
citation operators by the second-order perturbation theory
and reduce the labors in the SAC and SAC-CI
calculations.14,15,20 In the singles and doubles method �SAC/
SAC-CI SD-R�, we include all singles and apply a perturba-
tion selection to doubles. In the ground state SAC calcula-
tion, the doubly excitation operator SK

† is included if
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�Es�SK
† �� � �g, �9�

where Es�SK
† � is the second-order energy contribution of SK

†

to the ground state,

Es�SK
† � =

�0�SKH�0��0�HSK
† �0�

�0�SKHSK
† �0� − �0�H�0�

. �10�

For excited, ionized, and electron-attached states, the doubly
excitation operators which satisfy

�Ep�RK
† �� � �e �11�

with

Ep�RK
† � =

�0�RKH��Ref
�p� ���Ref

�p� �HRK
† �0�

ERef
�p� − �0�RKHRK

† �0�
�12�

are included in the SAC-CI calculations. Here, �Ref
�p� is the

reference wave function which has the energy ERef
�p� . The rec-

ommended usage of the perturbation-selection technique is
found in the SAC-CI Guide.20

B. Conventional nondirect SAC/SAC-CI algorithm

The conventional version of the SAC/SAC-CI program
was formulated to be driven with the excitation operator la-
bels. For example, the SAC-CI secular equation is written as

�
K

�HLK + ULK�dK
�p� = ESAC-CI

�p� �
K

dK
�p�SLK. �13�

Here, HLK, ULK, and SLK denote linked, unlinked, and over-
lap matrix elements, respectively,

HLK = �0�RLHRK
† �0� , �14�

ULK = �
I

�0�RLHRK
† SI

†�0�cI, �15�

and

SLK = �0�RLRK
† �0� . �16�

For simplicity, we dropped higher-order unlinked terms in
Eqs. �13� and �15� and the projection operator that will ap-
pear in Eq. �16�. The details of this simplification were de-
scribed in Ref. 20. The generalized eigenvalue problem of
Eq. �13� is solved iteratively with the modified Davidson’s
procedure,28 where the sigma vector,

�L
�m� = �

K

�HLK + ULK�bK
�m�, �17�

is constructed in each iteration step from the basis vector b
and the matrix elements. In the conventional code, the matrix
elements are evaluated with the projective reduction formula
and are stored on disk. The loops for the integral evaluation
�Eqs. �14�–�16�� and the sigma-vector construction �Eq. �17��
are driven through the excitation operator labels I, L, and K.
We call this algorithm conventional “nondirect” algorithm, in
contrast to the “direct” algorithm introduced in this paper.

The important features of the conventional nondirect al-
gorithm are as follows:

�1� The perturbation-selection technique is easily intro-
duced into the program. The perturbation selection re-

duces the number of the matrix elements to be evalu-
ated and the range of the summation in Eqs. �13� and
�17�, thus dramatically reducing the total computation
time.

�2� The extensions to include general excitation operators
are straightforward. This feature was important for the
generalizations of the SAC-CI code, like the SAC-CI
general-R method7 and SAC-CI for high-spin
multiplicities.10 These extensions were done by ex-
panding the nature of the excitation operators and could
be easily implemented in the conventional code by ex-
panding the loops of the operators labels I, L, and K.
The matrix elements are calculated using the projective
reduction formula, PROJR.27 The PROJR program evalu-
ates the matrix elements by comparing the left and right
configuration state functions. The algorithm repre-
sented by Eqs. �14�–�17� does not depend on the spe-
cific form of the R operators.

Because of these attractive features, the conventional
SAC-CI program has been extended to cover a wide range of
chemistry and accuracy3 and has been successfully applied
from fine spectroscopy21–23 of rather small molecules to
biospectroscopy24 and photobiology involving moderately
large molecules.25 However, the conventional algorithm has
following demerits in comparison with the direct algorithm
introduced in this paper.

�1� The calculation is time consuming, particularly for the
unlinked terms. The unlinked terms U in Eq. �15� have
three indices of excitation operators, which result in a
triply nested loop structure. However, many of the
terms, �RL�H�RK

† SI
†�, are identically zero because of

Slater’s rule, but the calculation of these unlinked terms
can be done only at the innermost part of the loop.

�2� A whole MO ERI has to be loaded on core memory.
This is because the MO ERI is randomly accessed from
the PROJR subroutine. There is no regulation in the ac-
cess of the MO ERI.

In constructing the direct SAC/SAC-CI code, we want to
overcome these demerits, keeping the merits of the perturba-
tion selection.

C. Direct SAC/SAC-CI algorithm

In the direct SAC method, the excitation operators S†

and the coefficients c are defined by the MO labels instead of
the excitation operator labels. For singles �S1� and doubles
�S2�, they are

S† = S1 + S2 = �
i

�
a

ci
aSi

a† +
1

2�
ij

�
ab

cij
abSij

ab†. �18�

Hereafter, we use indices i , j ,k , . . . for occupied MOs,
a ,b ,c , . . . for virtual MOs, and p ,q ,r ,s , . . . for general
MO’s. Inserting Eq. �18� into Eqs. �3� and �4�, we obtain the
expressions of the SAC energy, the SAC equations for S1 and
S2. In the direct SAC algorithm, we first write down these
working equations explicitly as summarized in Table X of
the Appendix, where fq

p= �p�f �q� and vqs
pr= �pq �rs�= �pr �qs�
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denote the Fock matrix element and the MO ERI, respec-
tively. We introduced the permutation operator

Pij
ab�¯�ij

ab = �¯�ij
ab + �¯� ji

ba �19�

for convenience. Note that the expressions in Table X are not
unique. We will introduce intermediate arrays to make the
number of operations minimal.19 The expressions in Table X
were designed to be effective in the perturbation-selection
technique.

The SAC-CI secular equation �Eq. �8�� is written in the
nonsymmetric eigenvalue problems

Hd�p� = ESAC−CI
�p� Sd�p� �20�

and

H*d̄�p� = ESAC−CI
�p� S*d̄�p�, �21�

where d and d̄ denote the right-hand and left-hand eigenvec-
tors, respectively. The superscript � denotes a Hermitian
transpose. In the generalized Davidson procedure,28 we use

m basis vectors bi and b̄i, which are collected in matrices B
and B̄ as

B = �b1,b2, . . . ,bm�, B̄ = �b̄1,b̄2, . . . ,b̄m� . �22�

Here, m is some small number used in generalized David-

son’s procedure.28 The basis vectors bi and b̄i satisfy the
biorthonormal relation

B̄*SB = 1 , �23�

where 1 is an m�m unit matrix. Then, we form a small
Davidson matrix as

H̃ = B̄*HB = B̄*� = �̄*B . �24�

The elements of �=HB and �̄=H*B̄ are the so-called sigma
vectors for the right-hand and left-hand basis vectors, respec-
tively. Explicitly, they are

�i = Hbi, �̄i = H*b̄i. �25�

To impose a biorthonormal relation to the basis, we define
tau vectors as

�i = Sbi, �̄i = S*b̄i. �26�

In each iteration, the small matrix

C̄*H̃C = D �27�

is diagonalized. After convergence, we obtain the SAC-CI
vectors by the following expression:

d = BC, d̄ = B̄C̄ . �28�

In the SAC-CI SD-R method, the sigma and tau vectors
have three blocks: R0 �HF�, R1 �singles�, and R2 �doubles� as

� = ��0

�1

�2
� = � �0

�i
a

�ij
ab� . �29�

The MO-indexed representations of the working equation are
obtained from Eq. �8� by using the MO-indexed R operators.
For singlet excited states, the R operators are

R† = R0 + R1 + R2 = d0 + �
i

�
a

di
aRi

a† +
1

2�
ij

�
ab

dij
abRij

ab†.

�30�

The SAC-CI coefficients are obtained from the basis b as
follows:

dij
ab = �

m

bij
ab�m�C�m�. �31�

The resultant working equations for the singlet excited states
are summarized in Table XI of the Appendix. For the left-
hand projection, we use the following notation for the Her-
mite conjugation:

��̄ij
ab�* = �̄ab

ij , �b̄ij
ab�* = b̄ab

ij . �32�

To simplify our representation, upper bars were dropped for
the left-hand projections in Table XI.

For triplet states, the MO-indexed R operator is

R† = R1 + R2 = �
i

�
a

di
aRi

a† + �
ij

�
a�b

dij
abRij

ab†. �33�

The working equations for the triplet states are summarized
in Table XII of the Appendix. The equations for cation and
anion doublet states are obtained from the triplet equations:
Cation doublet states are obtained by replacing one of the
unoccupied MO indices to infinitely separated orbital, e.g.,
Ri

�†. Similarly, the electron-attached �anion doublet� states
are written as an electron transfer from an infinitely sepa-
rated orbital to one of the unoccupied orbitals like �→a.
Thus, the R operators for the cation doublet and anion dou-
blet are written as

R† = �
i

di
�Ri

�† + �
ij

�
b

dij
�bRij

�b† �34�

and

R† = �
a

d�
a R�

a† + �
i

�
a�b

d�j
abR�j

ab†, �35�

respectively. With the replacements to infinitely separated
orbitals in Eqs. �34� and �35�, the working equations for the
cation doublet and anion doublet are obtained. Note that the
matrix elements including indices �, such as f i

�, vij
�a, etc., are

zero.

III. IMPLEMENTATION OF THE DIRECT SAC/SAC-CI
ALGORITHM

In the conventional nondirect program, the loops are
driven with the labels, I, of excitation operators. The MO
indices corresponding to the excitation operator are taken
from the predefined labels of the excitation operators. This
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correspondence may be written as SI
†→Sij

ab† and is kept in
the LABEL array, which is a 4�M matrix, where M is the
number of the selected operators and each operator has four
MO indices.

Because the direct program drives loops with MO indi-
ces, we have to refer to the label of the excitation operator
from the MO indices such as Sij

ab†→SI
†. This correspondence

is done by introducing INDEX arrays. The INDEX arrays are
two-dimensional integer matrices, whose elements are exci-
tation operator labels. We need six types of INDEX arrays:
INDEX��ij� , �ab��, INDEX��ab� , �ij��, INDEX��ia� , �jb��,
INDEX��jb� , �ia��, INDEX��ib� , �ja��, and
INDEX��ja� , �ib��, where the first elements are referred to as
leading indices.

When we use the perturbation-selection technique, the
length of the LABEL array is reduced and the INDEX arrays
become sparse matrices. The INDEX arrays have no ele-
ments for the unselected excitation operators because the el-
ements are appended only for the selected operators. There-
fore, the INDEX arrays are compressed into a one-
dimensional vector together with the location array,
Loc�LBL, that carries the information of the two-
dimensional structure of the original INDEX arrays. The
loops are driven through the element of the INDEX vectors
that assign the element of the LABEL array, which define the
actual form of the excitation operator.

Let us explain the above algorithm using a simple ex-
ample. We consider a system with two occupied �i and j� and
two virtual �a and b� MOs. We assume that within ten pos-
sible excitation operators, the following six operators,

S1
† = Sii

aa†, S2
† = Sii

bb†, S3
† = Sjj

aa†,

�36�
S4

† = Sij
bb†, S5

† = Sii
ab†, S6

† = Sij
ab†,

were selected by the perturbation selection, discarding Sij
aa†,

Sij
ba†, Sjj

bb†, and Sjj
ab†. They actually have symmetry-adapted

forms.1,2 The LABEL array is a 4�6 matrix

S1
† S2

† S3
† S4

† S5
† S6

†


i i j i i i

i i j j i j

a b a b a a

a b a b b b
� , �37�

and the original INDEX��ij� , �ab�� array is a sparse matrix
given by

aa ab ba bb

ii

ij

ji

j j


1 5 0 2

0 6 0 4

0 0 0 0

3 0 0 0
� , �38�

where only the selected elements are considered. This IN-
DEX array is compressed into a one-dimensional INDEX
vector

�1 5 2 6 4 3� , �39�

with the information of the original array stored in the
Loc�LBL array

ii ij ji j j j j + 1

�1� 4 6 6 �7�
, �40�

where the element indicates the location in the INDEX vec-
tor that initiates the elements of the designated MO label,
e.g., ij. The elements designated by the MO label ij locate
between fourth and fifth positions in INDEX. This can be
schematized as

�1� 5 2 6 4 �3�
�
ii

�
ij

�
ji,j j

, �41�

where an arrow, whose location is obtained from the
Loc�LBL array, indicates the starting location of the desig-
nated MO label. The extra element of j j+1 is used for de-
noting the number of elements that belong to row j j. In the
original INDEX array given by Eq. �38�, the MO label ji
may be discarded from the beginning because of the symme-
try of S†, e.g., Sji

ba†=Sij
ab†. The loop is driven through the

INDEX vector given by Eq. �39� aided with the information
stored in the Loc�LBL array.

We consider the system of the N-active orbitals and
M-selected excitation operators. In the modified Davidson
procedure, the sigma vector is constructed by the multiplica-
tion of the basis vector b and the intermediate arrays �V� as,
for example, �ij

ab← �V�ij
klbkl

ab �see the Appendix�. The MO
ERIs and intermediate arrays have been sorted in a desired

FIG. 1. Loop structure of direct SAC-CI for �ij
ab← �V�ij

klbkl
ab.
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order on a disk. Consequently, at most, only the N2 memory
is required for the MO ERIs. A typical loop structure of the
direct SAC-CI algorithm is shown in Fig. 1 for �ij

ab

← �V�ij
klbkl

ab. The intermediate array of �V�ij
kl for fixed i and j is

loaded within the outer loops for i and j, and these loops
require O�N2� computations. The inner loops run only for
nonzero elements of b. The computations of the inner loops
are O�M�. The total computational cost of the direct algo-
rithm is O�N2�M�. In cases without perturbation selection,
M =O�N4�, so that this algorithm becomes O�N6�, which
agrees with the optimal cost of the singles and doubles
coupled-cluster theories in the canonical MO basis.

IV. SAMPLE APPLICATIONS

As test applications of the new direct SAC-CI program,
we performed calculations for water �H2O�, ethylene �C2H4�,
pyrrole �C4H5N�, tetrathiomolybdate anion �MoS4

2−�, and
free-base porphin �C20N4H14�. The molecular geometries
were taken from the SAC-CI Guide.20 The basis sets were as
follows: D95�d , p� with Rydberg �2s2p� �Ref. 29� on oxygen
for H2O, D95�d , p� with Rydberg �2s2p2d� on carbon for

C2H4, D95�d� for C4H5N, LANL2DZ �Ref. 30� for MoS4
2−,

and D95 for free-base porphin. The perturbation selection
with LevelThree threshold ��g=1.0�10−6, �e=1.0�10−7�
was used for all molecules since this is the recommended
one. Additionally, LevelOne ��g=1.0�10−5, �e=1.0�10−6�
and LevelTwo ��g=5.0�10−6, �e=5.0�10−7� calculations
were carried out for free-base porphin. The levels of the
selection can be selected with the GAUSSAIN03 keyword. The
default setting was used for other conditions. We used an
approximate variational method for solving the SAC-CI
secular equation, in which the Hamiltonian matrix was sym-

metrized as H̃IJ= 1
2 �HIJ+HJI�.

Note that in the conventional nondirect SAC-CI algo-
rithm, an additional cutoff threshold was introduced for the
unlinked terms to save computer time. The direct SAC-CI
algorithm does not require such approximation, so that the
direct and nondirect SAC-CI computations do not give com-
pletely identical results. Theoretically, the direct SAC-CI re-
sults should be more accurate than the conventional ones.
Both versions of the SAC-CI programs run on the develop-
ment version31 of GAUSSIAN03. All computations were car-

TABLE I. Excitation energy, oscillator strength, and ionization potential of water.

State

SAC-CI

Expt.b

Eex �eV�Nature

Direct Nondirect

Eex �eV� Osc �au�a Eex �eV� Osc �au�a

Singlet states
1 1B1 �→3s�OH*�, �→4s 7.26 0.054 7.33 0.053 7.4, 7.49
1 1A2 �→3py, �→4py 9.14 0c 9.21 0c 9.1
2 1A1 �→3px, n→3s 9.58 0.060 9.67 0.053 9.67, 9.73
2 1B1 �→3pz 9.72 0.008 9.78 0.008 10.01, 9.996
3 1A1 �→3px, n→3s 9.89 0.038 9.96 0.044 10.17, 10.14
3 1B1 �→4s, �→3s 11.12 0.007 11.20 0.007
1 1B2 n→3py, n→4py 11.50 0.014 11.59 0.014
2 1A2 �→4py, �→3py 11.57 0c 11.68 0c

4 1B1 n→3px 11.97 0.000 12.04 0.000
4 1A1 n→3pz 12.01 0.004 12.09 0.004
5 1A1 �→4px 12.80 0.004 12.87 0.004

Triplet states
1 3B1 �→3s�OH*�, �→4s 6.86 0c 6.93 0c 7.0, 7.2
1 3A2 �→3py, �→4py 8.98 0c 9.08 0c 8.9, 9.1, 9.2
1 3A1 n→3s�OH*�, n→4s 9.25 0c 9.35 0c 9.3
2 3A1 �→3px, �→4px 9.47 0c 9.54 0c 9.80, 9.81
2 3B1 �→3pz 9.66 0c 9.74 0c 9.98
3 3B1 �→4s, �→3s 10.86 0c 10.94 0c

1 3B2 n→3py, n→4py 11.25 0c 11.35 0c

2 3A2 �→4py, �→3py 11.33 0c 11.45 0c

3 3A1 n→3pz 11.75 0c 11.84 0c

4 3B1 n→3px 11.92 0c 12.00 0c

4 3A1 �→4px 12.20 0c 12.26 0c

Cation states
1 2B1 ���−1 12.11 0.934 12.15 0.939 12.61
1 2A1 �n�−1 14.41 0.937 14.48 0.939 14.73
1 2B2 ���−1 18.78 0.949 18.84 0.952 18.55

aMonopole intensity for ionized states.
bReferences 33 and 34.
cSymmetry forbidden.
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ried out with the Hewlett-Packard Integrity rx2620 server
with the IA64 architecture.

A. Small molecules

For water and ethylene, the direct SAC-CI results are
very close to the conventional nondirect ones, as seen from
Tables I and II, and they reproduced well the experimental
values. The average differences between the direct and non-
direct results were 0.08 eV for water and 0.12 eV for ethyl-
ene. These differences are due to the cutoff of some small
unlinked terms in the conventional program, which is accept-
able for small molecules. Compared to the experiments, the
direct results are worse than the nondirect ones, which we
believe to be due to the basis set insufficiency.

Table III shows the singlet and triplet excitation ener-
gies, ionization energies, and electron affinities of pyrrole.
These test calculations were done without including the Ry-
dberg basis, so that we cannot expect to reproduce the ex-

perimental values because the valence-Rydberg mixing was
shown to be strong in some excited states of this molecule.22

Thus, we focus here only on the differences between the
direct and nondirect SAC-CI results. The differences are par-
ticularly large for the electron affinities: The direct SAC-CI
results are about 0.25–0.3 eV lower than the nondirect ones,
which arose from the accumulated effects of small unlinked
terms cut off in the nondirect program. Since orbital reorga-
nizations are expected to be important as well as electron
correlations in the electron-attached states, the cutoff ap-
proximation in the unlinked term may be wrong.

Table IV shows the excitation energies of the tetrathio-
molybdate anion. The orbital characters of this molecule are
as follows: 1t1 :S�3p� lone pair. 3t2 :Mo�5p�. 2e :Mo�d�
+S�p� antibonding. 4t2 :Mo�d�+S�p� antibonding.

The excitation energies of the direct SAC-CI method
were lower than those of the nondirect method. The gap
between the two methods depends on the nature of the exci-

TABLE II. Excitation energy, oscillator strength, and ionization potential of ethylene.

State

SAC-CI

Expt.b

Eex �eV�Nature

Direct Nondirect

Eex �eV� Osc �au�a Eex �eV� Osc �au�a

Singlet states
1 1Ag �→3p��� 8.18 0c 8.33 0c 8.28
1 1B1g �→3p��� 7.82 0c 7.94 0c 7.80
2 1B1g �→�* 8.74 0c 8.94 0c

1 1B2g �→3p��� 7.82 0c 8.00 0c 7.90
1 1B3g �→3s 9.53 0c 9.58 0c 9.51
1 1Au �→3d��� 8.84 0c 8.95 0c

1 1B1u �→�* 8.12 0.349 8.21 0.366 �8.0
2 1B1u �→3d��� 9.14 0.051 9.25 0.048 9.33
1 1B2u �→3d�	� 8.92 0.011 8.94 0.012 8.90
1 1B3u �→3s 7.15 0.092 7.33 0.093 7.11
2 1B3u �→3d��� 8.69 0.004 8.86 0.003 8.62
3 1B3u �→3d�	� 8.88 0.028 9.04 0.031 8.90

Triplet states
1 3Ag �→3p��� 8.03 0c 8.13 0c 8.15
1 3B1g �→3p��� 7.79 0c 7.90 0c 7.79
2 3B1g �→�* 8.42 0c 8.60 0c

1 3B2g �→3p��� 7.76 0c 7.94 0c

1 3B3g �→3s 9.53 0c 9.58 0c

1 3Au �→3d��� 8.84 0c 8.95 0c

1 3B1u �→�* 4.40 0c 4.50 0c 4.36
2 3B1u �→3d��� 8.95 0c 9.07 0c 8.86
1 3B2u �→3d�	� 8.92 0c 8.94 0c

1 3B3u �→3s 7.02 0c 7.12 0c 6.98
2 3B3u �→3d��� 8.66 0c 8.83 0c 8.57
3 3B3u �→3d�	� 8.84 0c 8.98 0c

Cation states
1 2Ag �2ag�−1 14.56 0.917 14.68 0.924 14.66
1 2B3g �1b3g�−1 12.87 0.927 13.01 0.933 12.85
1 2B1u �2b1u�−1 19.33 0.848 19.48 0.852 19.23
1 2B2u �1b2u�−1 16.00 0.883 16.13 0.885 15.87
1 2B3u �1b3u�−1 10.34 0.949 10.36 0.952 10.51

aMonopole intensity for ionized states.
bReferences 35 and 36.
cSymmetry forbidden.
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tation. The lower two states are valence-type excitations,
from ligand lone pair to metal-ligand antibonding MO. For
these states, the differences were around 0.2 eV. The next
three states have a Rydberg nature, i.e., the excitations to
molybdenum 5p orbital. For these states, the differences
were as large as 0.4 eV, showing that the neglected smaller
contributions in the unlinked term could sum up to a large
number. Such cases seem to occur when the coupling be-
tween the orbital reorganization and the electron correlation
is large. The direct algorithm includes all such terms, and the
results reproduced the overall experiments better than the
nondirect one. When we reduce the cutoff threshold in the
nondirect method, the results become close to those of the
direct method, which will be shown in Sec. IV D.

B. Free-base porphin

The results for free-base porphin were summarized in
Table V. The results for four threshold levels were given, but
here we discuss only the LevelThree results because it is a
recommended level. Except for the 1B2u state, the excitation
energies of the direct SAC-CI method were lower than those
of the nondirect one. Consequently, the energy gap between
the 1B1u and 1B2u states was increased, and the gap between
the 1B2u and 2B1u states was reduced. The observed gap
between Qx and Qy bands is 0.44 eV and that between Qy

and B bands is 0.91 eV. The direct SAC-CI method im-
proved the spectral shape by the reduction of the 1B2u and
2B1u gap.

TABLE III. Excitation energy, ionization potential, and electron affinity of pyrrole.

State

SAC-CI

Expt.b

Eex �eV�Nature

Direct Nondirect

Eex �eV� Osc. �au�a Eex �eV� Osc. �au�a

Singlet states
1 1A1 �2→�

4
*, �3→�

5
* 6.68 0.004 6.53 0.003

1 1A2 �3→�* 7.62 0c 7.83 0c

1 1B1 �2→�* 8.40 0.011 8.65 0.011
1 1B2 �3→�

4
* 6.90 0.190 7.00 0.214 6.2–6.5

Triplet states
1 3A1 �2→�

4
*, �3→�

5
* 5.61 0c 5.61 0c 5.10

1 3A2 �3→�* 7.64 0c 7.87 0c

1 3B1 �2→�* 8.12 0c 8.42 0c

1 3B2 �3→�
4
* 4.47 0c 4.52 0c 4.20

Cation doublet states
1 2A1 6a1���−1 12.64 0.908 12.98 0.928 12.60, 12.58
1 2A2 1a2��3�−1 7.85 0.934 7.93 0.953 8.02, 8.21
1 2B1 2b1��2�−1 8.69 0.923 8.81 0.938 9.05, 9.20
1 2B2 4b2���−1 13.12 0.910 13.49 0.929 13.0

Anion doublet states
1 2A1 7a1��*�+1 4.90 5.14
1 2A2 2a2��

5
*�+1 4.93 5.23 3.45

1 2B1 3b1��
4
*�+1 3.76 4.01 2.36

1 2B2 5b2��*�+1 6.43 6.68

aMonopole intensity for ionized states.
bReferences 37 and 38.
cSymmetry forbidden.

TABLE IV. Excitation energy and oscillator strength of tetrathiomolybudate anion.

State

SAC-CI Expt.a

Main configuration

Direct Nondirect
Eex

�eV� Osc.Eex �eV� Osc. �au� Eex �eV� Osc. �au�

Singlet states
1 1T1 1t1→2e 2.11 0b 2.30 0b 2.37 Weak
1 1T2 1t1→2e 2.49 0.047 2.71 0.064 2.65 0.1
1 1E 1t1→3t2 3.17 0b 3.61 0b

2 1T1 1t1→3t2, 1t1→4t2 3.19 0b 3.60 0b

2 1T2 1t1→3t2 3.26 0.016 3.75 0.028 3.22 Weak

aReference 39.
bSymmetry allowed states are 1T2.
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We also note the differences in the intensities between
the two calculations. The most intense peak was the 2B2u

state. In the nondirect results the next intense state was 3B1u,
whereas in the direct results the second intense state was
1B1u. In comparison with the observed spectrum, the inten-
sity of the 3B1u state with the nondirect method seems to be
too strong, so that the direct algorithm improved not only the
excitation energies, but also the absorption intensities. How-
ever, our assignments of the basic peaks are the same as
those of the previous results.15,32 Since the basis set of the
present calculations might be too poor, we postpone detailed
arguments in a forthcoming paper.

We examined the convergence of the perturbation-
selection techniques. The differences between the LevelTwo
and LevelThree results are about 0.15–0.25 eV. To confirm

TABLE V. Excitation energy and oscillator strength of free-base porphin.

State

SAC-CI Expt.a

Nature

Direct Nondirect
Eex

�eV� BandEex �eV� Osc. �au� Eex �eV� Osc. �au�

Level four
1 1B1u �→�* 1.92 0.000 2.03 0.000 1.98 Qx

1 1B2u �→�* 2.51 0.000 2.46 0.001 2.42 Qy

2 1B1u �→�* 3.68 1.414 3.95 0.907 3.33 B
2 1B2u �→�* 3.79 1.820 4.19 1.726 3.65 N
3 1B1u �→�* 4.29 0.660 4.53 1.307
3 1B2u �→�* 4.53 0.207 4.70 0.359 4.25–4.67 L
4 1B2u �→�* 5.03 0.410 4.96 0.388 5.0–5.5 M
4 1B1u �→�* 5.18 0.497 5.36 0.347

Level three
1 1B1u �→�* 1.87 0.000 2.00 0.000 1.98 Qx

1 1B2u �→�* 2.47 0.000 2.43 0.001 2.42 Qy

2 1B1u �→�* 3.63 1.385 3.91 0.957 3.33 B
2 1B2u �→�* 3.74 1.799 4.13 1.745 3.65 N
3 1B1u �→�* 4.24 0.636 4.48 1.230
3 1B2u �→�* 4.48 0.204 4.67 0.337 4.25–4.67 L
4 1B2u �→�* 4.99 0.389 5.16 0.377 5.0–5.5 M
4 1B1u �→�* 5.11 0.490 5.32 0.354

Level two
1 1B1u �→�* 1.71 0.001 1.86 0.000 1.98 Qx

1 1B2u �→�* 2.30 0.000 2.31 0.000 2.42 Qy

2 1B1u �→�* 3.43 1.297 3.70 1.140 3.33 B
2 1B2u �→�* 3.54 1.646 3.86 1.722 3.65 N
3 1B1u �→�* 4.02 0.503 4.27 0.941
3 1B2u �→�* 4.24 0.205 4.46 0.305 4.25–4.67 L
4 1B2u �→�* 4.79 0.324 4.99 0.324 5.0–5.5 M
4 1B1u �→�* 4.85 0.464 5.10 0.378

Level one
1 1B1u �→�* 1.58 0.001 1.77 0.000 1.98 Qx

1 1B2u �→�* 2.19 0.000 2.25 0.000 2.42 Qy

2 1B1u �→�* 3.31 1.202 3.58 1.192 3.33 B
2 1B2u �→�* 3.40 1.526 3.71 1.690 3.65 N
3 1B1u �→�* 3.89 0.431 4.15 0.774
3 1B2u �→�* 4.10 0.202 4.33 0.275 4.25–4.67 L
4 1B2u �→�* 4.64 0.306 4.86 0.311 5.0–5.5 M
4 1B1u �→�* 4.66 0.473 4.93 0.412

aReference 40.

TABLE VI. Computational time �wall clock time� of SAC-CI calculations.

Molecule Direct Nondirect

H2O 52 s 51 s
C2H4 9 min 20 s 11 min 52 s
MoS4

2− 12 min 12 s 18 min 23 s
C4H5N 40 min 15 s 1 h 34 min 17 s
Free-base porphin �level one� 1 h 7 min 20 s 56 min 11 s
Free-base porphin �level two� 1 h 37 min 54 s 3 h 42 min 28 s
Free-base porphin �level three� 7 h 16 min 35 s 48 h 21 min 07 s
Free-base porphin �level four� 14 h 14 min 50 s 106 h 18 min 59 s
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the convergence of the perturbation-selection technique
against the selection level, we performed additional calcula-
tions with tighter thresholds. �LevelFour: �g=5�10−7 and
�e=5�10−8� The differences between the LevelThree and
LevelFour results are about 0.05 eV, showing the converging
behavior at higher levels of calculations toward the energies
without selection.

C. Computational time and space

The computational times were summarized in Table VI.
For C2H4 and MoS4

2−, the direct method was slightly faster

than the nondirect method. For C4H5N, the direct method
was about 2.3 times faster than the nondirect method. Gen-
erally, the direct method was more efficient and the accelera-
tion was more significant for larger dimensional computa-
tions. Actually, for free-base porphin, the acceleration factor
was 6.7 for LevelThree calculations, 2.3 for LevelTwo cal-
culations, and comparable to LevelOne calculations. Thus,
the efficiency of the direct SAC-CI algorithm would extend
the possibility of the SAC-CI method.

The number of nonzero MO ERIs of the free-base por-

TABLE VII. Sets of cutoff thresholds for the unlinked terms of the nondirect method.

Keyword Set 0 Set 1 Set 2 Set 3 Direct


g CThreULS2G 5.0�10−3 5.0�10−3 1.0�10−3 1.0�10−8 0

e �single� CThreULR1 5.0�10−2 2.0�10−2 1.0�10−3 1.0�10−8 0

e �double� CThreULR2 5.0�10−2 2.0�10−2 1.0�10−3 1.0�10−8 0

TABLE VIII. Excitation energy and ionization potential of ethylene �in eV� with various levels of approxima-
tion.

State

SAC-CI

Expt.Nature

Nondirect

DirectSet 0 Set 1 Set 2 Set 3

Singlet states
1 1Ag �→3p��� 8.33 8.18 8.18 8.18 8.18 8.28
1 1B1g �→3p��� 7.94 7.83 7.82 7.82 7.82 7.80
2 1B1g �→�* 8.94 8.80 8.74 8.74 8.74
1 1B2g �→3p��� 8.00 7.84 7.82 7.82 7.82 7.90
1 1B3g �→3s 9.58 9.50 9.53 9.53 9.53 9.51
1 1Au �→3d��� 8.95 8.83 8.84 8.84 8.84
1 1B1u �→�* 8.21 8.13 8.12 8.12 8.12 �8.0
2 1B1u �→3d��� 9.25 9.13 9.14 9.14 9.14 9.33
1 1B2u �→3d�	� 8.94 8.89 8.92 8.92 8.92 8.90
1 1B3u �→3s 7.33 7.18 7.15 7.15 7.15 7.11
2 1B3u �→3d��� 8.86 8.70 8.69 8.69 8.69 8.62
3 1B3u �→3d�	� 9.04 8.96 8.87 8.88 8.88 8.90

Triplet states
1 3Ag �→3p��� 8.13 8.03 8.02 8.03 8.03 8.15
1 3B1g �→3p��� 7.90 7.80 7.79 7.79 7.79 7.79
2 3B1g �→�* 8.60 8.48 8.42 8.42 8.42
1 3B2g �→3p��� 7.94 7.79 7.75 7.76 7.76
1 3B3g �→3s 9.58 9.50 9.53 9.53 9.53
1 3Au �→3d��� 8.95 8.83 8.84 8.84 8.84
1 3B1u �→�* 4.50 4.43 4.39 4.40 4.40 4.36
2 3B1u �→3d��� 9.07 8.94 8.94 8.95 8.95 8.86
1 3B2u �→3d�	� 8.94 8.89 8.92 8.92 8.92
1 3B3u �→3s 7.12 7.05 7.02 7.02 7.02 6.98
2 3B3u �→3d��� 8.83 8.68 8.66 8.66 8.66 8.57
3 3B3u �→3d�	� 8.98 8.84 8.84 8.84 8.84

Cation states
1 2Ag �2ag�−1 14.68 14.53 14.55 14.56 14.56 14.66
1 2B3g �1b3g�−1 13.01 12.86 12.86 12.87 12.87 12.85
1 2B1u �2b1u�−1 19.48 19.34 19.33 19.33 19.33 19.23
1 2B2u �1b2u�−1 16.13 15.98 16.00 16.00 16.00 15.87
1 2B3u �1b3u�−1 10.36 10.29 10.34 10.34 10.34 10.51

Computational time 11 min 52 s 21 min 05 s 4 h 21 min 33 s 8 h 47 min 31 s 9 min 20 s
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phin was 40 755 181. Therefore, we need approximately
41 Mbyte memory for storing all the MO ERIs for the usage
of the PROJR program in the nondirect algorithm. We have
compressed the MO ERIs with the use of the point group
symmetry of free-base porphin. Thus, the demand for
memory was not severe for the present examples. On the
other hand, the direct method does not require the storage of
the MO ERIs on memory. This improvement would become
significant when we apply the direct method to big biological
molecules, which involve hundreds of orbitals without any
symmetry.

D. Unlinked terms

As we have seen in some examples, the approximations
in the unlinked terms used in the nondirect method have led
to some degrees of errors. This error is due to the cutoff of
smaller unlinked terms, and the amount is dependent on the
cutoff threshold. In the present cases, the errors were ap-
proximately 0.1–0.3 eV. Considering the errors originating
from other sources, the errors less than 0.3 eV ��0.01Eh�
might be practically acceptable for most cases. However, for
MoS4

2−, the error amounted to 0.4 eV, so that we have to
show the method to reduce this error in the nondirect
method.

If we reduce the cutoff thresholds in the unlinked terms,
the nondirect results become close to those of the direct
method. A severe problem is an increase in the computa-
tional time. So, optimal sets of thresholds are necessary to
diminish the cutoff errors within permissible computational
time. To find such optimal threshold, we investigated the
effects of the cutoff of unlinked terms.

The cutoff scheme in the nondirect program is as fol-
lows. For the SAC ground state, we cutoff the unlinked terms
generated by the product of the linked operators whose SDCI
coefficients C is smaller than a threshold 
g, and this 
g value
can be controlled with the CThreULS2G keyword catego-
rized as “detailed keywords.”20 The unlinked terms of
SAC-CI are generated by the product of the linked operators
RK and SI, where we include all the double excitation opera-
tors SI but we select important RK operators whose SDCI
coefficients dK satisfy dK�
e, where the 
e values for single
and double excitation operators can be input by the keywords

CThreULR1 and CThreULR2, respectively. The direct
SAC-CI program does not use this type of cutoff, so that the
direct calculations correspond to 
g=
e=0. To see the effect
of this approximation in the nondirect method and to find an
optimal set of thresholds, we examined four sets of thresh-
olds for ethylene and tetrathiomolybudate anion. The thresh-
olds are summarized in Table VII. Set 0 is the thresholds
adopted as the default.

Table VIII shows the results for ethylene. The nondirect
results for set 0 are the same as those given in Table II. We
see that the results with set 2 thresholds reproduced the re-
sults of the direct method. However, this calculation takes
too much computational time. In this case, set 1 thresholds
seem to be a good compromise. It approximately reproduces
the direct results and the computational time is twice of set 0.
If accurate results are necessary, this additional computa-
tional cost could be permissible.

Table IX shows the results for tetrathiomolybudate an-
ion. The set 2 calculation also well reproduced the direct
calculation even in this case. The computational time is,
however, too large. It takes 70 times longer for the set 0
calculations. In this case, set 1 would be a realistic choice
even though it still contains some degrees of errors. The
discrepancy of 0.3 eV in the 2T2 state could be an acceptable
range.

As a result of these test calculations, we recommend to
use set 1 thresholds when one wants to get higher accuracy
with the nondirect SAC-CI calculations of the released ver-
sion. Of course, the direct SAC-CI version will be the best
choice after the new version of the program is released. We
note here that the non-direct method is still useful when one
wants to use the general-R method7 and the high-spin
codes.10

In Table IX, we further showed the results obtained with
set 3 thresholds. These results are essentially the same as the
direct ones. This means that the same calculations were per-
formed with different algorithms. The efficiency of the direct
algorithm is obvious. It is more than 200 times faster than
the nondirect one for MoS4

2−. This efficiency enables us to
choose better thresholds for the perturbation selection of the
linked operators. When we release the nondirect program, we
selected LevelOne, LevelTwo, and LevelThree sets from the
experiences in our previous researches and computational
times. Since we now have more freedom due to the present

TABLE IX. Excitation energy of tetrathiomolybudate anion �in eV� with various levels of approximation.

State

SAC-CI

Expt.Main configuration

Nondirect

DirectSet 0 Set 1 Set 2 Set 3

Singlet state
1 1T1 1t1→2e 2.30 2.09 2.09 2.11 2.11 2.37
1 1T2 1t1→2e 2.71 2.51 2.47 2.49 2.49 2.65
1 1E 1t1→3t2 3.61 3.41 3.17 3.17 3.17
2 1T1 1t1→3t2, 1t1→4t2 3.60 3.38 3.19 3.19 3.19
2 1T2 1t1→3t2 3.75 3.56 3.27 3.26 3.26 3.22
Computational time 18 min 23 s 38 min 54 s 21 h 30 min 07 s 44 h 56 min 25 s 12 min 12 s
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introduction of the direct method and the general advances in
computer technology, we would be able to set up better sets
of recommended thresholds for the perturbation selection of
linked operators adopted in the SAC/SAC-CI program.

V. CONCLUDING REMARKS

We have developed a new computational algorithm,
called direct algorithm, for the SAC/SAC-CI program. In the
new direct SAC-CI SD-R program, we could combine the
MO-index direct algorithm with the perturbation-selection
technique. The sparse nature of the matrices involved was
fully utilized. The key of the present method was an efficient
design of the index vectors and arrays that map the selected
excitation operators. For the system of the N-active orbitals
and M-selected excitation operators, the computational cost
is O�M �N2�, which is optimal for singles and doubles theo-
ries with perturbation selection. In addition, an efficient us-
age of core memory has been achieved. Because of the
achieved efficiency, the computer time became shorter, and
the cutoff approximation in the unlinked terms with a given
threshold, which was used in the conventional �nondirect�
version of the program, became unnecessary.

The direct SAC-CI program has been applied to some
test molecules. The direct SAC-CI algorithm was shown to
be more efficient than the conventional one. Particularly, the
computational speed was accelerated significantly for large
dimensional computations with increasing accuracy of the
results. The errors due to the cutoff approximation in the
unlinked terms were minor in small molecules, but would
become non-negligible for the systems where both of the
correlations and orbital relaxations are important.

Thus, the direct SAC-CI program will provide theoreti-
cally more accurate results than before in a shorter compu-
tational time. This would extend the applicability of the
SAC/SAC-CI methodology with increased accuracy. The

merits of the direct SAC-CI program will be recognized
much more clearly for studies of excited-state geometries
and potential energy surfaces. The SAC-CI energy gradient
method based on the direct algorithm is certainly necessary
for these studies. The idea of the direct SAC-CI method and
the usage of sparse matrix techniques can be applied to the
SAC-CI energy gradient method, which is in progress in our
research institute.

TABLE X. Working equations for SAC. �We assume summation over all
repeating indices.�
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Intermediate arrays for SAC equations
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TABLE XI. Working equations for SAC-CI singlet excited states. �We as-
sume summation over all repeating indices.�

Right-hand projection
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Left-hand projection
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Intermediate arrays for SAC-CI singlet states
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APPENDIX: WORKING EQUATIONS

We summarize here the working equations for the singlet
SAC equation in Table X and for the singlet and triplet
SAC-CI equations in Tables XI and XII, respectively. The
working equations for the SAC-CI ionized and electron at-
tached doublet states are obtained by replacing the orbitals
by infinitely separated orbitals as in Eqs. �34� and �35�, re-
spectively. Note that the matrix elements including indices
�, such as f i

�, vij
�a, etc., are zero.
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Intermediate arrays for triplet states
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