Solving the electron and electron-nuclear Schrödinger equations for the excited states of helium atom with the free iterative-complement-interaction method

Hiroyuki Nakashima, Yuh Hijikata, and Hiroshi Nakatsuji ${ }^{\text {a) }}$ Quantum Chemistry Research Institute, JST CREST, Kyodai Katsura Venture Plaza 106, Goryo Oohara 1-36, Nishikyo-ku, Kyoto 615-8245, Japan and Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

(Received 13 February 2008; accepted 11 March 2008; published online 17 April 2008)

Abstract

Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schrödinger equation were performed for the $1 s N s$ singlet and triplet excited states of helium atom up to $N=24$. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schrödinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. The small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.

© 2008 American Institute of Physics. [DOI: 10.1063/1.2904871]

I. INTRODUCTION

Variational calculations of helium atom have often been regarded as a benchmark test of a new theory since it is the simplest two-electron real system and yet its Schrödinger equation (SE) was not solved exactly. ${ }^{1}$ Recently, the authors have developed the free iterative-complement-interaction (ICI) theory for accurately solving the SE (Ref. 2-4) and the relativistic Dirac-Coulomb equation. ${ }^{5}$ The theory has been applied to several atoms and molecules and successfully given highly accurate results. ${ }^{6-9}$ For example, for helium atom, the free ICI method gave the energy correct to 40 decimal figures as the solution of the SE. ${ }^{8}$ Similar accuracy has also been recently reported for the electron-nuclear Hamiltonians of helium atom and its isoelectronic ions considering the effects of the nuclear motion. ${ }^{10}$ These calculations may be regarded as numerically proving that one can obtain the solutions of the SE as accurately as one desires with the free ICI method.

The applications of the free ICI method have ever been restricted to the ground state and a few lower lying excited states. However, the ICI methodology is general to produce both ground and excited states. In this paper, we use the free ICI method to calculate the excited states of helium atom up to very high excitation levels. They are the $1 s N s$ type S symmetry ones with singlet and triplet spin multiplicities.

Accurate calculations of helium atom were performed by Drake and Yan ${ }^{11}$ for the ${ }^{1} S$ and ${ }^{3} S$ states up to $N=10$. They used double exponent basis functions for each excited states.

[^0]However, since they calculated each excited state by using different basis functions, their individual states might not be completely orthogonal to each other. More recently, Kamta et al. ${ }^{12}$ performed the configuration-interaction (CI) calculations with the Sturmian functions for the helium excited states with various angular momentums.

For the excited states of general molecular systems up to those of biological importance, we have developed the symmetry adapted cluster-CI methodology based on the cluster expansion formalism. ${ }^{13,14}$ It was incorporated in the GAUSSIAN03 program package. ${ }^{15}$ This method has long been used for studying the photorelated phenomena of small molecules to biological systems ${ }^{14}$ and, recently, it has been extended even to giant molecular crystals. ${ }^{16}$ It has been established as a useful efficient tool for studying chemistry and physics involving excited and ionized states. However, about the accuracy, this theory cannot be compared to the free ICI theory.

In this paper, we calculate the ground and excited states of helium atom at both the fixed-nucleus and movingnucleus levels. For molecules, the first case corresponds to the Born-Oppenheimer approximation and the latter to the non-Born-Oppenheimer level. In the latter case, ${ }^{10,17}$ the SE for both electrons and nuclei is quantum mechanically solved and, therefore, the results may be considered as the nonrelativistic limit. So, the comparison of the present results with accurate experimental data is very interesting. It will give us a measure of the remaining physical effects such as the relativistic and quantum electrodynamic (QED) effects. The present results would also be valuable as the accurate zeroth order wave functions for perturbatively dealing with these
remaining effects. ${ }^{18,19}$ Since the accuracy of the present theoretical result is more than that of the experimental value, we can even discuss the order of the errors existing in the experimental values.

II. THEORY

Here, we summarize the ICI method ${ }^{2-4}$ to be pertinent for the calculations of the ground and many excited states. In our formulation of the free ICI method, we start from the simplest ICI (SICI) wave function based on the scaled SE,

$$
\begin{equation*}
\psi_{n+1}=\left[1+C_{n+1} g\left(H-E_{n+1}\right)\right] \psi_{n} \tag{1}
\end{equation*}
$$

where n is the iteration number, g is the scaling function introduced to overcome the singularity problem caused by the Coulomb potentials, ${ }^{3,4}$ and C_{n} is a variable to be determined by the variational principle. This SICI wave function has been proven to become the exact wave function at convergence. ${ }^{3}$ The choice of the initial function ψ_{0} is important to accelerate the convergence speed.

In actual calculations, we introduce the free ICI method that is more flexible than the SICI. After some iteration, the right hand side of Eq. (1) is a sum of the analytical functions with some coefficients. We collect from there all the independent analytical functions as $\left\{\phi_{i}^{(n)}\right\},\left(i=1, \ldots, M_{n}\right)$, and by a linear combination of them, we construct the wave function as

$$
\begin{equation*}
\psi_{n+1}=\sum_{i=1}^{M_{n}} c_{i}^{(n)} \phi_{i}^{(n)} \tag{2}
\end{equation*}
$$

where $\left\{c_{i}^{(n)}\right\}$ are the variational parameters. We call this method the free ICI method. For an increased freedom, the free ICI method converges faster than the original SICI method. In the free ICI method, we call n as "order" instead of "iteration number," since ψ_{n} does not depend on the former coefficients $\left\{c_{i}^{(n-1)}\right\}$, etc. The key point of the ICI formalism is that the exact wave function of a system is constructed by the Hamiltonian itself of the system, i.e., $\psi=f(H) \psi_{0}$, and Eq. (1) and (2) give an expression of this equation in an analytical expansion form.

For the calculations of many excited states, the SICI method is restrictive. In our calculations, the ground and excited states belonging to the same symmetry are calculated as the lower and higher solutions of the same eigenvalue problem obtained by applying ordinary variation principle to Eq. (2): The ground and excited states, thus, automatically satisfy the correct relationships among them. The SICI method only deals with two eigenvalues at each iteration, but the free ICI method deals with M_{n} eigenvalues, and M_{n} increases as the iteration proceeds. Thus, the free ICI method is superior to the SICI method for the calculations of the excited states.

III. FORMULATION

We want to solve the SE of helium atom in both fixednucleus and moving-nucleus levels to calculate the ground
and $1 s N s$ type excited states up to $N=24$. The Hamiltonian quantum mechanically dealing with both electrons and nucleus is written for the helium atom as ${ }^{10}$

$$
\begin{equation*}
H=-\frac{1}{2 \mu} \sum_{i=1}^{2} \nabla_{i}^{2}-\frac{1}{m_{N}} \nabla_{1} \cdot \nabla_{2}-\sum_{i=1}^{2} \frac{Z}{r_{i}}+\frac{1}{r_{12}} \tag{3}
\end{equation*}
$$

after exactly separating the motion of the center of mass. Here, m_{N} represents the mass of the nucleus, μ is the reduced mass defined by $\mu=m_{e} m_{N} /\left(m_{e}+m_{N}\right)$, in which m_{e} is the electron mass that is equal to unity in a.u., and Z is the nuclear charge. At the fixed-nucleus case, i.e., when m_{N} is equal to infinity, μ is unity and the mass polarization term (the second term) disappears. For the excited states of S symmetry, the Hamiltonian and the wave functions are expressed with the interparticle coordinates $\left\{r_{1}, r_{2}, r_{12}\right\}$ or the coordinates $\{s, t, u\}$ alone, which are connected by

$$
\begin{equation*}
s=r_{1}+r_{2}, \quad t=r_{1}-r_{2}, \quad u=r_{12} . \tag{4}
\end{equation*}
$$

In this paper, we use the $\{s, t, u\}$ coordinates and the explicit form of the Hamiltonian in this coordinate was given in Ref. 10.

In the free ICI method, the choices of the initial function ψ_{0} and the scaling function g are important. Previously, we have examined several choices for the ground state of helium atom. ${ }^{8}$ In the present calculation, the g function was chosen to be the same as in Ref. 8, i.e.,

$$
\begin{equation*}
g=-\frac{1}{V_{\mathrm{Ne}}}+\frac{1}{V_{\mathrm{ee}}} \tag{5}
\end{equation*}
$$

where V_{Ne} and $V_{e e}$ are the nuclear attraction and electron repulsion potentials, respectively. For the ψ_{0}, the logarithm function previously gave excellent performance for the ground state because the logarithm singularity is very important for the three-particle coalescence region. For the higher $1 s N s$ excited states, however, the probability of the threeparticle collision would decrease because one electron occupies the N shell Rydberg orbital, which is quite diffuse compared to the $1 s$ orbital. As a result, a different ψ_{0} function might be appropriate for these excited states. In the present calculations, we used the half-integer type wave function of the form ${ }^{8,20}$

$$
\begin{align*}
\psi_{0}(L)= & \left(1 \pm P_{12}\right)\left[\left\{1+s^{1 / 2}+u^{1 / 2}\right\}\right. \\
& \left.\times \sum_{j=1}^{L} \exp \left(-\alpha_{j} s\right) \exp \left(-\beta_{j} t\right)\right] \\
= & \left(1 \pm P_{12}\right)\left[\left\{1+s^{1 / 2}+u^{1 / 2}\right\}\right. \\
& \left.\times \sum_{j=1}^{L} \exp \left(-\gamma_{j}^{(1)} r_{1}\right) \exp \left(-\gamma_{j}^{(2)} r_{2}\right)\right], \tag{6}
\end{align*}
$$

where P_{12} is the permutation operator that exchanges the spatial orbitals of two electrons and the signs in front of P_{12} are plus for singlet and minus for triplet. The index L represents the number of the exponential functions included in the

TABLE I. The specific index ranges of a_{i}, m_{i}, and b_{i} of the free ICI wave function of Eq. (9) at order n. (At $n=1$, the functions $\left[a_{i}, m_{i}, b_{i}\right]=[-2,2,0],[-2,2,1 / 2]$ are eliminated). The free ICI method generates all of the combinations satisfying the equalities and inequalities in the table.

```
(I) }\mp@subsup{a}{i}{},\mp@subsup{b}{i}{}:\mathrm{ Integer
    (i) }-2n\leqslant\mp@subsup{a}{i}{}<-n,0\leqslant\mp@subsup{b}{i}{}\leqslant2n+\mp@subsup{a}{i}{},0\leqslant\mp@subsup{a}{i}{}+\mp@subsup{m}{i}{}+\mp@subsup{b}{i}{}\leqslant2n+\mp@subsup{a}{i}{}-\mp@subsup{b}{i}{
    (ii) }-n\leqslant\mp@subsup{a}{i}{}\leqslant-1,0\leqslant\mp@subsup{b}{i}{}<n,0\leqslant\mp@subsup{a}{i}{}+\mp@subsup{m}{i}{}+\mp@subsup{b}{i}{}\leqslant\operatorname{min}(n,2n+\mp@subsup{a}{i}{}-\mp@subsup{b}{i}{}
        In case }\mp@subsup{a}{i}{}+\mp@subsup{m}{i}{}+\mp@subsup{b}{i}{}=n,\mp@subsup{m}{i}{}\mathrm{ : Even integer.
    (iii) 0\leqslant a}\leqslant\leqslant\mp@code{*}0\leqslant\mp@subsup{a}{i}{}+\mp@subsup{m}{i}{}+\mp@subsup{b}{i}{}\leqslant
        In case }\mp@subsup{a}{i}{}+\mp@subsup{m}{i}{}+\mp@subsup{b}{i}{}=n,\mp@subsup{m}{i}{}\mathrm{ : Even integer
(II) }\mp@subsup{a}{i}{}\mathrm{ : Integer, }\mp@subsup{b}{i}{}\mathrm{ : Half-integer
    Change the index: }\mp@subsup{b}{i}{}\mathrm{ in the functions of (I) to }\mp@subsup{b}{i}{}+1/
(III) }\mp@subsup{a}{i}{}\mathrm{ : Half-integer, }\mp@subsup{b}{i}{}\mathrm{ : Integer
    (i) Change the index: }\mp@subsup{a}{i}{}\mathrm{ in the functions of (I) to }\mp@subsup{a}{i}{}+1/
    (ii) }-n+1/2\leqslant\mp@subsup{a}{i}{}\leqslant-1/2,\mp@subsup{m}{i}{}=n,\mp@subsup{b}{i}{}=
```

initial function ψ_{0} : When we want to calculate the ground and excited states of helium atom from $1 s 1 s$ to $1 s N s$ states, we have to include at least about N different exponential functions that mimic the $1 s$ and higher $N s$ orbitals, so that roughly $L \simeq N$. Their orbital exponents were chosen as

$$
\begin{equation*}
\alpha_{j}=\frac{\gamma_{j}^{(1)}+\gamma_{j}^{(2)}}{2}, \quad \beta_{j}=\frac{\gamma_{j}^{(1)}-\gamma_{j}^{(2)}}{2}, \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{j}^{(1)}=2.0, \quad \gamma_{j}^{(2)}=\frac{1}{j}+\frac{1-\sigma}{j^{2}} \tag{8}
\end{equation*}
$$

where σ is the screening constant of the helium $1 s$ orbital and taken to be $\sigma=0.3125 .{ }^{21} \gamma_{j}^{(1)}$ represents the orbital exponent of the $1 s$ orbital and $\gamma_{j}^{(2)}$ represents the one for the $j s$ orbital. Though $\gamma_{1}^{(2)}$ was 1.6875 for singlet, we used $\gamma_{1}^{(2)}=1.2$ for triplet.

When we perform the free ICI formulations with the use of the g and ψ_{0} functions given by Eqs. (5) and (6), the resultant free ICI wave function is written as

$$
\begin{equation*}
\psi_{n}=\left(1 \pm P_{12}\right) \sum_{j=1}^{L} \sum_{i=1}^{K} c_{i}^{(j)} s^{a_{i} t^{m} u^{b_{i}} \exp \left(-\alpha_{j} s\right) \exp \left(-\beta_{j} t\right), ~, ~ . ~} \tag{9}
\end{equation*}
$$

where $K=M_{n} / L$ and the index j represents the j th exponential set, a_{i} runs all integers and half integers, m_{i} is 0 and positive integers, and b_{i} runs 0 and positive integers and half integers. The condition $a_{i}+m_{i}+b_{i} \geqslant 0$ must be satisfied for the square integrability of the wave function. For the calculations with moving nucleus, we used the free ICI wave function of the same form as that obtained in the fixednucleus case, i.e., Eq. (9). In other words, we ignored the functions that are generated by the mass polarization operator in the electron-nuclear Hamiltonian. ${ }^{10}$ Actually, we have already seen in the previous paper ${ }^{10}$ that the contributions of such terms are quite small and negligible for helium and isoelectronic ions. Table I shows the specific index ranges of the free ICI wave function of Eq. (9) at order n. At $n=1$, the rule is exceptional and is explained in the table caption. The variables $\left\{c_{i}^{(j)}\right\}$ were calculated with the variation principle with the Hamiltonian given by Eq. (3) that includes the mass
polarization term when the effects of the moving nucleus is considered.

We performed all the calculations by using the M_{n} complement functions with $M_{n}=5000-6000$. These complement functions were generated by the free ICI algorithm and their Hamiltonian and overlap integrals were analytically calculated: These steps were mostly done with the use of MAPLE. ${ }^{22}$ The diagonalization of the secular equation was done with the GMP library ${ }^{23}$ for the calculations of arbitrary precision. In the calculations of moving-nucleus level, we used the alpha particle mass for the mass of helium nucleus $\left({ }^{4} \mathrm{He}\right), m_{N}=7294.2995365$ (a.u.) as given by CODATA 2006 in NIST. ${ }^{24}$

IV. RESULTS

A. Free ICl calculations for the fixed-nucleus Hamiltonian

We started the calculations with the g and ψ_{0} given by Eqs. (5) and (6) and the fixed-nucleus Hamiltonian. The number of the exponential functions L in the ψ_{0} should be about the number of the excited states we want to calculate. The calculations were performed with three different choices of $L=16,10$, and 6 for the orders $n=4,5$, and 6 , respectively, for which the dimensions of the free ICI became $M_{n}=5392$, 5930, and 5724, respectively, for both singlet and triplet states. With these calculations, we would be able to obtain the excited states at least up to $N=L$. After the diagonalization of the secular equation, the lowest solution corresponds to the ground state, the second lowest to the first excited state, and so on. These ground and excited states are automatically orthogonal and Hamiltonian orthogonal to each other.

Table II shows the calculated energies of the singlet $1 s N s$ states $\left({ }^{1} S\right)$. The first column shows the results up to $N=24$ obtained with $L=16$ and $n=4\left(M_{n}=5392\right)$. The energies of the excited states of $N=2-20$ were correct over 16-17 digits. The solutions for $N=21-24$ were slightly worse because the number of the exponents included in the initial function was only 16 , which was short as the initial guess for these higher excited states. Even so, the solution of $N=24$ retained the accuracy correct to about 14 digits. One

TABLE II. Free ICI energies (a.u.) of the singlet $1 s N s$ states $\left({ }^{1} S\right)$ calculated with the g and $\psi_{0}^{\text {singlet }}(L)$ given in Eqs. (5) and (6) for the fixed-nucleus Hamiltonian (the correct figures are shown in boldface) and a comparison with the reference.

N	Free ICI			Ref. 11
	$n=4\left(M_{n}=5392\right)$ with $L=16$	$n=5\left(M_{n}=5930\right)$ with $L=10$	$n=6\left(M_{n}=5724\right)$ with $L=6$	
1	-2.903 724377034113392	-2.903 724377034119550866	-2.903 724377034119598271547	-2.903 724377034119479
2	-2.145974046054416803	-2.145974046054417411022	-2.145974046054417415800 752	-2.145 9740460544128
3	-2.061 271989740908483	-2.061271989740908649447	-2.061 271989740908650739283	-2.061 2719897408930
4	-2.033586717030725379	-2.033586717030725 446912	-2.033 586717030725447438869	-2.033 586717030684
5	-2.021 176851574373868	-2.021176851574373902539	-2.021 176851574373902803675	-2.021 17685157432
6	-2.014563 098446617143	-2.014563 098446617163292	-2.014563 098446617163443798	-2.014 563098446564
7	-2.010625 776210865949	-2.010625776210865961562	-2.010625776210865961657234	-2.010 625776210802
8	-2.008 093622105612517	-2.008 093622105612526012	-2.008 093622105612526074710	-2.008 093622105534
9	-2.006 369553107877466	-2.006 369553107877471748		-2.006 369553107775
10	-2.005 142991747992557	-2.005142991747992561593		-2.005 142991747844
11	-2.004 239415361821463	-2.004 239415361821466770		
12	-2.003 554625012232644	-2.003 554625012232646904		
13	-2.003 023289603502536	-2.003 023289603502537990		
14	-2.002602761355122988	-2.002602761355 122990187		
15	-2.002264241270263476	-2.002264241270263 309558		
16	-2.001987713181956782			
17	-2.001758915080 010317			
18	-2.001567462439135929			
19	-2.001 405648670772637			
20	-2.001267657216551210			
21	-2.001 149031412258616			
22	-2.001 046310060125636			
23	-2.000 956772051261501			
24	-2.000 878254201540989			

could obtain larger number of accurate solutions than the number of the different exponents included in the ψ_{0}. For the higher excited states, the energy levels were almost degenerate. The energy difference between the states of $N=23$ and 24 was only 7.851784×10^{-5} a.u. Thus, the density of states was very high there which made the calculations of these highly excited states difficult in general. For the ground state $(N=1)$, the accuracy was about 15 digits, which was slightly worse than those of $N=2-20$. Since the ground state is considerably low apart from the other excited states and has different closed-shell electronic structure, it may be differently treated from the other excited states. ${ }^{10}$ The wave function with logarithm weak singularity was essential for the ground state, since the three-particle collision may occur more frequently than in the excited states. ${ }^{8,25-27}$

The results with $L=10$ and $n=5\left(M_{n}=5930\right)$ are shown in the second column of Table II up to $N=15$. Because of the increased order n, the accuracies of all of the states to $N=14$ have been improved. The accuracy of the ground state was over 17 digits and those for $N=2-13$ were 18-20 digits, which were variationally better than those reported by Drake and Yan. ${ }^{11}$ For $N=14$, however, the accuracy slightly got worse to be about 17 digits, and for $N=15$, the accuracy was less than 17 digits which was slightly worse than the solution with $n=4$. This is clearly due to the small L values, i.e., the lack of the adequate exponents for these excited states in the initial function ψ_{0}.

The results with $L=6$ and $n=6\left(M_{n}=5724\right)$ are also shown in Table II up to $N=8$. The calculated energies of
these states were further improved. The accuracy of the ground state achieved 20 digits, and those of the other excited states achieved 20-23 digits. These results were variationally best as the energies of the excited states. This is a numerical evidence that the free ICI method is useful to calculate very accurate solutions of the SE even for the excited states.

Similar calculations for the triplet states $\left({ }^{3} S\right)$ are shown in Table III for the orders $n=4,5$, and 6 . The behaviors of the calculated results were quite similar to those for the singlet states. At the same excitation level N, the energy of the triplet state was lower than that of the singlet state, which follows Hund's rule. The accuracies of the triplet states were better than those of the singlet states by two to three digits at the same condition of the calculations. This is due to the smaller correlations between the two electrons of parallel spins for the Fermi hole. Drake and Yan ${ }^{11}$ showed the results up to $N=10$: Our results for $n=5$ and 6 were variationally better than theirs. More recently, Kamta et al. ${ }^{12}$ calculated the energies of the triplet states up to very high levels, but their results were less accurate than ours for all the states.

B. Free ICI calculations for the moving-nucleus Hamiltonian

Next, we performed the calculations for the movingnucleus Hamiltonian. There are only few references of the theoretical calculations for the highly excited states of helium atom with this Hamiltonian. So, this is the first very accurate variational calculations for such states. We used the
 with the references.

N	Free ICI			Ref. 11	Ref. 12
	$n=4\left(M_{n}=5392\right)$ with $L=16$	$n=5\left(M_{n}=5930\right)$ with $L=10$	$n=6\left(M_{n}=5724\right)$ with $L=6$		
2	-2.175229378236791299 127	-2.175229378236791305721165	-2.175229378236791305738966843	-2.175229378 2367913008	-2.1752283
3	-2.068 689067472457190842	-2.068 689067472457191993111	-2.068 689067472457191996530498	-2.068 6890674724571822	-2.068 6888
4	-2.036512083 098236299162	-2.036512083 098236299579123	-2.036512083 098236299580377172	-2.036512083 098236270	-2.03651198
5	-2.022618872302 312266123	-2.022618872302312266321860	-2.022 618872302312266322458549	-2.022 618872302312248	-2.022 618816
6	-2.015 377452992862437582	-2.015 377452992862437692306	-2.015 377452992862437692638542	-2.015377452992862120	-2.015 377421
7	$\text { -2.011 } 129919527626331675$	$\text { -2.011 } 129919527626331742916$	-2.011 129919527626331743119501	-2.011129919527626070	-2.011129900
8	$\text { -2.008 } 427122064721395284$	$-2.008427122064721395328484$	-2.008 427122064721395328617608	-2.008427122064721111	-2.008427109
9	$\text { -2.006 } 601516715010778123$	-2.006 601516715010778153727		-2.006601516715010458	-2.0066015077
10	-2.005 310794915611245045	$\text { -2.005 } 310794915611245067369$		-2.005 31079491561014	-2.0053107884
11	-2.004364700 897266597358	$\text { -2.004 } 364700897266597374467$			-2.00436469602
12	-2.003650626784 731774752	$\text { -2.003 } 650626784731774764860$			-2.00365062305
13	-2.003 098467826765664239	-2.003 098467826765664249638			-2.00309846491
14	-2.002662 728645385867828	-2.002662 728645385867836033			-2.00266272632
15	-2.002 312839656877712887	-2.002 312839656877691135649			-2.00231283777
16	-2.002 027644283129301417				-2.00202764274
17	$\text { -2.001 } 792123370925548604$				$\text { -2.001 } 79212209$
18	$\text { -2.001 } 595376271437103412$				-2.00159537519
19	-2.001429 336322174226578				-2.001 42933541
20	-2.001287930553410 778107				-2.001 28792977
21	-2.001 166516338700203335				-2.001 16651566
22	-2.001 061495380029361233				$\text { -2.001 } 06149479$
23	-2.000 970043984125442687				-2.00097004347
24	-2.000 889921221492270140				-2.000 88992080

TABLE IV. Free ICI energies (a.u.) of the singlet $1 s N s$ states $\left({ }^{1} S\right)$ calculated with the g and $\psi_{0}^{\text {singlet }}(L)$ given in Eqs. (5) and (6) for the moving-nucleus Hamiltonian (the correct figures are shown in boldface). The mass of helium nucleus, $m_{N}=7294.2995365$ a.u. was used.

N	$n=4\left(M_{n}=5392\right)$ with $L=16$	$n=5\left(M_{n}=5930\right)$ with $L=10$	$n=6\left(M_{n}=5724\right)$ with $L=6$
1	-2.903 304557729574094	-2.903 304557729580247325	-2.903 304557729580294694232
2	-2.145678587580576765	-2.145678587580577372955	-2.145678587580577377 730398
3	-2.060989082 349024914	-2.060989082 349025080356	-2.060989 082349025081647625
4	-2.033 307817481290775	-2.033307817481290843198	-2.033 307817481290843724323
5	-2.020 899726173541168	-2.020 899726173541202200	-2.020 899726173541202464811
6	-2.014286911184 421373	-2.014286911184421392790	-2.014286911184 421392941839
7	-2.010350144 451778455	-2.010350144 451778467802	-2.010350144451778467896681
8	-2.007818346203258377	-2.007818346203258385654	-2.007818346203258385 716910
9	-2.006 094518776602767	-2.006 094518776602773302	
10	-2.004 868128875832522	-2.004 868128875832526877	
11	-2.003964678560 077649	-2.003964678560 077652569	
12	-2.003 279983605862318	-2.003 279983605862320464	
13	-2.002 748722118365148	-2.002 748722118365150552	
14	-2.002 328252310128797	-2.002328252310128798533	
15	-2.001989779223704279	-2.001989779223704110 186	
16	-2.001 713289495095619		
17	-2.001 484523108501314		
18	-2.001293 096989016414		
19	-2.001131305623273079		
20	-2.000 993333263620653		
21	-2.000 874723866482391		
22	-2.000 772016715719527		
23	-2.000 682491080815747		
24	-2.000603984 077289704		

same g and ψ_{0} given by Eqs. (5) and (6) with three different sets of the exponential functions for $\psi_{0}, L=16,10$, and 6 . We performed the free ICI calculations to the orders $n=4$ (M_{n} $=5392)$, $5\left(M_{n}=5930\right)$, and $6\left(M_{n}=5724\right)$, respectively.

Tables IV and V show the energies for the singlet $\left({ }^{1} S\right)$ and triplet $\left({ }^{3} S\right)$ states, respectively, to $N=24,15$, and 8 for $n=4$, 5 , and 6 , respectively. The convergence behaviors were almost the same as those for the fixed-nucleus case for both the

TABLE V. Free ICI energies (a.u.) of the triplet $1 s N s$ states $\left({ }^{3} S\right)$ calculated with the g and $\psi_{0}^{\text {triplet }}(L)$ given in Eqs. (5) and (6) for the moving-nucleus Hamiltonian (The correct figures are shown in boldface). The mass of helium nucleus $m_{N}=7294.2995365$ a.u. was used.

N	$n=4\left(M_{n}=5392\right)$ with $L=16$	$n=5\left(M_{n}=5930\right)$ with $L=10$	$n=6\left(M_{n}=5724\right)$ with $L=6$
2	-2.174930190712309581298	-2.174930190712309587889 429	-2.174930190712309587907223962
3	-2.068 405243694680773926	-2.068 405243694680775076129	-2.068 405243694680775079547636
4	-2.036232827 788694949940	-2.036 232827788694950356809	-2.036232827 788694950358062268
5	-2.022 341573181791866923	-2.022 341573181791867121826	-2.022 341573181791867122424527
6	-2.015101168236722 510326	-2.015101168236722510435979	-2.015101168236722510 436311354
7	-2.010 854227679922862404	-2.010854227679922862 471992	-2.010 854227679922862472195700
8	-2.008 151806543955639167	-2.008 151806543955639211251	-2.008 151806543955639211384429
9	-2.006 326454897939965199	-2.006 326454897939965230398	
10	-2.005035912200715982315	-2.005 035912200715982337738	
11	-2.004 089949305164969517	-2.004 089949305164969533649	
12	-2.003 375974060731424668	-2.003 375974060731424680647	
13	-2.002823 891489240403444	-2.002823891489240403 454418	
14	-2.002 388212546182926638	-2.002 388212546182926645925	
15	-2.002 038371898429106746	-2.002 038371898429084645998	
16	-2.001753215906614691760		
17	-2.001517 727501912895779		
18	-2.001321007547138202209		
19	-2.001154990 497678391712		
20	-2.001 013604224887508127		
21	-2.000 892206744952801036		
22	-2.000 787200257694457623		
23	-2.000695761460329 847604		
24	-2.000615649732689 162022		

TABLE VI. Energy differences (a.u.) ΔE of Eq. (10) between the fixed-nucleus and moving-nucleus calculations and the mass polarization effect to the total energy ΔE_{MP} of Eq. (11) calculated with the moving-nucleus Hamiltonian for singlet and triplet states with $\psi_{0}(L)$ of $L=16$ and $n=4$ ($M_{n}=5392$). (The correct figures are shown in boldface.)

State	$\Delta E=E_{\mathrm{MN}}-E_{\mathrm{FN}}$		$\Delta E_{\mathrm{MP}}=E_{\mathrm{MN}}-\mu E_{\mathrm{FN}}$	
	Singlet $\left({ }^{1} S\right)$	Triplet (${ }^{3} S$)	Singlet (${ }^{1} S$)	Triplet (${ }^{3} S$)
1	$4.198193045392986 \times 10^{-4}$		$2.179255286088 \times 10^{-5}$	
2	$2.954584738400375 \times 10^{-4}$	$2.991875244817178 \times 10^{-4}$	$1.300018067572 \times 10^{-6}$	$1.018906818572 \times 10^{-6}$
3	$2.829073918835689 \times 10^{-4}$	$2.838237777764169 \times 10^{-4}$	$3.594335128525 \times 10^{-7}$	$2.591267127631 \times 10^{-7}$
4	$2.788995494346036 \times 10^{-4}$	$2.792553095413492 \times 10^{-4}$	$1.465377376554 \times 10^{-7}$	$1.013045674458 \times 10^{-7}$
5	$2.771254008327003 \times 10^{-4}$	$2.772991205203991 \times 10^{-4}$	$7.346602701094 \times 10^{-8}$	$4.952135278423 \times 10^{-8}$
6	$2.761872621957704 \times 10^{-4}$	$2.762847561399272 \times 10^{-4}$	$4.190471355723 \times 10^{-8}$	$2.777136370491 \times 10^{-8}$
7	$2.756317590874937 \times 10^{-4}$	$2.756918477034692 \times 10^{-4}$	$2.610833233836 \times 10^{-8}$	$1.709172319762 \times 10^{-8}$
8	$2.752759023541403 \times 10^{-4}$	$2.753155207657561 \times 10^{-4}$	$1.734551782743 \times 10^{-8}$	$1.124956810131 \times 10^{-8}$
9	$2.750343312746984 \times 10^{-4}$	$2.750618170708129 \times 10^{-4}$	$1.210044379615 \times 10^{-8}$	$7.789929701199 \times 10^{-9}$
10	$2.74862872160034 \times 10^{-4}$	$2.748827148952627 \times 10^{-4}$	$8.771692217333 \times 10^{-9}$	$5.612881480153 \times 10^{-9}$
11	$2.74736801743814 \times 10^{-4}$	$2.747515921016278 \times 10^{-4}$	$6.558614773699 \times 10^{-9}$	$4.175512495908 \times 10^{-9}$
12	$2.746414063703264 \times 10^{-4}$	$2.746527240003500 \times 10^{-4}$	$5.030579585437 \times 10^{-9}$	$3.188808542847 \times 10^{-9}$
13	$2.745674851373874 \times 10^{-4}$	$2.745763375252607 \times 10^{-4}$	$3.941915901710 \times 10^{-9}$	$2.489281632113 \times 10^{-9}$
14	$2.745090449941916 \times 10^{-4}$	$2.745160992029411 \times 10^{-4}$	$3.145498816903 \times 10^{-9}$	$1.979717425824 \times 10^{-9}$
15	$2.744620465591969 \times 10^{-4}$	$2.744677584486061 \times 10^{-4}$	$2.549556710339 \times 10^{-9}$	$1.599843484730 \times 10^{-9}$
16	$2.744236868611626 \times 10^{-4}$	$2.744283765146096 \times 10^{-4}$	$2.094825692583 \times 10^{-9}$	$1.310940873937 \times 10^{-9}$
17	$2.743919715090025 \times 10^{-4}$	$2.743958690126528 \times 10^{-4}$	$1.741873499994 \times 10^{-9}$	$1.087365166520 \times 10^{-9}$
18	$2.743654501195142 \times 10^{-4}$	$2.743687242989012 \times 10^{-4}$	$1.463771201849 \times 10^{-9}$	$9.116742088320 \times 10^{-10}$
19	$2.743430474995577 \times 10^{-4}$	$2.743458244958348 \times 10^{-4}$	$1.241702921637 \times 10^{-9}$	$7.717247211097 \times 10^{-10}$
20	$2.743239529305573 \times 10^{-4}$	$2.743263285232699 \times 10^{-4}$	$1.062252283568 \times 10^{-9}$	$6.588861942391 \times 10^{-10}$
21	$2.743075457762253 \times 10^{-4}$	$2.743095937474022 \times 10^{-4}$	$9.156783017696 \times 10^{-10}$	$5.669108179030 \times 10^{-10}$
22	$2.742933444061087 \times 10^{-4}$	$2.742951223349036 \times 10^{-4}$	$7.947926970447 \times 10^{-10}$	$4.912003935974 \times 10^{-10}$
23	$2.742809704457540 \times 10^{-4}$	$2.742825237955950 \times 10^{-4}$	$6.942158293925 \times 10^{-10}$	$4.283212654878 \times 10^{-10}$
24	$2.742701242512844 \times 10^{-4}$	$2.742714888031081 \times 10^{-4}$	$\mathbf{6 . 1 0 8} 213417938 \times 10^{-10}$	$3.761214976290 \times 10^{-10}$
∞	$2.741491271185722 \times 10^{-4}$	$2.741491271185722 \times 10^{-4}$	0	0

singlet and triplet states. The accuracies of the calculations for $n=4$ were observed to be in about 14-17 digits for all the states up to $N=24$. For the states up to $N=8$, the best performance was obtained in the calculations of the order $n=6$: The results were correct over 20-23 digits in accuracy. Thus, the convergence of the free ICI to the exact solutions was very good also for the moving-nucleus Hamiltonian.

We calculate the energy difference between the energies of the fixed-nucleus (E_{FN}) and moving-nucleus (E_{MN}) calculations, given by

$$
\begin{equation*}
\Delta E=E_{\mathrm{MN}}-E_{\mathrm{FN}} . \tag{10}
\end{equation*}
$$

As previously shown, ${ }^{10} \Delta E$ includes the two effects arising from the reduced mass and from the mass polarization operator, although these two effects cannot be separated as physical quantities. The fixed-nucleus energy is easily transformed to the energy for the reduced mass by μE_{FN} with the reduced mass μ. This energy is obtained from the Hamiltonian that does not include the second mass polarization term of Eq. (3) but whose μ retains the value of the finite nuclear mass. Then, the energy difference,

$$
\begin{equation*}
\Delta E_{\mathrm{MP}}=E_{\mathrm{MN}}-\mu E_{\mathrm{FN}}, \tag{11}
\end{equation*}
$$

represents the mass polarization effect in the total energy. This energy includes the effect of the mass polarization to any order because E_{MN} was variationally calculated for the Hamiltonian given by Eq. (3).

In Table VI, ΔE and ΔE_{MP} are shown for both singlet
and triplet states for the calculations of $n=4 . \Delta E$ was always positive for all the states because the nuclear kinetic energy contained in E_{MN} was always positive. For both singlet and triplet states, when N grows up, the $1 s N s$ state converges to the one-electron ionized state, $1 s^{\infty} s$ state, which is the state of $\mathrm{He}^{+}+\mathrm{e}^{-}$and its exact energy is -2 a.u. in the fixed-nucleus approximation and -2μ $=-1.999725850872 \ldots$ a.u. in the moving-nucleus level. So, ΔE should converge to $-2 \mu-(-2)=2.741491$ $\times 10^{-4}$ a.u. at $N=\infty$. The ground state had the largest value $\Delta E=4.198193 \times 10^{-4}$ a.u., the second was the $N=2$ triplet state of 2.991875×10^{-4} a.u., and the next was its singlet state of 2.954584×10^{-4} a.u. When N grew up, ΔE monotonically converged to the limit of $N=\infty$, i.e., 2.741491 $\times 10^{-4}$ a.u. and, therefore, ΔE became small as N increased. At the same quantum number $N, \Delta E$ for the triplet state was larger than that for the singlet state.
ΔE_{MP} was quite small in the moving-nucleus effect compared to the reduced-mass effect ΔE. It was 2.179255 $\times 10^{-5}$ a.u. for the ground state, which was largest among all the states. In the ground state, two electrons occupy the $1 s$ orbital and their positions are very near the nucleus, so that the polarization effect of the center of mass is thought to be large. ${ }^{10}$ The second largest state on ΔE_{MP} was the singlet $N=2$ state, 1.300018×10^{-6} a.u., and then the corresponding triplet state, 1.018907×10^{-6} a.u. At the same quantum number $N, \Delta E_{\mathrm{MP}}$ for the singlet state was larger than that for the triplet state, although for ΔE, the relation was converse. In

TABLE VII. Singlet $\left({ }^{1} S\right)$ excitation energies (a.u.) from the ground to the $1 s N s$ states calculated in the fixed-nucleus approximation, $E_{\text {ex }}{ }^{\mathrm{FN}}$ and those calculated in the moving-nucleus level $E_{\text {ex }}{ }^{\text {MN }}$ for $N=2-24$ with $\psi_{0}^{\text {singlet }}(L)$ of $L=16$ and $n=4\left(M_{n}=5392\right)$. The differences from the experimental excitation energies are given as $\Delta E_{\text {ex }}{ }^{\mathrm{FN}}$ and $\Delta E_{\text {ex }}{ }^{\mathrm{MN}}$ for the fixed-nucleus and moving-nucleus levels, respectively. (the correct figures are shown in boldface).

State	Excitation energy ($\left.E_{\text {ex }}{ }^{\mathrm{FN}}\right)$	Excitation energy ($E_{\text {ex }}{ }^{\text {MN }}$)	Expt. ${ }^{\text {a }}$		$\Delta E_{\text {ex }}{ }^{\mathrm{FN}}=\left[\right.$ Theor $\left.\left(E_{\text {ex }}{ }^{\mathrm{FN}}\right)\right]-[$ Expt. $]$	$\Delta E_{\mathrm{ex}}{ }^{\mathrm{MN}}=\left[\right.$ Theor $\left.\left(E_{\mathrm{ex}}{ }^{\text {MN }}\right)\right]-[$ Expt. $]$
2	0.757750330979697	0.757625970148997	0.7576157626	28	0.0001345684	0.0000102075
3	0.842452387293205	0.842315475380549	0.8423061388	28	0.0001462485	0.0000093366
4	0.870137660003388	0.869996740248283	0.8699881582	29	0.0001495018	0.0000085821
5	0.882547525459740	0.882404831556033	0.8823963512	29	0.0001511742	0.0000084803
6	0.889161278587496	0.889017646545153	0.8890092212	29	0.0001520574	0.0000084253
7	0.893098600823247	0.892954413277796	0.8929460170	29	0.0001525839	0.0000083963
8	0.895630754928501	0.895486211526316	0.8954778303	29	0.0001529246	0.0000083812
9	0.897354823926236	0.897210038952971	0.89720155	30	0.0001532718	0.0000084869
10	0.898581385286121	0.898436428853742	0.89842807	30	0.0001533133	0.0000083569
11	0.899484961672292	0.899339879169496	0.89933146	30	0.0001535051	0.0000084226
12	0.900169752021881	0.900024574123712	0.90001600	30	0.0001537517	0.0000085738
13	0.900701087430611	0.900555835611209	0.90054772	30	0.0001533627	0.0000081109
14	0.901121615678990	0.900976305419445	0.90096823	30	0.0001533868	0.0000080766
15	0.901460135763850	0.901314778505870	0.90130667	30	0.0001534623	0.0000081051
16	0.901736663852157	0.901591268234472				
17	0.901965461954103	0.901820034621073				
18	0.902156914594977	0.902011460740558				
19	0.902318728363341	0.902173252106301				
20	0.902456719817562	0.902311224465953				
21	0.902575345621855	0.902429833863092				
22	0.902678066973988	0.902532541013855				
23	0.902767604982852	0.902622066648758				
24	0.902846122832572	0.902700573652284				
∞	0.903724377034113	0.903578706856692	0.903569891		0.0001544860	0.0000088158

${ }^{\bar{a}}$ The unit converted from cm^{-1} (original paper) to a.u.
the triplet state, two electrons cannot occupy the same spatial coordinates by the Pauli exclusion principle, so that the two electrons tend to be apart from each other. As the excitation level becomes higher, ΔE_{MP} becomes very small. For N $=24$, the order of ΔE_{MP} was 10^{-10}. For highly excited states, the state is similar to the ionized state: One electron is very far from the nucleus and is extremely delocalized, so that the mass polarization effect becomes almost negligible and the simple reduced-mass effect becomes dominant in ΔE.

C. Excitation energies

We examine here the excitation energies from the ground state to the $1 s N s$ excited states and compare the present theoretical results with the available experimental data. ${ }^{28-30}$ The accuracies of the experimental values were less than ten decimal figures in a.u. and they were limited to $N=15$ for singlet and 17 for triplet, so that our theoretical results with $n=4$ were sufficient in accuracy to compare with the experimental values. We show in Tables VII and VIII the excitation energies from the ground state for the singlet and triplet states, respectively. In each table, the excitation energies for both of the fixed-nucleus ($E_{\mathrm{ex}}{ }^{\mathrm{FN}}$) and moving-nucleus $\left(E_{\text {ex }}{ }^{\mathrm{MN}}\right)$ levels are presented, and $\Delta E_{\text {ex }}{ }^{\mathrm{FN}}$ and $\Delta E_{\text {ex }}{ }^{\mathrm{MN}}$ show the differences between the theoretical and experimental values for both the fixed-nucleus and moving-nucleus levels. At the bottom of the tables, we gave the value for $N=\infty$, which is the ionization energy.

In Tables VII and VIII, we see the natural trends that the spacing of the neighboring excitation energies becomes
smaller and smaller as N increases and that the triplet excitation energy to the $N s$ state is smaller than the corresponding singlet one. The theoretical excitation energies agreed quite well with the experimental values and the agreement was improved when the quantum effect of the nuclear motion was considered. The differences from the experimental values at the fixed-nucleus approximation $\Delta E_{\text {ex }}{ }^{\mathrm{FN}}$ were almost constant at around $0.00015 \mathrm{a} . \mathrm{u}$. except for a few lowlevel states, and those for the moving-nucleus level $\Delta E_{\text {ex }}{ }^{\text {MN }}$ were much smaller and also almost constant around at 0.000008 again except for a few low-level states. The inclusion of the effect of nuclear motion increased the accuracy of the theoretical results by the two orders of magnitude up to 10^{-6} a.u.

The present theoretical results for the moving-nucleus Hamiltonian are considered to be a nonrelativistic limit, so that we mainly discuss the difference $\Delta E_{\text {ex }}{ }^{\mathrm{MN}}$ from the experimental value at this level of accuracy. Since the accuracy of the present theoretical result is high enough as a solution of the electron-nuclear SE , the source of the difference $\Delta E_{\text {ex }}{ }^{\text {MN }}$ lies in the relativistic effect, the QED effect, and even the errors in the experimental value: The theoretical and numerical errors do not exist at this level of digits of the present results. Since the values of $\Delta E_{\mathrm{ex}}{ }^{\mathrm{MN}}$ were fairly constant for N larger than 5, around 0.000008 1-0.000 0085 , these values and the large deviations for $N=2$ and 3 for singlet and for $N=2-4$ for triplet would be physically meaningful and would have some clear origins. We expect that the relativistic and QED effects are the main sources of the value

TABLE VIII. Triplet $\left({ }^{3} S\right.$) excitation energies (a.u.) from the ground to the $1 s N s$ states calculated in the fixed-nucleus approximation, $E_{\text {ex }}{ }^{\mathrm{FN}}$ and those calculated in the moving-nucleus level $E_{\text {ex }}{ }^{\mathrm{MN}}$ for $N=2-24$ calculated with $\psi_{0}^{\text {triplet }}(L)$ of $L=16$ and $n=4\left(M_{n}=5392\right)$. The differences from the experimental excitation energies are given as $\Delta E_{\mathrm{ex}}{ }^{\mathrm{FN}}$ and $\Delta E_{\mathrm{ex}}{ }^{\mathrm{MN}}$ for the fixed-nucleus and moving-nucleus levels, respectively (the correct figures are shown in boldface).

State	Excitation energy ($E_{\text {ex }}{ }^{\text {FN }}$)	Excitation energy ($E_{\text {ex }}{ }^{\text {MN }}$)	Expt. ${ }^{\text {a }}$	Ref.	$\Delta E_{\text {ex }}{ }^{\mathrm{FN}}=\left[\operatorname{Theor}\left(E_{\mathrm{ex}}{ }^{\mathrm{FN}}\right)\right]-[$ Expt. $]$	$\Delta E_{\text {ex }}{ }^{\text {MN }}=\left[\right.$ Theor $\left.\left(E_{\text {ex }}{ }^{\text {MN }}\right)\right]-[$ Expt. $]$
2	0.728494998797322	0.728374367017265	0.7283574116	28	0.0001375872	0.0000169554
3	0.835035309561656	0.834899314034893	0.8348882537	28	0.0001470559	0.0000110603
4	0.867212293935877	0.867071729940879	0.86706247201	29	0.0001498219	0.0000092579
5	0.881105504731801	0.880962984547782	0.88095418300	29	0.0001513217	0.0000088015
6	0.888346924041251	0.888203389492852	0.8881947863	29	0.0001521377	0.0000086032
7	0.892594457506487	0.892450330049651	0.8924418238	29	0.0001526337	0.0000085062
8	0.895297254969392	0.895152751185618	0.8951442988	29	0.0001529561	0.0000084524
9	0.897122860319103	0.896978102831634	0.89696945	30	0.0001534080	0.0000086505
10	0.898413582118502	0.898268645528858	0.89825999	30	0.0001535934	0.0000086568
11	0.899359676136847	0.899214608424409	0.89920593	30	0.0001537466	0.0000086789
12	0.900073750249382	0.899928583668843	0.89991959	30	0.0001541619	0.0000089954
13	0.900625909207348	0.900480666240334	0.90047195	30	0.0001539564	0.0000087134
14	0.901061648388728	0.900916345183391	0.90090763	30	0.0001540188	0.0000087156
15	0.901411537377236	0.901266185831145	0.90125733	30	0.0001542090	0.0000088575
16	0.901696732750984	0.901551341822959	0.90154324	30	0.0001534944	0.0000081034
17	0.901932253663188	0.901786830227661	0.90177862	30	0.0001536350	0.0000082116
18	0.902129000762676	0.901983550182436				
19	0.902295040711939	0.902149567231896				
20	0.902436446480703	0.902290953504687				
21	0.902557860695413	0.902412350984621				
22	0.902662881654084	0.902517357471880				
23	0.902754333049988	0.902608796269244				
24	0.902834455812621	0.902688907996885				
∞	0.903724377034113	0.903578706856692	0.903569891		0.0001544860	0.0000088158

${ }^{\overline{\mathrm{a}} \text { The unit converted from } \mathrm{cm}^{-1} \text { (original paper) to a.u. }}$
of $\Delta E_{\mathrm{ex}}{ }^{\mathrm{MN}}$. They are certainly expected to be large for the lower states of $N=2-4$. Since the speed of the electrons moving around the nucleus becomes larger as N becomes smaller, the relativistic effect is expected to become larger as N becomes smaller. Further, from the irregular changes of the values of $\Delta E_{\text {ex }}{ }^{\text {MN }}$ in the order of 10^{-7} a.u., we also estimate the existence of some experimental errors in this order. For the ionization potential, the value of $\Delta E_{\mathrm{ex}}{ }^{\mathrm{MN}}$ lay in the same order as above, ${ }^{28}$ although it was a bit large in the order of 10^{-7} a.u. as a limiting value of the excitation energy at $N=\infty$.

In the experimental side, the accurate data of the excitation energy were available only up to $N=15$ for singlet and $N=17$ for triplet and the data for the higher $1 s N s$ states are now not available. So, the present theoretical values give highly accurate predictions for these states.

V. CONCLUSION

In this report, we used the free ICI methodology to solve the SE of the helium atom not only for the ground state but also for many excited states. We solved the SE for both the fixed-nucleus and moving-nucleus Hamiltonians and calculated the ground and excited states of S symmetry ($1 s N s$) up to $N=24$ for both singlet and triplet states. This is the first extensive applications of the free ICI method to the systematic calculations of many excited states. We were successful in obtaining very accurate excited states that are variationally better than the existing theoretical results for all the states up to $N=24$. In the free ICI formalism, we can easily calculate
the excited states by introducing appropriate initial functions that mimic the target excited states into the initial function ψ_{0}. In the present calculations, this has been done by introducing many different exponents in the ψ_{0}. From such ψ_{0}, the free ICI method generated the complement functions not only for the ground state but also for the excited states. The solutions for all the states of the same symmetry were obtained by a single diagonalization, so that all of them satisfy the Ritz-type variational principle and the orthogonality to each other.

We compared the calculated theoretical excitation energies with the experimental data. The results for the fixednucleus Hamiltonian reproduced the experimental excitation energies up to 10^{-3} a.u. Those for the moving-nucleus Hamiltonian, which correspond to the nonrelativistic limit, further agreed with the experimental values to 10^{-5} a.u. The remaining differences from the experimental excitation energies originate from the physical effects such as relativistic effect, QED effect, and also from the experimental errors. The present theoretical results are correct at the nonrelativistic Schrödinger level to higher digits than the experimentally reported values. Further theoretical improvements would be obtained by introducing the relativistic effects and the QED effects. We have already reported that the free ICI method is also useful for solving the relativistic DiracCoulomb equation of helium atom and its isoelectronic ions. ${ }^{5}$ When we study the QED effect by the perturbation method, the present results and the results for the Dirac-Coulomb equation would be the excellent zeroth order functions.

Thus, we have been able to show that with the free ICI methodology for solving the SE, we can obtain highly accurate theoretical results that are, in some sense, more accurate than the existing experimental values and, therefore, that have truly accurate predictive power. This is a step for accurately formulating predictive quantum chemistry and science based on the calculations of the Schrödinger accuracy, which we want to systematically build up in future.

ACKNOWLEDGMENTS

This study has partially been financially supported by the Grant for Creative Scientific Research from the Ministry of Education, Science, Culture, and Sports of Japan.
${ }^{1}$ E. A. Hylleraas, Z. Phys. 54, 347 (1929).
${ }^{2}$ H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000); H. Nakatsuji and E. R. Davidson, ibid. 115, 2000 (2001).
${ }^{3}$ H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).
${ }^{4}$ H. Nakatsuji, Phys. Rev. A 65, 062110 (2005).
${ }^{5}$ H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95, 050407 (2005).
${ }^{6}$ Y. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Rev. A 72, 062502 (2005).
${ }^{7}$ H. Nakatsuji, Bull. Chem. Soc. Jpn. 78, 1705 (2005).
${ }^{8}$ H. Nakashima and H. Nakatsuji, J. Chem. Phys. 127, 224104 (2007).
${ }^{9}$ H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa, Phys. Rev. Lett. 99, 240402 (2007).
${ }^{10}$ H. Nakashima and H. Nakatsuji, J. Chem. Phys. 128, 154107 (2008).
${ }^{11}$ G. W. F. Drake and Z. Yan, Chem. Phys. Lett. 229, 486 (1994).
${ }^{12}$ G. L. Kamta, B. Piraux, and A. Scrinzi, Phys. Rev. A 63, 040502 (2001).
${ }^{13}$ H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978); See: http://qcri.or.jp/ sacci/
${ }^{14}$ M. Ehara, J. Hasegawa, and H. Nakatsuji, in Theory and Applications of Computational Chemistry, edited by C. Dykstra, G. Frenking, K. Kim, and G. Scuseria (Elsevier Science, New York, 2006).
${ }^{15}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAuSSIAN 03, Gaussian, Inc., Pittsburgh, PA, 2003.
${ }^{16}$ H. Nakatsuji, T. Miyahara, and R. Fukuda, J. Chem. Phys. 126, 084104 (2007).
${ }^{17}$ H. Cox, S. J. Smith, and B. T. Sutcliffe, Phys. Rev. A 49, 4533 (1994).
${ }^{18}$ G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987).
${ }^{19}$ V. Korobov and A. Yelkhovsky, Phys. Rev. Lett. 87, 193003 (2001).
${ }^{20}$ A. J. Thakkar and T. Koga, Phys. Rev. A 50, 854 (1994).
${ }^{21}$ P. W. Atkins, Physical Chemistry, 6th ed. (Oxford University Press, Oxford, 1998).
${ }^{22}$ Computer code maple, Waterloo Maple Inc., Waterloo, Ontario, Canada, see http://www.maplesoft.com/.
${ }^{23}$ About the GMP library, see http://swox.com/gmp/ and http:// www.cs.nyu.edu/exact/core/gmp/.
${ }^{24}$ See: http://physics.nist.gov/cuu/Constants/
${ }^{25}$ J. H. Bartlett, Jr., Phys. Rev. 51, 661 (1937).
${ }^{26}$ T. H. Gronwall, Phys. Rev. 51, 655 (1937).
${ }^{27}$ V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).
${ }^{28}$ J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005).
${ }^{29}$ W. C. Martin, Phys. Rev. A 36, 3575 (1987).
${ }^{30}$ W. C. Martin, J. Phys. Chem. Ref. Data 2, 257 (1973).

[^0]: ${ }^{\text {a) }}$ Author to whom correspondence should be addressed. Electronic: h.nakatsuji@qcri.or.jp.

