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In this paper we present the theory and implementation of the symmetry-adapted cluster �SAC� and
symmetry-adapted cluster-configuration interaction �SAC-CI� method, including the solvent effect,
using the polarizable continuum model �PCM�. The PCM and SAC/SAC-CI were consistently
combined in terms of the energy functional formalism. The excitation energies were calculated by
means of the state-specific approach, the advantage of which over the linear-response approach has
been shown. The single-point energy calculation and its analytical energy derivatives are presented
and implemented, where the free-energy and its derivatives are evaluated because of the presence of
solute-solvent interactions. We have applied this method to s-trans-acrolein and
metylenecyclopropene of their electronic excitation in solution. The molecular geometries in the
ground and excited states were optimized in vacuum and in solution, and both the vertical and
adiabatic excitations were studied. The PCM-SAC/SAC-CI reproduced the known trend of the
solvent effect on the vertical excitation energies but the shift values were underestimated. The
excited state geometry in planar and nonplanar conformations was investigated. The importance of
using state-specific methods was shown for the solvent effect on the optimized geometry in the
excited state. The mechanism of the solvent effect is discussed in terms of the Mulliken charges and
electronic dipole moment. © 2010 American Institute of Physics. �doi:10.1063/1.3456540�

I. INTRODUCTION

Electronic excitations of molecules and molecular sys-
tems in particular circumstances, such as in solutions, have
attracted attention for a long time. Solvatochromism, the
shift of transition energies by a solvent, is an important con-
sideration in such research.1 Photochemical and electro-
chemical reactions in solution are other considerations.2 Sev-
eral states with different electron density distributions may
exist in a small energy width, and therefore their relative
energy levels can be strongly influenced by solute-solvent
interactions. The latter can change the features of a potential
energy surface and the transition probability between elec-
tronic states. Solvents affect the efficiency of chemical
processes—a reaction path or mechanism can be alternated
by a solvent. Many photochemical and electrochemical pro-
cesses involve several electronic states, not only the initial
and final states but also intermediate states. Reliable compu-
tational studies are essential for elucidating the mechanism
of such complex processes because it is difficult to detect
short-lived intermediate states in certain solvents experimen-
tally. There is a strong demand for the development of theo-

retical and computational methods to understand photo-
chemical and electrochemical phenomena in solution, such
as those associated with utilizing photoenergy with func-
tional dyes, organic photovoltaic cells, charge transport in
batteries and molecular devices, etc.3 This study reports the-
oretical and computational methods in the framework of the
symmetry-adapted cluster �SAC� and symmetry-adapted
cluster-configuration interaction �SAC-CI� method, in terms
of the polarizable continuum model �PCM�.

The SAC/SAC-CI method is a theory for the ground and
excited states of molecules based on the coupled-cluster
�CC� theory that was proposed by Nakatsuji and
co-workers4,5 in 1977, and has since then been extensively
developed. Other CC based theories, such as the equation-of-
motion �EOM�,6 linear-response �LR� and time-dependent7,8

CC theories are closely related to the SAC/SAC-CI theory.
The SAC/SAC-CI theory describes the totally symmetric sin-
glet state �usually the ground state� with the SAC expansion.
The excitations from the SAC state are expressed by the
CI-like eigenvalue problem. The electron correlation in ex-
cited states is considered on the basis of the correlated
ground state wave function; therefore, the wave functions of
excited states are expressed in a compact and well-balanced
form. Furthermore, the obtained states are orthogonal to each
other, which is a necessary condition for excited states. For
recent reviews of the SAC/SAC-CI method, see Ref. 9.
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The PCM method introduces solvent effects in the quan-
tum mechanical �QM� description of the solute by using a
representation of the solvent as a continuum responsive dis-
tribution. The PCM model was proposed by Tomasi and
co-workers10 in 1981 and since then has been continuously
developed. For a recent review of the PCM method see Ref.
11. The procedure is based on the definition of an effective
Hamiltonian, formally composed of the solute Hamiltonian
accompanied by solute-solvent integral interaction operators.
The solution of the effective Schrödinger equation is ob-
tained with an iterative procedure because the solute-solvent
interaction operator depends on the QM charge distribution
of the solute. The solute-solvent interaction may include the
electrostatic component of the solute-solvent interaction and
the nonelectrostatic component.

In the present study, the PCM method has been com-
bined with the SAC/SAC-CI method with an energy func-
tional approach, which provides a general and consistent for-
mulation for the PCM method with nonvariational wave
functions. Furthermore, the extension to the analytical en-
ergy gradient method is straightforward with the energy
functional formalism. The energy functional method was
originally introduced into the CC theory by Arponen and
co-workers,12 and further systematically developed by Bar-
tlett and co-workers13 and by a Scandinavian school.14,15 The
method offers an alternative, variational-like derivation of
the CC equations and is compatible with the generalized
Hellman–Feynman theorem for the calculation of the re-
sponse properties.

Originally two versions of the SAC method were
proposed:4,5 a SAC-nonvariational �SAC-NV� and an ap-
proximate SAC-variational �SAC-V�. When applying the
variational principle to an expression of the SAC expectation
value of the electronic energy, we can obtain the variational
SAC formalism. This variational solution is very difficult to
determine and some approximations have to be introduced
because of the nonclosed form of the SAC expectation value
of the energy. Thus, we will not address the SAC-V method
here. In the SAC-NV method, the SAC wave function �ket
vector� satisfies the Schrödinger equation that is projected
into the left side of the subspace of the reference �Hartree–
Fock �HF�� state and the corresponding linked excited con-
figurations.

The SAC energy functional approach is based on an ex-
pectation value of the energy, as the SAC variational but
with a variation in the latter: the left �bra� SAC vector is not
a Hermitian conjugate of the right �ket� SAC vector, and it is
parametrized in a different way. This form of the energy
expectation value is called a SAC energy functional. A sta-
tionary principle leads to the equations for the SAC right
vector and for the SAC left vector. The right equation corre-
sponds to the SAC-NV equations. The left equation allows
the study of molecular response properties, including analyti-
cal gradients. This energy functional formulation has resulted
in the SAC and Z-vector of SAC �Z-SAC� equations that are
already known.16 However, energy functional formulation is
necessary for the development of PCM in the CC theory.17

We note that an energy functional �Lagrangian� formulation

was first proposed in solvent theory by Christiansen et al.15

The SAC energy functional is further addressed in the fol-
lowing section.

A clear description of the interplay between the elec-
tronic correlation and solvation is key to the application of
the PCM solvation method to the QM correlated method.
The introduction of the correlation modifies the total charge
distribution and, consequently, the solvent polarization
charges are also changed. In turn, the polarization charges
modify the electron correlation effect. The decoupling of
these effects was elaborated on, in 1991, by Olivares del
Valle and the Pisa group, using the many-body perturbation
theory,18 and extended by one of the present authors to the
CC theory.17 In brief, the method introduces two computa-
tional levels: �1� the noniterative scheme �originally called
PTE18� in which the solvated HF orbitals are used to com-
pute the correlation energy and �2� an iterative scheme
�originally called PTED18� in which the reaction field is par-
titioned into a HF contribution and a pure correlative contri-
bution, and the solvated correlated density usually has a self-
consistent reaction field. The latter approach will be
extended here to the SAC theory. The former PTE approach
is rather simple and has already been applied to SAC-CI
calculations in vertical excitations in solution,19 in which the
solvated HF offers a good approximation of the solvent ef-
fect. For a more sophisticated theory, however, the PTED
approach with nonequilibrium solvation is required, even for
vertical excitations in solution.

The analytical expression of the energy derivatives is
essential for computational methods addressing chemical
problems. We will consider the analytical formulation of the
first derivatives of the SAC and SAC-CI energies with re-
spect to nuclear coordinates, although there is a large variety
of derivatives appearing in molecular calculations.16,20 The
iterative PTED approach is necessary for the geometry opti-
mization of the excited state in solution with the SAC-CI
because the HF solvation is no longer a good approximation
of the solvation for the target state of optimization.

Two approaches are generally used to obtain the elec-
tronic excitation energies with QM continuum solvation
models. The first one, denoted as the state-specific �SS� ap-
proach, is based on the CI-like explicit description of the
electronic wave functions of excited states. The second one
is based on the LR theory.21 The SS method is based on the
definition of an effective Hamiltonian, in which the solute-
solvent interaction operator depends on the QM charge dis-
tribution of the solute in the specific excited state. In the SS
method, the solution of the effective Schrödinger equation is
obtained using an iterative procedure. Different states are
individually solved within their specific solvations. Here, it
should be noted that the obtained states are not rigorously
orthogonal to each other. In this article we use the term “SS”
as “SS solvation,” not for “SS excited states theory” such as
multiconfigurational self-consistent field �MCSCF� calcula-
tions.

The second approach is based on a Hamiltonian with
explicit time dependence, provided with an appropriate form
of the time-dependent variation principle �the Frenkel
principle22 is generally used here�. Using this as a starting
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point, linear and nonlinear response functions are derived.
The electronic excitation energies are obtained as poles of
the LR functions. Today the LR functions are widely used
both in gas phase and in solution for the characterization of
excited states and molecular properties. Although the com-
plete equivalence between SS and LR results for the excita-
tion energies has been universally accepted, recently it was
shown23 that this equivalence is valid only in vacuum and
that LR results can be seriously different in solution.21,24–26

The PCM-SAC-CI that we will present in this study involves
the SS approach.

Another aspect of the description of excited states in
solution is the nonequilibrium solvation effects.27 Electronic
transitions are very fast and here the solvent molecules have
no time to rearrange themselves, except for the electronic
component of the solvent polarization, whose relaxation time
is of the same order as that of vertical electronic transition.
This effect means that the energy �free-energy in this case� of
the vertical transition has a component due to the solvent
interaction, which is limited to changes in the fast electronic
polarization. The effects of the electronic transition continue
with time but these are not regarded as a vertical process and
have to be described with a different formulation of the con-
tinuum method.27

The formulation that we report here refers to the equi-
librium formulation. For the nonequilibrium formulation
there are two versions, the Marcus and Pekar partitions,28,29

which describe this simple process. They differ in the inter-
mediate stages of the elaboration of the problem but arrive at
the same result when the correct expression for the nonequi-
librium free-energy functional is used.30 The formulation
corresponding to the Pekar partition can be directly obtained
from the equilibrium case by substituting the polarization
charges of the solvent that appear in the PCM-SAC-CI equa-
tions derived in this study with those corresponding to the
nonequilibrium case.21,25

There are several methods for the description of elec-
tronic excited states in solution. As solvent models, basically
two approaches are available: a discrete representation and a
continuous responsive distribution. A typical discrete model
may be the quantum mechanics and molecular mechanics
�QM/MM� approach,30,31 while the PCM is a representative
of a continuous model. For the description of an excited
state, we have to consider the polarization of solvent charges
caused by the electronic excitation. This polarization is suit-
ably described within the PCM model using the nonequilib-
rium solvation approach, while it requires a polarizable force
field for the QM/MM method.32,33 This issue involves com-
putationally expensive procedure26 and most of the QM/MM
approaches with electron correlation are still limited to the
nonpolarizable force field. The rather simple PCM is suitable
for electronic excitation. The polarizable continuum can of-
fer a response to the electronic excitation. The characteristics
of the electronic states of a solvent can be controlled by the
dielectric constant � parameter, as the nonequilibrium solva-
tion is divided into fast and slow relaxations. This may be
reasonable to describe the electronic excitation because its

time-scale of response and relaxation is different from the
coordination and orientation; usual classical models do not
divide such effects.

Except for the configuration interaction with singles
�CIS� method, the MCSCF and the time-dependent density
functional theory �TDDFT� methods have been widely used
for the calculation of electronic excited states in solution.
The MCSCF is a variational method and it is a natural ex-
tension of the HF self-consistent field �SCF� in the ground
state. In TDDFT, excited states are described by the LR
theory, which is not always a good approach for solvent ef-
fects in excited states. To overcome this, an approximated SS
approach for TDDFT has been proposed.25 There are many
reports on the vertical excitation that use the PTE approach
with the PCM, QM/MM, and other solvent models. Such
computational routes have become black-box methods in
many recent program packages, and we will therefore not
refer such studies here. For electronic excitation in solution,
the SS and PTED approaches are required for general appli-
cations to various chemical and physical phenomena that in-
clude vertical and adiabatic transitions. The present study is
the first implementation and application of the SS and PTED
approach with electron correlation, but a related study on the
EOM-CC has recently been reported.34

The primary objectives of the present work are as fol-
lows: �1� Formulate the SAC and SAC-CI theories and their
analytical energy gradients in the PCM method using energy
functional formulas; �2� implement the PCM-SAC and PCM-
SAC-CI formulas in the latest version of the SAC-CI
program;35 �3� perform applications to s-trans-acrolein and
methylencyclopropene, which are typical small molecules
with characteristic solvation and excitation.

Acrolein is the smallest conjugating aldehyde, whose
low-lying excited states have been widely studied. Their sol-
vatochromism has been studied using various
experimental36–39 and theoretical39–44 methods. The solvent
effects on the lowest n→� and the lowest �→�� excitation
energies are opposite, and the mechanisms therefore have
been proposed. Our results confirmed earlier findings about
the vertical excitations. In our study we also performed the
geometry optimization in the excited states, in vacuum, and
in solution. A nonplanar geometry was found for the �
→�� state, which was not considered in our previous
study.45 The solvent effects on the excited state geometry and
adiabatic excitations were studied in the present study. We
examined the importance of relaxation in the electronic wave
function and molecular geometry in the excited state. We
have shown that the SS approach is essential to study the
solvent effect on the excited state geometry.

Methylenecyclopropene is known for its “sudden polar-
ization” due to electronic excitation.46 The directions of its
electronic dipole moment are opposite in the ground state
and the lowest �→�� state. Its significant solvent effect on
the UV-visible spectrum has been reported,47 and several the-
oretical studies have been carried out in efforts to clarify the
mechanism of the solvatochromism.48,49 Our results con-
firmed the earlier findings about the solvent effects on the
vertical excitation. We also performed the geometry optimi-
zation of the excited states and found a local minimal struc-
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ture of twisted conformation that we had not considered in a
previous SAC-CI calculation.16 The geometrical relaxation
may significantly affect the position of the vertical transition
in the UV-visible spectrum.

We introduced the SAC/SAC-CI theory of isolated mol-
ecules in a new formulation based on an energy functional
approach, which is fundamentally the extension of the SAC/
SAC-CI to the PCM method. The energy functional formal-
ism of SAC/SAC-CI will be extended to the free-energy
functional in solution by means of the PCM. We will present
the theory in both state vector formalism and the Hamil-
tonian matrix representation for the purpose of comparison
with previous papers on SAC-CI. The single-point energy
and analytical energy gradient of the PCM-SAC/SAC-CI
have been implemented in the latest SAC-CI program and
combined with a GAUSSIAN program package.50 In the prac-
tical algorithm in the program, we have used the latest mo-
lecular orbital �MO� integral-driven formalism because it is
much more efficient.35 Details of the MO integral formalism
will be presented in a forthcoming paper.

II. THEORY

A. The SAC theory for isolated molecules in an
energy functional approach

First we will summarize the SAC theory for isolated
molecules in an energy functional approach because the ap-
proach enables the consistent formulation of the PCM-SAC.
The SAC energy functional approach introduces distinct
right and left SAC wave vectors, respectively, denoted by
��SAC� and ����. The right SAC vector ��SAC� is defined as
the cluster expansion based on the reference function �0�,
which is usually the HF single determinant

��SAC� = exp�S��0� with S = 	
I

CISI
†, �1�

where SI
† is symmetry-adapted linked excitation operators,

which discriminates between the SAC and the ordinary CC
methods,51 and CI is the corresponding amplitudes. The left
SAC vector ���� is written as the following configuration
expansion form

���� = �0�	
K

ZK
SACSK, �2�

where SK is the de-excitation linked operators and ZK is the
corresponding amplitude. The SAC energy functional is de-
fined in terms of the left and right SAC vectors as

LSAC = ���HN��SAC� − �����SAC��0�HN��SAC� . �3�

Here we have introduced the auxiliary left vector ���= �0�
+ ���� and HN is the Hamiltonian operator given by

HN = H − EHF, �4�

where H is the Hamiltonian of a given isolated molecule and
EHF= �0�H�0� is the HF energy of the reference state.

The stationary conditions of the SAC energy functional
determine the equations for the SAC vectors. More specifi-
cally, the stationarity of LSAC with respect to the 
ZK� ampli-
tudes gives the SAC equation for the parameters of the right

SAC vector, while the stationarity with respect to the 
CK�
amplitudes gives the equation for the parameters of the left
SAC vector. The SAC equation for the 
CK� amplitudes may
be written as

�0�SK�HN − �ESAC���SAC� = 0, �5�

where �ESAC is the SAC correlation energy

�ESAC = �0�HN��SAC� . �6�

The equation for the ZK amplitudes of the left SAC vector
may be written as

���HNSK
† ��SAC� − ����SK

† ��SAC��0�HN��SAC�

+ �����SAC��0�HNSK
† ��SAC� = 0. �7�

As expected, the SAC equations �5� and �6� correspond to
the left-projection onto the reference and linked excited con-
figurations of the Schrödinger equation for the SAC vector
��SAC�, while the SAC equation �7� is known as the Z-SAC
equation.16

The SAC energy functional approach may also be for-
mulated in a Hamiltonian matrix-driven form.4,5 We will
adopt the so-called SAC-A approximation in which linked
terms include all the single �S1� and selected double �S2�
excitations, and the unlinked terms include the quadruple-
excitation operator as the product of the selected double-
excitation operators S2. Throughout this paper we represent
the Hamiltonian matrix elements as

HIJ = �0�SIHNSJ
†�0�, HI,JK = �0�SIHNSJ

†SK
† �0� �8�

and the overlap matrices between the configurations as

SIJ = �0�SISJ
†�0�, SI,JK = �0�SISJ

†SK
† �0� . �9�

The SAC energy functional in the Hamiltonian matrix form
may be written as

LSAC = 	
I

CIH̄0I�1 − S̃� + 	
K

ZK�HK0 + 	
I

CIH̄KI
 , �10�

where S̃ denotes the overlap between the left and right SAC

vectors, S̃=	KJZKCJS̄KJ, and the overbar denotes trans-
formed matrix elements, such as

H̄LI = HLI +
1

2	
J

CJHL,IJ and S̄KI = SKI +
1

2	
I

CJSK,IJ.

�11�

Applying the stationary conditions to the left side of Eq.
�10�, we obtain the Hamiltonian matrix forms of the SAC
equations as follows:

HK0 + 	
I

CI�H̄KI − �ESACS̄KI� = 0, �12�

�ESAC = 	
I

CIH̄0I, �13�

and
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H̄̄0L + 	
L

ZL
SACYKL = 0, �14�

where the Hamiltonian matrix elements H̄̄0L and YKI are
given by

H̄̄KI = HKI + 	
J

CJHK,IJ �15�

and

YKI = H̄̄KI − �ESACS̄KI − �	
J

CJS̄KJ
H̄̄0I. �16�

Equations �12�–�14� are the equation for the C amplitudes of
the right SAC vector, the expression of the SAC correlation
energy, and the equation for the Z amplitudes of the left SAC
vector, respectively. The Hamiltonian matrix form shows ex-
plicitly that the first two SAC equations �12� and �13� do not
contain any dependence on the Z amplitudes. They are there-
fore not coupled to the third SAC equation �14� and, as a
result, their solution provides all the information needed to
determine the right SAC vector ��SAC� and the SAC corre-
lation energy �ESAC. However, solution of the Z-SAC equa-
tion �14� for the left SAC vector simplifies enormously the
evaluation of the analytical gradients of the SAC correlation
energy �ESAC.16

When the stationary conditions are satisfied the SAC en-
ergy functional LSAC reduces to the SAC energy, i.e., LSAC

=�ESAC. As a consequence, the determination of the analyti-
cal gradients of �ESAC can be obtained in terms of the ana-
lytical gradients of LSAC. The first derivative of the SAC
energy functional LSAC

a =�LSAC /�a, with respect to a pertur-
bation parameter a, may be written in the following Hamil-
tonian matrix form:

LSAC
a = 	

I

CIH̄0I
a + 	

K

ZKHK0
a + 	

KI

ZKCIH̄KI
a

− 	
KI

ZKCIS̄KI	
J

CJH̄0J
a , �17�

where the superscript a on the Hamiltonian matrix elements
denotes their derivatives with respect to the perturbation.

The analytical gradient equation �17� does not contain
any derivative of the SAC amplitudes CK as a consequence
of the stationarity of the SAC energy functional with respect
to the Z amplitudes. Equation �17� is equivalent to the ex-
pression of the analytical gradient of the SAC correlation
energy given in Ref. 16.

The derivatives of the Hamiltonian matrix elements ap-
pearing in Eq. �17� may be expressed in terms of derivatives
of the Fock matrix elements and of the two-electron repul-
sion integrals. The resulting expression of the SAC gradients
involves the derivatives of the MO expansion coefficients
with respect to the specific perturbation parameter a.52 How-
ever, the computationally demanding evaluation of the de-
rivatives of the MO coefficients may be avoided by using the
interchange theorem approach.53 The gradient equation �17�
completes our presentation of the SAC theory for isolated
molecules based on the energy functional approach. We have

now introduced all that is required to formulate the SAC
theory for solvated molecules, which will be presented in the
following subsections.

B. The PCM-SAC: The reference wave function and
the free-energy functional

The ground state PCM-SAC vectors are defined from
Eqs. �1� and �2� using, as a reference state, the HF wave
function of the solvated molecule,

��SAC� = exp�S��0̃�, S = 	
I

CISI
† �18�

and

���� = �0̃�	
K

ZK
SACSK, �19�

where �0̃� is obtained from the solution of the HF equations
for the PCM model.10 The PCM-HF equations differ from
the ordinary HF operator in the gas phase for the presence of
solvation terms in the HF operator. The solute-solvent inter-
action operators represent the interaction of an electron of
the solute with the solvent polarization charges induced by
the solute charge distribution. The PCM-HF equations corre-
spond to an extremum of the PCM energy functional within
the single determinant wave function approximation. The
PCM energy functional has the thermodynamic status of a
free-energy and it differs from the expectation value of the
molecular Hamiltonian.

The PCM-SAC energy functional, which will be denoted
as LSAC

PCM, is a generalization of the PCM free-energy func-
tional to molecular solutes as described by the SAC wave
function.11 In the PCM-SAC free-energy functional the
solute-solvent interaction is expressed in terms of the classi-
cal Coulomb interaction between the QM charge distribution
of the solute and a set of polarization charges that are parti-
tioned into QHF and �QSAC: terms due to the HF one-
electron density and the SAC �correlation� component of the
one-electron density of the solute.

The PCM-SAC free-energy functional may be written as

LSAC
PCM = ���HN

HF��SAC� − �����SAC��0̃�HN
HF��SAC�

+ 1
2�QSAC · �VSAC, �20�

where HN
HF is the Hamiltonian of the solute in the presence of

the HF polarization charges, and �QSAC and �VSAC are the
SAC contributions to the polarization charge and to the elec-
trostatic potential of the molecular solute, respectively. The
first two terms of LSAC

PCM correspond to a SAC energy func-
tional �see Eq. �3�� for the molecular solute in the presence of
the fixed reaction field of the HF state, while the third term
represents the SAC �electron correlation� component of the
solute-solvent interaction. The Hamiltonian HN

HF is given by

HN
HF = HN + QHFVN, �21�

where HN is the normal ordered Hamiltonian of the isolated
molecule �see Eq. �4��, QHF is a vector collecting the HF
polarization charges, and VN is a vector operator collecting
the normal ordered electrostatic potential operators �see Eq.
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�25� below� at the positions of the polarization charges. The
HF polarization charges QHF may be written as an expecta-
tion value of a polarization charge vector operator Q,46,52

QHF = �0̃�Q�0̃� . �22�

The SAC expectation value �QSAC and �VSAC in the last
term of LSAC

PCM in Eq. �20� may be written as

�QSAC = ���QN��SAC� − �����SAC��0̃�QN��SAC� �23�

and

�VSAC = ���VN��SAC� − �����SAC��0̃�VN��SAC� , �24�

where QN and VN are the normal ordered form of the appar-
ent charges operator and of the electrostatic potential opera-
tor, respectively,

QN = Q − QHF �25�

and

VN = V − VHF. �26�

VHF is a vector collecting the HF values of the electrostatic
potential generated by the solute at the sites of the polariza-
tion charges.48,54

The Hamiltonian matrix form of the PCM-SAC free-
energy functional LSAC

PCM may simply be written as

LPCM
SAC = 	

I

CIH̄0I
HF�1 − S̃� + 	

K

ZK�HK0
HF + 	

I

CIH̄KI
HF


+
1

2
�QSAC · �VSAC, �27�

where the overlap S̃ has been defined in Eq. �9� and HIJ
HF are

the matrix elements of the Hamiltonian HN
HF,

HIJ
HF = �0̃�SIHN

HFSJ
†�0̃� and HI,JK

HF = �0̃�SIHN
HFSJ

†SK
† �0̃� .

�28�

The SAC polarization charges �QSAC and the SAC electro-
static potential �VSAC of Eqs. �23� and �24� may be written
in the following operator matrix forms:

�QSAC = 	
I

CIQ0I�1 − S̃� + 	
K

ZK�QK0 + 	
I

CIQ̄KI

�29�

and

�VSAC = 	
I

CIV0I�1 − S̃� + 	
K

ZK�VK0 + 	
I

CIV̄KI
 ,

�30�

where the matrix elements QIJ and VIJ are given by

QIJ = �0̃�SIQNSJ
†�0̃� and VIJ = �0̃�SIVNSJ

†�0̃� . �31�

The overbar denotes transformed matrix elements with the
same transformation law defined in Eq. �11�.

C. The PCM-SAC equations

The equations for the ground-sate PCM-SAC vectors
follow from the stationarity conditions of the free-energy
functional LSAC

PCM. To simplify the comparison with the SAC
equations �Eqs. �12�–�14�� of Sec. II A, we will present the
PCM-SAC equations both in the state vector driven form and
in the Hamiltonian matrix form. The Hamiltonian matrix
form has been used in the previous papers on SAC/SAC-CI
and in the SAC-CI guide.55 The state vector form may be
convenient for comparison with what has been reported ear-
lier on the CC energy functional. Let us now first consider
the PCM-SAC equations in the state vector form. They are
then converted into the Hamiltonian matrix form.

The stationarity of LSAC
PCM with respect to the Z coeffi-

cients gives the equation for the C coefficients of the right
SAC vector ��SAC�, while the stationarity with respect to the
excitation amplitudes C gives the equation for the Z ampli-
tudes of the left SAC vector ����. In contrast to the case of
isolated molecules, where the equations for the left and right
SAC vectors are not coupled, the PCM-SAC equations are
coupled and they must be solved iteratively.

The equation for the right vector ��SAC� is given by

�0̃�SK�HN
PCM − �ESAC

PCM���SAC� = 0, �32�

where HN
PCM is the PCM-SAC Hamiltonian for the solute and

�ESAC
PCM is the corresponding correlation energy. Equation

�32� corresponds to the left-projection of the SAC expanded
Schrödinger equation for the molecular solute

HN
PCM��SAC� = �ESAC

PCM��SAC� , �33�

with

HN
PCM = HN

HF + ����QN��SAC�

− �����SAC��0̃�QN��SAC�� · VN �34�

and

�ESAC
PCM = �0̃�HN

PCM��SAC� . �35�

The first term of the PCM-SAC Hamiltonian HN
PCM describes

the solute in the presence of fixed HF polarization charges,
while the second term represents the interaction of the solute
with the SAC component of the polarization charges �QSAC

�see Eq. �23��. This last term introduces a dependence of
HN

PCM on both the left and right SAC vectors. As a conse-
quence, the PCM-SAC Hamiltonian HN

PCM is nonlinear, as
expected for QM continuum solvation models,11 and the
SAC equation for the right vector is coupled with the corre-
sponding equation for the left SAC vector. The Z-SAC equa-
tion for the left vector ���� is given by

���HN
PCMSK

† ��SAC� − ����SK
† ��SAC��0̃�HN

PCM��SAC�

+ �����SAC��0̃�HN
PCMSK

† ��SAC� = 0. �36�

The equation may be easily compared with the correspond-
ing Z-SAC equations for isolated molecules �see Eq. �7��.
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The PCM-SAC equations in the Hamiltonian matrix
form are considered in the same manner as those of isolated
molecules. The PCM-SAC equations for the right SAC vec-
tor may be written as follows:

HK0
PCM + 	

I

CI�H̄KI
PCM − S̄KI�ESAC

PCM� = 0, �37�

where HK0
PCM are matrix elements of the PCM-SAC Hamil-

tonian �34� and �ESAC
PCM is the correlation energy, hence

HKI
PCM = HKI

HF + �	
J

CJQ0J�1 − S̃�

+ 	
K

ZK�QK0 + 	
J

CJQ̄KJ
� · VKI �38�

and

�ESAC
PCM = 	

I

CIH̄0I
PCM, �39�

where the overbar denotes a transformed matrix element ac-
cording to Eq. �11�. The PCM-SAC equations for the left
SAC vector may be written as follows:

H̄̄0I
PCM + 	

K

ZKYKI
PCM + 	

KL

ZKZLWKLI = 0. �40�

Detail of the expressions matrix elements H̄̄0I
PCM, YKI

PCM, and
WKLI are given in the Appendix. The PCM-SAC equations
�37�–�40� show explicitly that they are coupled to obtain the
C amplitudes for the right SAC vector from Eq. �37�. We
also have to determine the Z amplitudes for left SAC vectors
from Eq. �40� and vice versa.

D. Analytical gradients of the PCM-SAC free-energy
functional

The analytical gradients of the PCM-SAC free-energy
functional LSAC

PCM,a=�LSAC
PCM /�a may be obtained by exploiting

its stationary properties. To facilitate the relationship to the
SAC gradients for isolated molecules we will present the
PCM-SAC analytical gradients both in the Hamiltonian ma-
trix form and in the MO integral-driven form. The Hamil-
tonian matrix form of the analytical gradients may be written
as follows:

LSAC
PCM,a = 	

I

CIH0I
HF,aS̃ + 	

K
�ZKHK0

HF,a + 	
I

CIH̄KI
HF,a


+
1

2
��QSAC

a �VSAC + �QSAC�VSAC
a � , �41�

where superscript a denotes differentiation with respect to
the perturbing parameter a. The differentiated quantities
�QSAC

a and �VSAC
a are given by

�QSAC
a = 	

I

CIQ0I
a �1 − S̃� + 	

K

ZK�QK0
a + 	

I

CIQ̄KI
a 


�42�

and

�VSAC
a = 	

I

CIV0I
a �1 − S̃� + 	

K

ZK�VK0
a + 	

I

CIV̄KI
a 
 .

�43�

The PCM-SAC gradients may be written in terms of the
derivatives of the MO integrals as follows:

LSAC
PCM,a = 	

rs

MO

�rs
SACfrs

PCM,a + 	
rstu

MO

�rstu
SAC�rs�tu�a

+
1

2	
rs

MO

	
tu

MO

�rs
SAC�tu

SAC�qrs
a vtu + qrsvtu

a � , �44�

where �SAC and �SAC are elements of the SAC one- and
two-particle density matrices, respectively.16 For the evalua-
tion of the PCM-SAC gradient Lagrangian we need the first
derivatives of the PCM-Fock matrix frs

PCM,a and of the PCM
one-electron operators qrs

a and vtu
a .56 These derivative of MO

integrals lead to two types of terms: one involving the skel-
eton derivative of the corresponding AO �atomic orbital� in-
tegrals and the other involving the derivatives of the MO
coefficients.

The MO integral form of the PCM-SAC gradients may
be written as follows:

LSAC
PCM,a = 	

ij

occ

�ij
SACf ij

PCM,�a� + 	
ab

vac

�ab
SACfab

PCM,�a�

+ 	
pq

MO

�pq
SACvpq

�a��QSAC + 	
pqrs

MO

�pqrs
SAC�pq�rs��a�

− 	
ij

occ

Sij
�a�Xij

PCM − 	
ab

vac

Sab
�a�Xab

PCM + 2	
i

occ

	
a

vac

Sai
�a�Xai

PCM

+ 2	
i

occ

	
a

vac

Uai
a �Xai

PCM − Xia
PCM� , �45�

where the superscript �a� denotes the skeleton derivatives of
the pertinent AO integrals, Uai

a are the derivative of the MO
coefficients in the MO basis, and the matrix elements Xt,p

PCM

are given by

Xt,p
PCM = 	

q

MO

�pq
SACf tq

PCM�	pi	qj + 	pa	qb� + 2	
qrs

MO

�pqrs�tq�rs�

+
1

2 	
rs

oo/vv

�Atp,rs + Btp,rs�	ti�rs
SAC

+ 	
q

MO

�pq
SACvtq

a �QSAC, �46�

where Atp,rs is a linear combination of the two-electron inte-
gral defined in Ref. 57.

An explicit solution of the derivative of the MO coeffi-
cient Uai

a can be avoided by using the interchange technique
for the PCM model,51,56

024104-7 SAC and SAC-CI method in PCM J. Chem. Phys. 133, 024104 �2010�

Downloaded 13 Oct 2010 to 130.54.130.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



	
ai

Yai
PCMUai


 = 	
ai

�ai
MO-respQai

PCM,
, �47�

where Yai
PCM=Xai

PCM−Xia
PCM. Here �ai

MO-resp is the vacant-
occupied block of the orbital response contribution to the
one-particle density matrix, and the matrix elements Qai


 are
given by Refs. 17, 58, and 13,

Qai
PCM,
 = fai

PCM,�
� − Sai

 f ii

PCM − 	
kl

Skl
�
��Aai,kl + Bai,kl� . �48�

The matrix elements �ai
MO-resp are obtained as the solution to a

linear system of equations that are independent from the per-
turbation. The final expression of the PCM-SAC gradients
may be then written as follows:

LSAC
PCM,a = 	

ij

occ

�ij
SACf ij

PCM,�a� + 	
ab

vac

�ab
SACfab

PCM,�a�

+ 2	
i

occ

	
a

vac

�ai
MO-respfai

PCM,�a� + 	
pq

MO

�pq
SACvpq

�a��QSAC

+ 	
pqrs

MO

�pqrs
SAC�pq�rs��a� − 	

ij

occ

S̃ij
�a�Xij

PCM

− 	
ab

vac

Sab
�a�Xab

PCM + 2	
i

occ

	
a

vac

Sai
�a�X̃ai

PCM, �49�

where X̃ai
PCM=Xai

PCM−�ai
MO-respf ii. X̃ij

PCM is defined by

X̃ij
PCM = Xij

PCM − 2	
em

�em
MO-resp�Aij,em + Bij,em� . �50�

The PCM-SAC analytical gradients of Eq. �49� complete the
description of the PCM-SAC theory for the ground state of
solvated molecules. An alternative derivation of the PCM-
SAC energy gradients is possible by considering the
Lagrange multiplier for orbital rotation.14 The aspects con-
cerning the implementation of the theory in a computational
QM code will be discussed in Sec. III. A parallel discussion
for the excited states �PCM-SAC-CI� is now presented in the
following subsections.

E. The SAC-CI theory: An energy functional approach

Here we review a formulation of SAC-CI based on an
energy functional approach. Using the same motivation as
for the SAC theory, we will present both the state vector and
the Hamiltonian matrix formalism. The SAC-CI wave func-
tions for excited states are defined in the functional space
complementary to the SAC wave function ��SAC�. The basis
of this space is given by a selected set of linked excitations
from the SAC ground state.

In the SAC-CI energy functional approach we consider
three SAC-CI vectors for each electronic state: a right
SAC-CI vector, ��SACCI�, a left SAC-CI vector, ��SACCI� and
an auxiliary SAC-CI left vector ����. The right SAC-CI vec-
tor ��SACCI� is written as

��SACCI� = Rp��SAC� and Rp = 	
M

dM
R,pRM

† , �51�

where the superscript p denotes a generic pth excited state
and where RM

† denotes a set of excitation operators. The left
SAC-CI vector ��SACCI� is given by

��SACCI
L � = ��SAC�Lp and Lp = 	

M

dM
L,pRM , �52�

where RM denotes a set of de-excitation operators. The aux-
iliary left SAC-CI vector ���� is defined as

���� = 	
K

ZK
SACCI�0�SK, �53�

where SM is a de-excitation operator introduced in Eq. �2�.
The sets of the SAC-CI coefficients, dR, dL and ZSACCI, are
determined from the stationarity conditions of the SAC-CI
energy functional, with the additional constraint of the bior-
thogonality between the left and right SAC vectors

��SACCI
L ��SACCI

R � = 1. �54�

The SAC-CI energy functional may be defined as

LSACCI = ��SACCI
L �HN��SACCI

R � + ����HN��SAC�

− �����SAC��0�HN��SAC� , �55�

where HN is the normal ordered Hamiltonian. The stationar-
ity of LSACCI with respect to the RM amplitudes gives the
equation for the right SAC-CI vector, while the stationarity
with respect to the LM amplitudes leads to the equation for
the left SAC-CI vector. Specifically, the equation for the
right SAC-CI vector corresponds to the projection of the
right SAC-CI Schrödinger equation,4,5

HN��SACCI
R � = �ESACCI��SACCI

R � , �56�

where �ESACCI is given by

�ESACCI = ��SACCI
L �HN��SACCI

R � . �57�

The equation for the left SAC-CI vector corresponds to the
projection of the left SAC-CI Schrödinger equation,

��SACCI
L ��ESACCI = ��SACCI

L �HN. �58�

The stationarity of LSACCI with respect to the ZK amplitudes
leads to the equation for the SAC state �see Eq. �5��, while
the stationarity of LSACCI with respect to the CK amplitudes
gives the equations for the amplitudes of the left vector ����
�see Eq. �64� below�.

The SAC-CI energy functional may be expressed in the
Hamiltonian matrix form as follows:

LSACCI = 	
MN

dM
L,pdM

R,pH̄̄MN + 	
K

ZKHK0 + 	
KI

ZKCIH̄KI

− 	
KI

ZKCIS̄KI	
J

CJH̄0J, �59�

where dM
L,p and dM

R,p are the left- and right vector coefficients
for the pth solution of the SAC-CI equations �56�–�58�. We
adopt the convention that the subscripts I , J , K, and L refer
to the SAC excitation operators, while M and N refer to the
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SAC-CI operators. The left and right SAC-CI vectors satisfy
a biorthonormalization condition

	
MN

dM
L,pdM

R,pS̄̄MN = 1, �60�

where S̄̄MN=SMN+	JCJSM,NJ.
The Hamiltonian form of the SAC-CI equations

�56�–�58� may be written, respectively, as

	
N

dN
R�H̄̄MN − �ESACCIS̄̄MN� = 0, �61�

�ESACCI = 	
MN

dM
L,pdM

R,pH̄̄MN, �62�

and

	
M

dM
L �H̄̄MN − �ESACCIS̄̄MN� = 0. �63�

The corresponding SAC-CI equation for the Z amplitudes is
given by

H̄̄
¯

I + 	
L

ZL
SACYIL = 0, �64�

where the matrix elements H̄̄
¯

I are given by

H̄̄
¯

I = 	
MN

dM
L dN

R�HM,NI − �ESACCISM,NI� . �65�

Equation �64� corresponds to the Z-SAC-CI equation given
in Ref. 16.

When the stationary conditions are satisfied the SAC-CI
energy functional reduces to the SAC energy, i.e., LSACCI

=�ESACCI, and the analytical gradients of �ESACCI can be
determined as analytical gradients of LSACCI. The analytical
gradients LSACCI

a =�LSACCI /�a with respect to a perturbation
parameter a can be written in the following Hamiltonian ma-
trix form:

LSACCI
a = 	

MN

dM
L,pdM

R,pH̄̄MN
a + 	

K

ZKHK0
a + 	

KI

ZKCIH̄KI
a

− 	
KI

ZKCIS̄KI	
J

CJH̄0J
a , �66�

where the superscript a denotes differentiation of the corre-
sponding Hamiltonian matrix elements. Equation �66� is
equivalent to the expression of the analytical gradient of the
SAC-CI correlation energy given in Ref. 16. The derivatives
of the Hamiltonian matrix elements appearing in Eq. �66�
may be expressed in terms of derivatives of the Fock matrix
elements and of the two-electron repulsion integrals. The
computationally demanding evaluation of the MO derivative
terms may be avoided by exploiting the interchange theorem
approach.53 The gradient equation �66� completes our pre-
sentation of the SAC-CI theory for isolated molecules based
on the energy functional approach. The PCM-SAC-CI en-
ergy functional is introduced in the following subsection.

F. PCM-SAC-CI free-energy functional

The PCM-SAC-CI wave functions for excited states of
solvated molecules are defined to belong to the functional
space complementary to the SAC ground state, determined in
the presence of the fixed HF reaction field. The PCM-
SAC-CI vectors are defined accordingly as follows:

��SACCI� = Rp��SAC�0��, Rp = 	
M

dM
p RM

† , �67�

��SACCI
L � = ��SAC�0��Lp, Lp = 	

M

dM
p RM , �68�

and

���� = 	
K

ZK
SACCI�0̃�SK, �69�

where �0̃� is the HF state of the molecular solute and
��SAC�0�� is the SAC wave function that satisfies the SAC
equation,

�0̃�SKHN
HF��SAC�0�� − �0̃�SK��SAC�0���0̃�HN

HF��SAC� = 0,

�70�

where HN
HF is the Hamiltonian in the presence of the fixed HF

polarization charges �see Eq. �21��. The PCM-SAC-CI free-
energy functional may be written as

LSACCI
PCM = ��SACCI

L,p �HN
HF��SACCI

R,p � − ����HN
HF��SAC�

− �����SAC��0̃�HN
HF��SAC�

+ 1
2�QSACCI�VSACCI, �71�

where �QSACCI and �VSACCI are the SAC-CI expectation
values of the polarization charges and of the electrostatic
potential operators, respectively. The first two terms in a
SAC-CI free-energy functional represent an excited elec-
tronic state in the presence of the HF polarization charges,
while the third term represents the SAC-CI contribution to
the solute-solvent interaction. The SAC-CI expectation val-
ues �QSACCI and �VSACCI may be written as

�QSACCI = ��SACCI
L,p �QN��SACCI

R,p � �72�

and

�VSACCI = ��SACCI
L,p �VN��SACCI

R,p � . �73�

The Hamiltonian matrix form of the PCM-SAC-CI free-
energy functional is given by

LSACCI
PCM = 	

MN

dM
L,pdM

R,pH̄̄MN
HF + 	

K

ZKHK0
HF + 	

KI

ZKCIH̄KI
HF

− 	
KI

ZKCIS̄KI	
J

CJH̄0J
HF + �	

MN

dM
L,pdM

R,pV̄̄MN

��	

MN

dM
L,pdM

R,pQ̄̄MN
 , �74�

where we have introduced the transformed matrix elements
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Q̄̄MN = QMN + 	
J

CJQM,NJ �75�

and

V̄̄MN = VMN + 	
J

CJVM,NJ. �76�

G. The PCM-SAC-CI equations

The PCM-SAC-CI equations may be obtained from the
stationarity of the free-energy functional LSAC-CI

PCM . The sta-
tionarity of LSACCI

PCM with respect to the RK and LK amplitudes
leads, respectively, to the projection of the right and left
SAC-CI Schrödinger equation

HN
PCM,p��SACCI

R � = �ESACCI
PCM ��SACCI

R � �77�

and

��SACCI
L ��ESACCI

PCM = ��SACCI
L �HN

PCM,p, �78�

where the PCM-SAC-CI energy �ESACCI
PCM is given by

�ESACCI
PCM = ��SACCI

L �HN
PCM,p��SACCI

R � �79�

and HN
PCM,p is the PCM-SAC-CI Hamiltonian for the solute

in the pth excited state of interest

HN
PCM,p = HN

HF + �QSACCIVN. �80�

The stationarity of LSACCI
PCM with respect to the ZK ampli-

tudes gives the PCM-SAC equation �37�, while the station-
arity of LSACCI

PCM with respect to the CK amplitudes gives the
SAC-CI equation for the amplitudes of the auxiliary left vec-
tor �see Eq. �84� later�.

The Hamiltonian matrix form of the PCM-SAC-CI equa-
tions �77�–�79� may be written, respectively, as

	
N

dN
R�H̄̄MN

PCM,p − �ESACCI
PCM S̄̄MN� = 0, �81�

	
M

dM
L �H̄̄MN

PCM,p − �ESACCI
PCM S̄̄MN� = 0, �82�

and

�ESACCI
PCM,p = 	

MN

dM
L,pdN

R,pH̄̄MN
PCM,p. �83�

The corresponding equation for the Z amplitudes is given by

�LSACCI

�CI
= H̄̄

¯
I�PCM,p� + 	

L

ZL
SACYIL

HF = 0, �84�

where the Hamiltonian matrix integrals H̄̄MN
PCM,p refers to the

PCM-SAC-CI Hamiltonian �80�, and the matrix integral

H̄̄
¯

I�PCM� of Eq. �84� is given by

H̄̄
¯

I�PCM,p� = 	
MN

dM
L dN

R�HM,NI
PCM,p − �ESACCI

PCM,pSM,NI� . �85�

H. PCM-SAC-CI analytical gradients

The first derivative of the PCM-SAC energy functional
LSACCI

PCM may be easily obtained by exploiting the stationary
conditions described in the previous subsection. To simplify
the relationship with the SAC-CI gradients for isolated
molecules,16 we will present the PCM-SAC gradients both in
the Hamiltonian matrix form and in the MO integrals driven
form.

The analytical gradients of LSACCI
PCM,a =�LSACCI

PCM,p /�a may be
written as

LSACCI
PCM,a = 	

MN

dM
L,pdN

R,pH̄̄MN
a

+
1

2	
MN

	
M�N�

dM
L,pdN

R,pdM�
L,pdN�

R,p�Q̄̄MN
a V̄̄M�N�

+ Q̄̄M�N�V̄̄MN
a � + 	

K

ZKHK0
HF,a + 	

KI

ZKCIH̄KI
HF,a

− 	
KI

ZKCIS̄KI	
J

CJH̄0J
HF,a, �86�

where the superscript a denotes differentiation of the perti-
nent matrix elements. In terms of the differentiated MO in-
tegrals, the analytical gradients LSACCI

PCM,a may be written in a
form similar to the corresponding PCM-SAC gradients of
Eq. �44�, namely,

LSACCI
PCM,a = 	

ij

occ

�ij
SACCIf ij

PCM,a + 	
ab

vac

�ab
SACCIfab

PCM,a

+ 	
pq

MO

�pq
SACCI,NRvpq

a �QSAC + 	
pqrs

MO

�pqrs
SACCI�pq�rs�a

− 	
ij

occ

Sij
a Xij

PCM,p − 	
ab

vac

Sab
a Xab

PCM,p

+ 2	
i

occ

	
a

vac

Sai
a Xai

PCM,p + 2	
i

occ

	
a

vac

Uai
a Yai

PCM,p, �87�

where �ij
SACCI and �ij

SACCI,NR are the SAC-CI one-particle den-
sity matrix and its nonrelaxed components,16 respectively,
matrix elements Xt,p

PCM,p are given by

Xt,p
PCM,p = 	

q

MO

�pq
SACCIf tq

PCM�	pi	qj + 	pa	qb�

+ 2	
qrs

MO

�pqrs
SACCI�tq�rs� +

1

2 	
rs

oo/vv

�Atp,rs

+ Btp,rs�	ti�rs
SACCI + 	

q

MO

�pq
SACCI,NRvtq

a �QSACCI

�88�

and Yai
PCM,p=Xai

PCM,p−Xia
PCM,p. The explicit solution of the de-

rivative of the MO coefficient, Uai
a , can be avoided by using

the interchange technique for the PCM model,53,58,13
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ai

Yai
PCM,pUai


 = 	
ai

�ai
MO-respQai

PCM,a, �89�

where �ai
MO-resp is the vacant-occupied block of the orbital

response contribution to the one-particle density matrix. The
matrix elements Qai


 are given in Ref. 17. The matrix ele-
ments �ai

MO-resp are obtained as the solution of a linear system
of equations independent from the perturbation. The final
expression of the analytical gradients LSACCI

PCM,a may be written
as

LSACCI
PCM,a = 	

ij

occ

�ij
SACCIf ij

PCM,a + 	
ab

vac

�ab
SACCIfab

PCM,a

+ 2	
i

occ

	
a

vac

�ai
MO-respfai

PCM,a

+ 	
pq

MO

�pq
SACCI,NRvpq

a �QSACCI

+ 	
pqrs

MO

�pqrs
SACCI�pq�rs�a − 	

ij

MO

S̃ij
a Xij

PCM/SACCI

− 	
ab

MO

Sab
a Xab

PCM/SACCI + 2	
ai

MO

Sai
a X̃ai

PCM/SACCI, �90�

where X̃ai
PCM,p=Xai

PCM,p−�ai
MO-respf ii and X̃ij

PCM/SAC-CI is defined
as

X̃ij
PCM,p = Xij

PCM,p − 2	
em

�em
MO-resp�Ajm,em + Bijem� . �91�

The above analytical gradients complete the PCM-SAC-CI
theory for the excited states of solvated molecules. Its imple-
mentation is discussed in Sec. III.

III. IMPLEMENTATION OF PCM IN THE SAC-CI
PROGRAM

The PCM-SAC and PCM-SAC-CI theories presented in
the above section were implemented in the latest version of
the SAC-CI program in which the MO direct formulation
and algorithm are used for practical calculations.35,55 The
direct SAC-CI method constructs iteration vectors from the
MO integrals without using an explicit Hamiltonian matrix
formula. A Hamiltonian matrix element can be written in the
MO integral form as

HIJK = 	
pq

MO

gIJK
pq fpq + 	

pqrs

MO

GIJK
pqrs�pq�rs� , �92�

where gIJK
pq and GIJK

pqrs are the coupling constants. The PCM
contributions are essentially one-electron operators. In prac-
tical computation, therefore, the additional terms are
summed into the Fock matrix. This modified Fock matrix is
computed using the SAC or SAC-CI density matrix and the
program routine for PCM in GAUSSIAN.50 The PCM-SAC/
SAC-CI equations and the energy gradient formula are
solved by considering the modified Fock matrix. The PCM-
SAC/SAC-CI equations are nonlinear and are solved itera-
tively.

The PCM-SAC energy gradient calculation is summa-
rized as follows:

�1� The PCM-SCF calculation is performed.
�2� A first guess of the SAC amplitudes is obtained by

solving the PCM-SAC equation �38� by neglecting the
Z-SAC coefficient.

�3� The PCM-Z-SAC equation �40� is solved using the
SAC amplitudes obtained as described in the previous
step. One of the Z-SAC vectors in the quadratic terms
is fixed as the values in the previous iteration. The lin-
earized equation is solved as

H̄̄0I
PCM + 	

K

ZK�YKI
PCM + 	

L

ZL�WKLI
 , �93�

where 
ZL�� was obtained by the previous iteration.
�4� The PCM-SAC equation �38� is solved using the SAC

amplitudes and the Z-SAC coefficients obtained in the
previous iteration.

�5� Steps 3 and 4 are repeated until convergence is reached.
At convergence, 
ZK� and 
ZL�� are identical.

�6� The PCM-SAC free-energy is obtained by Eqs. �20�
and �27�.

�7� The final SAC effective density matrices are stored.
�8� The PCM-SAC geometrical gradients are computed us-

ing Eq. �45�, avoiding the explicit solution of the MO
coefficients by using the interchange technique.

The PCM-SAC-CI energy gradient calculation is sum-
marized as follows:

�1� The PCM-SCF calculation is performed.
�2� The SAC equations are solved in the presence of the

HF reaction field �see Eq. �21��.
�3� The PCM-SAC-CI Hamiltonian is formed using Eqs.

�72� and �80� with a given initial vector �usually CIS
wave function is used�.

�4� The PCM-SAC-CI equations �81�–�83� are solved.
�5� The PCM-SAC-CI Hamiltonian is updated with the ob-

tained PCM-SAC-CI wave function.
�6� Steps 4 and 5 are repeated until convergence is reached.
�7� The PCM-SAC-CI free-energy is obtained by Eqs. �79�

and �83�.
�8� The PCM-Z-SAC-CI equation �84� is solved using the

SAC-CI amplitudes.
�9� The final SAC-CI effective density matrices are stored.

TABLE I. Typical computational routes for PCM SAC/SAC-CI computa-
tion.

Route Electronic state Geometry Solvation

1 Ground Ground Equilibrium
2 Excited Ground Nonequilibrium
3 Excited Excited Equilibrium
4 Ground Excited Nonequilibrium
Energy difference Transition
�G�route 1 , route 2� Vertical absorption
�G�route 1 , route 3� Adiabatic transition
�G�route 3 , route 4� Vertical emission
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�10� The PCM-SAC-CI geometrical gradients are computed
using Eq. �90�, avoiding the explicit solution of the MO
coefficients by using the interchange technique.

Many routines of GAUSSIAN are used for the parts related
to the interchange technique, the coupled perturbed HF equa-
tions, and the gradient evaluation in the link 1111, link 1002,
and overlay 7.50

IV. RESULTS AND DISCUSSIONS

A. Computational details

In studying the types of electronic transition between
different states, there are four possible combinations of the
electronic state, molecular geometry, and solvation model, as
summarized in Table I and illustrated in Fig. 1. For the sake
of clear discussion, the types of computation defined by
Table I are named computational “routes,” which represent
electronic state, molecular geometry, and solvation model.
The transitions between routes 1 and 2 and between routes 3

and 4 correspond to vertical absorption and emission, respec-
tively. The transition between routes 1 and 3 is an adiabatic
one. For the emission process, the excited state must be con-
sidered as the initial state of nonequilibrium solvation in
route 4; therefore, the ground state SAC calculation will be
performed after the SAC-CI calculation in the excited state.
Such a procedure is straightforward but it requires modifying
the present framework of the SAC/SAC-CI implementation.
In this paper we studied only vertical absorptions and adia-
batic transitions, and the computations of routes 1–3 were
implemented. The emission process in a solvent by PCM-
SAC/SAC-CI will be addressed in a future study.

The single-point calculations were performed using the
cc-pVDZ basis.59 We also carried out the calculations using
the larger basis, cc-pVTZ �Ref. 59� for C and O atoms and
cc-pVDZ for H atoms. The equilibrium molecular geom-
etries were optimized by the SAC and SAC-CI methods with
the cc-pVDZ basis in equilibrium solvation. Furthermore,
optimizations using the cc-pVTZ basis �for all atoms� were
carried out in vacuum to compare the results with the previ-
ous studies. The perturbation-selection60 was not used for the
present calculations because the error resulting from the se-
lection may compete with the solvent effects. We also per-
formed the HF, second-order Møller–Plesset perturbation
�MP2�, and CIS calculations for the purpose of comparison.
All the computations were performed with the GAUSSIAN de-
velopment version and the direct SAC-CI program.35 In
SAC, SAC-CI, MP2, and CIS calculations the 1s electrons
are excluded as frozen-core approximation. The present MP2
calculation with PCM is not self-consistent with the MP2
density, as implemented in Ref. 58; the PCM solvation ef-
fects are only taken into account through the HF MOs. This
HF solvation will be a good approximation for the systems
where electron correlations are not significant for the elec-
tron distributions, such as most organic molecules in their
equilibrium geometry. The LR approach was used for the
CIS calculations in which the transition density is used for

TABLE II. Ground state geometrical parameters �in angstroms and degrees� of s-trans-acrolein in vacuum.

This work Other works Expt.

HFa MP2a SAC�DZ�a SAC�TZ�b CCSDc CCSD�T�c B3LYPc CASPT2d CASPT2e Reference 63 Reference 64

O1C1 1.187 1.222 1.214 1.206 1.209 1.217 1.209 1.222 1.204 1.219 1.215
C1C2 1.480 1.483 1.491 1.479 1.477 1.477 1.471 1.467 1.473 1.470 1.468
C2C3 1.325 1.351 1.348 1.334 1.335 1.342 1.331 1.344 1.340 1.345 1.341
C1H1 1.104 1.122 1.121 1.105 1.105 1.108 1.109 1.108 1.113
C2H2 1.083 1.096 1.097 1.082 1.082 1.084 1.083 1.084 1.084
C3H3 1.082 1.094 1.096 1.080 1.081 1.083 1.081 1.086 1.081
C3H4 1.085 1.097 1.098 1.083 1.084 1.086 1.084 1.086 1.089
O1C1C2 123.9 124.2 124.0 124.2 124.1 124.1 124.4 124.2 123.2 123.9
O1C1H1 121.1 121.6 121.5 121.1 120.9 121.0 120.8 121.8 121.4
C1C2C3 121.3 120.5 120.9 120.6 120.5 120.3 121.1 120.5 119.5 120.3
C1C2H2 116.4 117.1 116.7 116.8 116.8 117.0 116.6 118.0 117.3
C2C3H3 122.0 122.0 122.0 122.1 122.1 122.1 122.2 121.3 122.2
C2C3H4 121.3 120.5 120.9 120.7 120.7 120.5 120.9 119.6 119.8

acc-pVDZ basis set was used.
bcc-pVTZ basis set was used.
cReference 44, aug-cc-pVTZ basis.
dReference 41.
eReference 43.

FIG. 1. Computational routes and transitions.
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the solvation in excited states; this is the default route in the
PCM-CIS in the GAUSSIAN 09. The integral equation formal-
ism PCM,61 which is the default and recommended method,
is used with the other default parameters of GAUSSIAN 09.62

B. s-trans-acrolein

Acrolein �C3H4O� is the simplest unsaturated aldehyde.
It has conjugating double bonds and lone-pair electrons, and
therefore it has low-lying �→�� and n→�� excited states.
These features are of interest to spectroscopic and theoreti-
cal. UV spectra and the solvent effect have been studied
using several methods and models.40–45 Therefore, acrolein is
a good example for the first application of the PCM-SAC-CI
method.

Table II shows the optimized molecular geometries in
the ground state in vacuum. The molecule is planar and the
definitions of atomic labels are given in Fig. 2�a�: the mol-
ecule was set in the x-y plane where the C1C2 bond was set
to the x-axis. First we will discuss the molecular geometry in
vacuum because its fundamental characteristics clarify sol-
vent effects. The electron correlation increased the bond
lengths, particularly for the double bonds C2C3 and O1C1.
The SAC and MP2 showed a similar tendency, although the
MP2 overestimated the correlation effects. In comparison
with the experimental values, the MP2 result seems to be
better than that of SAC with the cc-pVDZ basis. Shorter
bond lengths were obtained when using the cc-pVTZ basis.
The SAC/cc-pVTZ optimized geometry was almost identical
to the geometry optimized with the CCSD/aug-cc-pVTZ, as
reported in Ref. 44. Compared with experimental findings
and other theoretical values, the accuracy of the SAC results
is considered reasonable.

Table III shows the optimized molecular geometries in
the lowest n→���1 1A�� and �→���1 1A�� states. The n
→�� state has energy minimum in planar conformation,
which was confirmed by the CIS calculation of the vibra-
tional frequencies. For a start, the geometry of the �→��

state was optimized with restrictions in the planar conforma-
tion. By the CIS calculation, the optimal planar structure has
a negative frequency in the out-of-molecular-plane direction;
therefore, it is not an energy minimum. A structure twisted
around the C2C3 double bond has a lower energy than the
planar conformation. This is an expected analogy with the
lowest �→�� state of ethylene. A minimum energy structure
was then searched for around the structure twisted by 90°
with restriction in the Cs point group. Two hydrogen atoms
bonded to C3 were located out of the molecular plane and
other atoms were placed on the molecular plane. The struc-
ture is shown in Fig. 2�b� and the optimized parameters are
shown in Table III. This optimized structure �1 1A� state in

FIG. 2. Molecular structure and coordinate of acrolein �a� in planar confor-
mation and �b� in twisted conformation.

TABLE III. Geometrical parameters �in angstroms and degrees� of s-trans-acrolein in low-lying excited states in vacuum.

n→�� state �→�� state

This work Other works Expt. Planar �this work� Twisted �this work�

CISa SAC-CIa SAC-CIb CASPT2c CASPT2d Reference 65 CISa SAC-CIa CISa SAC-CIa

O1C1 1.255 1.327 1.317 1.354 1.342 1.32 1.217 1.266 1.193 1.225
C1C2 1.454 1.422 1.411 1.371 1.381 1.35 1.431 1.455 1.470 1.462
C2C3 1.333 1.376 1.361 1.398 1.393 1.46 1.477 1.445 1.404 1.465
C1H1 1.095 1.107 1.092 1.109 1.125 1.100 1.119
C2H2 1.083 1.097 1.082 1.083 1.099 1.090 1.101
C3H3 1.081 1.094 1.079 1.081 1.095 1.087 1.102
C3H4 1.083 1.097 1.081 1.084 1.099 1.087 1.102
O1C1C2 123.7 124.8 124.4 124.4 125 123.7 122.3 123.2 123.1
O1C1H1 115.8 113.5 113.7 121.2 123.0 121.1 121.3
C1C2C3 124.7 123.5 123.5 123.4 125 123.7 125.2 124.7 123.3
C1C2H2 114.6 116.4 116.4 118.3 116.4 113.6 115.9
C2C3H3 120.1 120.6 120.6 120.1 121.2 122.6 121.5
C2C3H4 122.4 121.6 121.6 119.8 119.6 122.6 121.5
C1C2C3H4 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 92.8 93.2

acc-pVDZ basis set was used.
bcc-pVTZ basis set was used.
cReference 43.
dReference 41.
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this coordinate� has no negative frequencies by the CIS cal-
culation. If we remove the symmetry restriction in the Cs

point group then the calculations become quite complex be-
cause intersections of potential surfaces may occur.66 That
subject is of importance in theoretical chemistry for excited
states but it is beyond the scope of the present study. There-
fore, we have studied excited state geometries and corre-
sponding adiabatic excitations within a certain symmetry re-
striction.

Compared with ground state geometry, the lowest n
→�� excitation increases the O1C1 length and decreases the
C1C2 length. This change in bond lengths reflects the char-
acter of the �� orbital, which has antibonding character for
O1C1 and C2C3 and bonding character for C1C2. The simi-
lar trend of geometry change upon the n→�� excitation can
be predicted qualitatively by the HF/CIS calculations, but the
CIS calculation underestimates the effect of electronic exci-

tation on molecular geometry. Results of microwave experi-
ments propose bond alternation due to the excitation.65 The
experimentally proposed bond length seems to overestimate
the bond alternation. The CASPT2 calculations have indi-
cated slightly bond-alternated geometry for this state,41,43

while the SAC-CI calculations could not reproduce the bond
alternation. By analyzing the SAC-CI wave function, we
found this state to have a multireference character that can-
not be accurately described by the SAC-CI singles and
doubles of R operators �SD-R� method. The main configura-
tions in this state are n→�� �0.9�, n→��� �0.3�, and �n
→���+ ��→��� �0.2�, where the SAC-CI coefficient is in
parentheses. We note ��� orbital as the next unoccupied �
orbital whose orbital energy is higher than lowest unoccu-
pied molecular orbital �LUMO�. The isosurfaces of these or-
bitals are shown in Fig. 3. The last configuration denotes the
double-excitation from the valence n and � orbital �highest
occupied molecular orbital �HOMO� and next-HOMO� to the
�� orbital �LUMO�; therefore the �� orbital is doubly occu-
pied in this configuration. Because of the importance of this
configuration, the present SD-R calculation cannot accu-
rately describe the geometry of this state.

Under the restriction on planar conformation, the �
→�� excitation increases the C2C3 and O1C1 lengths and
decreases the C1C2 length; in particular, elongation of the
C2C3 bond is significant. This can be explained by the elec-
tronic excitation from binding � to antibinding �� orbital;
consequently, the C2C3 bond becomes a single bond in the
�→�� state. While the HF/CIS calculations can describe
such characteristics of electronic excitation, those calcula-
tions have overestimated the effect of electronic excitation.

For the twisted conformation of the �→�� state, the
O1C1 length decreases and the C2C3 length increases as
compared to the planar conformation. Because of rotation
around the C2C3 bond, that orbital is not purely a �� orbital.
It has an antibonding character for the C2C3 bond but has a

TABLE IV. Solvent effect on geometrical parameters �pm=10−2 Å and degrees� of s-trans-acrolein with cc-pVDZ basis. Shifts from the vacuum value
�R�in solv�−R�in vac�� are shown.

Ground state n→�� �→�� �planar� �→�� �twisted�

SAC MP2 HF SAC-CI CIS SAC-CI CIS SAC-CI CIS

hex.a aq.b hex. aq. hex. aq. hex. aq. hex. aq. hex. aq. hex. aq. hex. aq. hex. aq.

O1C1 0.1 0.3 0.0 0.3 0.3 0.8 0.1 0.3 �0.2 �0.8 0.4 1.5 0.8 1.9 0.1 0.5 0.1 0.4
C1C2 �0.1 �0.3 �0.1 �0.4 �0.2 �0.5 �0.2 �0.7 0.5 1.5 1.3 4.4 �0.8 �1.8 �0.3 �0.9 0.3 0.8
C2C3 0.0 0.1 0.0 0.0 0.0 0.1 0.3 0.8 0.0 �0.2 �0.5 �1.9 0.4 1.1 0.2 0.6 �0.7 �1.9
C1H1 0.0 �0.2 �0.1 �0.3 �0.1 �0.3 0.0 0.0 0.2 0.5 �0.4 �1.1 �0.5 �1.2 �0.1 �0.2 �0.1 �0.2
C2H2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.2 0.5
C3H3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.1 0.2
C3H4 0.0 0.0 0.0 �0.1 �0.1 �0.1 0.0 0.0 0.0 0.0 0.0 0.0 �0.1 �0.1 0.0 0.2 0.1 0.2
O1C1C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 �0.1 0.1 �1.1 �2.9 �0.3 �0.7 0.3 0.6 0.0 0.0
O1C1H1 �0.1 �0.2 0.0 �0.2 �0.1 �0.3 0.0 �0.2 0.3 0.8 0.5 1.5 �0.5 �1.0 �0.1 �0.4 0.1 0.1
C1C2C3 �0.1 �0.3 �0.1 �0.3 �0.2 �0.5 �0.1 �0.4 �0.1 �0.2 1.0 2.1 0.9 1.5 �0.8 �2.1 �0.1 �0.2
C1C2H2 0.0 0.3 0.1 0.4 0.1 0.5 0.1 0.3 �0.1 �0.3 �0.5 �1.4 �0.4 �0.5 0.3 1.1 �0.4 �0.9
C2C3H3 0.0 �0.1 0.0 �0.1 �0.1 �0.2 0.0 0.0 �0.1 �0.3 �0.1 �0.4 �0.2 �0.5 �0.3 �1.5 0.1 0.4
C2C3H4 0.0 0.0 0.0 0.0 0.0 0.1 �0.1 �0.3 0.0 0.1 0.3 0.8 0.6 1.0 �0.3 �1.5 0.1 0.4
C1C2C3H4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 7.5 �0.1 �0.3

aIn n-hexane.
bIn water.

FIG. 3. Selected MOs of acrolein. The molecular plane is a nodal plane of
� orbitals.

024104-14 Cammi et al. J. Chem. Phys. 133, 024104 �2010�

Downloaded 13 Oct 2010 to 130.54.130.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



slightly 
-bonding character for OC1. This orbital character
consistently explains the changes of bond lengths in the twist
conformation.

The solvent effects on the optimized geometry are given
in Table IV, where we show the differences of the geometri-
cal parameters between in solvent and in vacuum as

�R�solvent� = R�in solvent� − R�in vacuum� , �94�

where R denotes a geometrical parameter. We chose water
and n-hexane as typical polar and nonpolar solvents. The
solvent effect on the equilibrium geometry of the ground
state was small. A polar solvent increases the O1C1 length
and decreases the C1C2 length. This trend can be described
at the HF level but the solvent effect was overestimated with-
out electron correlation. The solvent effect on the ground
state equilibrium geometry calculated with the SAC method
is similar to that of the MP2 calculations. This indicates that
the coupling between the solvent effect and electron correla-
tion is small because such a coupling effect is not considered
by the present MP2 calculations. From the SAC calculations,
the effects of polar and nonpolar solvents are similar. The
effect of water is twofold or threefold of that of n-hexane.

To analyze the solvent effect on the excited state geom-
etry, we focused on the geometry change due to excitation,
i.e., the difference between the SAC and SAC-CI geometries
optimized in each solvent. A geometrical parameter in an
excited state Re can be defined by the corresponding ground
state parameter Rg and its change upon excitation �Re as

Re�in vacuum/solvent�

= Rg�in vacuum/solvent�

+ �Re�in vacuum/solvent� . �95�

These parameters were defined both in vacuum and in sol-
vent. Using Eqs. �94� and �95�, we define the solvent effect
on the geometry changes upon excitations as

��Re�solvent� = �Re�in solvent� − �Re�in vacuum� ,

�96�

which can be obtained from Table IV. The values of ��Re

�water� for bond lengths are shown in Fig. 4, where the SAC/
SAC-CI and the HF/CIS results are given by solid and bro-
ken lines, respectively. The solvent effect on �Re is remark-
ably different between the SAC-CI and CIS calculations. The
CIS calculation could not reproduce the SAC-CI results even
qualitatively. For example, in the planar �→�� state, ac-
cording to the SAC-CI calculation, the C1C2 length in-
creases in water, whereas the corresponding CIS calculation
shows a decrease in the length. Such a significant failure
could be ascribed to the LR approximation used in the
present CIS calculation that cannot properly describe equi-
librium solvation in excited states. The problem of LR ap-
proximation has been already shown.21,24,25 TDDFT calcula-
tions may involve severe errors regarding the solvent effect
on excited state geometries because, practically, LR approxi-
mation is used to evaluate solute-solvent interaction.

For the n→�� excitation, values of �Re are little af-
fected by solvent. The solid lines in Fig. 4 of the n→�� state
are located within �1 pm. This means that the coupling ef-

fect between the electronic excitation and solvation on the
molecular geometry is small for this state. The solvent effect
on �Re of the �→�� state in planar conformation is larger
than that of the n→�� state. The solvent effect of water was
4.7 pm for the C1C2 bond. The solvent effect on �Re of the
twisted �→�� state is also as small as that of the n→��

state. The mechanism of the solvent effect will be analyzed
later from the viewpoint of the electronic dipole moment.

Transition energies in vacuum are shown in Table V. The
optimized geometries with the cc-pVDZ basis set were used
for the present SAC/SAC-CI calculations and the cc-pVDZ
and cc-pVTZ basis sets were used for the single-point calcu-
lations. The vertical excitation energy of the n→�� state
depends little on the basis sets. The SAC-CI results are
similar to the CCSD/aug-cc-pVTZ results in Ref. 44 and
they overestimated the experimental observations about 0.1–
0.15 eV. As we mentioned earlier, this state has a consider-
able multireference contribution, and therefore, these single-
reference single and double methods are poor. The
importance of triples has been reported with the CC3 and
CCSDR�3� calculations,70 and this is consistent with findings
that the agreement with experiment is better when using the
CASPT2 calculations than when using the CCSD and

FIG. 4. Solvent effect on the changes of bond lengths �in picometers� upon
electronic excitations for s-trans-acrolein. The solvent effect denotes the
shift in aqueous solution from vacuum �defined by Eq. �96��.
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SAC-CI calculations. The optimized geometry in the n
→�� state was inaccurate. Hence, the SAC-CI calculation
significantly overestimated the adiabatic transition energy of
the n→�� state.

The vertical excitation energy of the �→�� state sig-
nificantly depends on the basis set. The SAC-CI and CCSD
calculations still overestimated the experimental observa-
tions. The CC3 calculations showed the remarkable impor-

tance of triple excitations for this state.44 Here we should
note the definition of the vertical excitation energy of an
experiment. In the experimental value, it was assumed that
the vertical transitions correspond to the observed peak
maxima but this is not always true. Molecular vibration and
geometry relaxation could affect the experimental peak
structure. Indeed, the adiabatic transition energies to the pla-
nar and twisted conformations were much lower than the

TABLE VI. Solvent shift from vacuum value for excitation energies �in eV� of s-trans-acrolein.

Method

Vertical Adiabatic

n→�� �→�� n→�� �→�� �planar� �→�� �twisted�

hex.a aq.b hex. aq. hex. aq. hex. aq. hex. aq.

SAC-CI �DZ�c �0.01 +0.08 �0.15 �0.25 �0.01 �0.04 �0.09 �0.30 �0.04 �0.01
SAC-CI �TZ�d �0.01 +0.10 �0.10 �0.22 �0.01 �0.03 �0.09 �0.32 �0.01 �0.01
CCSDe +0.23 �0.41
CCSDf +0.25 �0.33
CCSDR�3�f +0.26 �0.35
CAM-B3LYPe +0.26 �0.47
CASPT2g +0.33 �0.10
CASSCFh +0.19 +0.14
CASPT2h +0.19 +0.12
Experimenti +0.2 �0.4

aIn n-hexane.
bIn water.
ccc-pVDZ basis with cc-pVDZ geometry.
dcc-pVTZ basis with cc-pVDZ geometry.
eReference 44, QM/MM.
fReference 70, QM/MM with no water in QM.
gReference 41, PCM.
hReference 43, QM/MM.
iReferences 36–39.

TABLE V. Excitation energies �in eV� of s-trans-acrolein in vacuum.

Method

Vertical Adiabatic

n→�� �→�� n→�� �→�� �planar� �→�� �twisted�

SAC-CI �DZ�a 3.84 7.19 3.43 6.82 2.66
SAC-CI �TZ�b 3.85 6.97 3.51 6.68 2.74
CCSDc 3.89 6.84
CC3c 3.75 6.65
CCSDd 3.91 6.87
CCSDR�3�d 3.81 6.73
CAM-B3LYPc 3.80 6.40
CASSCFe 3.93 7.54 3.19
CASPT2e 3.63 6.94 3.12
MSCASPT2e 3.63 6.10
CASSCFf 3.97 3.16
CASPT2f 3.77 3.10
Expt. 3.75g 6.41h 3.21i

3.69c 6.42c

acc-pVDZ basis with cc-pVDZ geometry.
bcc-pVTZ basis with cc-pVDZ geometry.
cReference 44.
dReference 70.
eReference 41.
fReference 43.
gReference 67.
hReference 68.
iReference 65.
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vertical excitation energy calculated with the SAC-CI. This
implies the significance of the relaxation and vibration ef-
fects.

The shifts of transition energies by solvent from the
vacuum are shown in Table VI; the positive value denotes
that excitation energy increases in solvent �blue shift�. Polar
solvent increases the vertical excitation energy of the n
→�� state because equilibrium solvation stabilized the
ground state more than the excited state, in which nonequi-
librium solvation was used. The shift in aqueous solution
was 0.10 eV, as calculated with SAC-CI/cc-pVTZ. The cal-
culated solvent shift was smaller than the experimental and
other theoretical results. This underestimation could be at-
tributed to the lack of hydrogen bonds from explicit solvent
molecules and an insufficient description of charge separa-
tion in the excited state. The CCSD and QM/MM model with
the CCSD method provided a larger solvent shift.44 The ef-
fects of triple excitations by the CCSDR�3� are canceled in
the solvent shift.70 The CASPT2 calculation41 that appropri-
ately describes the excited state also provided a larger sol-
vent shift even if only the PCM was used. The solvent effect
decreases the adiabatic excitation energy; the shift in aque-
ous solution in the n→�� state was �0.03 eV, calculated
with the cc-pVTZ basis. The CASPT2 result43 of this shift
was 0.12 eV, and was significantly different from the
SAC-CI result. This discrepancy was probably caused by the
difference in the optimized geometry of the excited state.

The solvent shifts of the vertical �→�� excitation were
negative. The excited state is stabilized more than the ground
state, even by nonequilibrium solvation. Such a remarkable
solvent effect on the excited state can be explained by the

dipole moment of molecule; the Cartesian components and
the norm �d� are shown in Table VII for vacuum and an
aqueous environment. The dipole moment of the �→��

state in planar conformation is twice as large as that of the
ground state. The polarized �→�� state is stabilized by po-
lar solvent more than the ground state is, and a redshift is
observed. The solvent shift calculated with SAC-CI/PCM is
small in comparison with the experimental findings. The
CASPT2/PCM also underestimated the solvent shift.41 The
CCSDR�3� calculation showed that the effect of triple exci-
tations on the solvent shift is minor.70 The importance of the
QM treatment of water molecules was reported in Ref. 44.
The solvent shift of the vertical �→�� excitation energy
strongly depends on the number of QM water. We also note
that the observed peak of the �→�� transition is broad and
vibration and other effects for spectral shape must be consid-
ered to predict the accurate solvatochromic effect on spec-
troscopy. These points have been discussed in the recent
QM/MM study by Sneskov et al.70

The solvent shift in water becomes large in the adiabatic
�→�� excitation of the planar conformation in comparison
with the vertical excitation because the equilibrium solvation
further stabilizes the polarized �→�� state. The geometry
relaxation distorting planar conformation causes reorganiza-
tion of electron distribution of this state. The dipole moment
of the twisted �→�� state is similar to that of the ground
state. The absolute solvent effect on the ground and the
twisted �→�� states are canceled out, and thus the solvent
shift of the adiabatic transition energies to the twisted
�→�� state becomes very small.

The Mulliken atomic charges are shown in Table VIII.

TABLE VII. Dipole moment �debye� of s-trans-acrolein. The dipole moment �d� and its Cartesian components
are shown.

State

Vacuum Aqueous

x y z �d� x y z �d�

Ground 1.961 1.938 0.000 2.757 2.508 2.341 0.000 3.431
n→�� 1.116 0.463 0.000 1.208 1.299 0.418 0.000 1.364
�→�� �planar� 3.003 4.072 0.000 5.060 4.401 6.187 0.000 7.593
�→�� �twisted� 1.917 2.075 0.000 2.825 2.235 2.667 0.000 3.480

TABLE VIII. Mulliken atomic charges of s-trans-acrolein computed with the SAC/SAC-CI effective density matrix.

Vacuum Aqueous

Ground n→�� �→�� �planar� �→�� �twisted� Ground n→�� �→�� �planar� �→�� �twisted�

O1 �0.208 �0.146 �0.358 �0.211 �0.257 �0.163 �0.456 �0.262
C1 0.200 0.118 0.175 0.184 0.209 0.121 0.099 0.190
H1 0.002 0.071 �0.016 �0.001 0.024 0.096 �0.010 0.018
C2 �0.149 �0.130 �0.090 �0.120 �0.161 �0.149 �0.059 �0.111
H2 0.043 0.039 0.067 0.057 0.047 0.048 0.081 0.065
C3 �0.002 �0.039 0.066 �0.070 �0.003 �0.061 0.125 �0.077
H3 0.052 0.036 0.074 0.080 0.067 0.049 0.105 0.089
H4 0.062 0.050 0.083 0.080 0.074 0.058 0.114 0.089
Formyla �0.006 0.043 �0.200 �0.028 �0.024 0.054 �0.367 �0.054
Vinylb 0.006 �0.044 0.200 0.028 0.024 �0.054 0.367 0.054

aTotal atomic charges of formyl group �O1C1H1�.
bTotal atomic charges of vinyl group �C2H2C3H3H4�.
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The gross charge of formyl �OCH� and vinyl �CHCH2�
groups are shown. Notable charge separation is observed for
the planar �→�� state in which the gross charge of the
formyl group is �0.200. The charge of the formyl group in
the ground state is �0.006; therefore, this state has an in-
tramolecular electron transfer character from vinyl to formyl
in 0.194. This electron transfer character enlarges the dipole
moment of this state, and consequently enhances the solvent
effect in polar solvent.

The charge separation in the n→�� state is slightly
larger than that in the ground state and the direction is dif-
ferent from that of the ground state. The formyl group is
positive in the n→�� state, whereas it has small negative
charge in the ground state. Therefore, the equilibrium orien-
tations of polar solvent are different between the ground state
and the n→�� state. The nonequilibrium solvation does not
stabilize the n→�� state and it causes a blueshift of vertical
excitation energy. The equilibrium solvation stabilizes the
charge separated n→�� state well, and this effect reduces
the adiabatic transition energy. The charge distribution of the
twisted �→�� state is similar to that of the ground state,
thus solvent shift by the polar solvent is very small because
the absolute effects are cancelled out in the ground and ex-
cited states.

C. Methylenecyclopropene

The excited state properties of methylenecyclopropene
�C4H4� and their solvent dependence are interesting because
of methylenecyclopropene’s sudden polarization effect: The
dipole moments in the ground and the first excited state are
opposite. These properties have been studied using several
different methods.16,46,48,49 It is possible to drastically change
molecular properties by light absorption.

Table IX shows the optimized molecular geometries in
the ground state and the lowest �→�� excites state in
vacuum. The ground state is planar. Definitions of the atomic
labels are given in Fig. 5�a�: the molecule with C2v point
group symmetry was placed in the y-z plane where the prin-

cipal axis is in the z-direction. The geometry in the lowest
�→�� state �1 1B2� was first optimized within planar con-
formation. The optimal structure is shown in Table IX. With
this restricted geometry, two negative frequencies are ob-
tained in the direction of out-of-plane motion by the CIS
calculation. Therefore, this planar structure is not an energy
minimum. A minimum energy structure was searched within
90° twisted conformation. We found a twisted and bent struc-
ture, as shown in Fig. 5�b�, in which negative frequencies
were not obtained by the CIS calculation. Here, we still used
a symmetry restriction in the Cs point group during geometry
optimization. We suppose that a structure of lower energy
would exist without symmetry restriction. In the present

TABLE IX. Geometrical parameters �angstroms and degrees� of methylenecyclopropene in vacuum.

Ground state �→�� �planar� �→�� �twist�

HFa MP2a SAC�DZ�a SAC�TZ�b CASSCFc Expt.d SAC-CIa CISa SAC-CIa CISa

C1C2 1.433 1.460 1.463 1.443 1.443 1.441 1.372 1.357 1.496 1.470
C2C3 1.309 1.343 1.337 1.319 1.323 1.323 1.510 1.486 1.326 1.298
C1C4 1.325 1.342 1.341 1.328 1.336 1.332 1.464 1.398 1.445 1.396
C2H1 1.076 1.090 1.091 1.076 1.073 1.080 1.084 1.070 1.091 1.076
C4H3 1.076 1.090 1.091 1.076 1.073 1.080 1.094 1.078 1.095 1.081
C4H4 1.081 1.092 1.094 1.080 1.080 1.085 1.094 1.078 1.103 1.093
C2C1C3 54.4 54.7 54.4 54.4 66.8 66.4 52.6 52.4
C1C2H1 149.0 149.6 149.1 149.1 147.5 151.1 151.4 147.7 146.6
C1C4H3 120.7 120.5 120.7 120.7 121 120.1 120.4 121.0 121.8
C1C4H4 120.7 120.5 120.7 120.7 121 120.1 120.4 120.1 121.8
oope 38.3 35.7

acc-pVDZ basis set was used.
bcc-pVTZ basis set was used.
cReference 48.
dReference 69.
eOut-of-plane angle, see Fig. 5.

FIG. 5. Molecular structure and coordinate of methylenecyclopropene �a� in
planar conformation and �b� in twisted conformation.
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study, however, we do not discuss such a possibility because
it is beyond the scope of our purpose, although it is impor-
tant to explore the potential energy surface for understanding
photochemistry.

In the ground state, electron correlation increases the
bond lengths. The optimized molecular structures with the
SAC and MP2 are almost identical. Using a larger basis set
reduces the bond lengths, and the SAC/cc-pVTZ calculation
reproduces the experimental structure with good accuracy. In
the planar conformation, the �→�� excitation changes the
position of the double bonds. In this state, the C2C3 and
C1C4 lengths are significantly increased and the C1C2
length is decreased. The HF/CIS calculation could reproduce
the trend as calculated by the SAC/SAC-CI. In the twisted

conformation, the bond lengths are similar to those of the
ground state rather than the planar �→�� state. The elec-
tronic wave function in the �→�� state is relaxed according
to the geometrical relaxation. The HF/CIS calculations well
reproduce the change in geometry upon the electronic exci-
tation calculated by the SAC/SAC-CI because this molecule
�methylenecyclopropene� has less geometrical freedom than
acrolein.

The solvent effects on the optimized geometry in
n-hexane and aqueous solution are shown in Table X, in
which the differences of geometrical parameters are given as
defined by Eq. �94�. The solvent effects are negligible for the
ground state geometry because the molecule is highly sym-
metric and has a rigid ring structure. The HF calculation
tends to overestimate the solvent effect, although it is still
very small.

The values of ��Re defined by Eq. �96� for the �→��

state in aqueous solution are shown in Fig. 6, where the
SAC/SAC-CI and the HF results are given by solid and bro-

TABLE XI. Excitation energies �in eV� of methylenecyclopropene in
vacuum.

Method Vertical Adiabatic �planar� Adiabatic �twisted�

SAC-CI�DZ�a 4.73 3.53 2.77
SAC-CI�TZ�b 4.76 3.57 2.88
CASSCF �DZ�c 4.63
CASSCF �TZ�c 4.56
CASSCFd 4.71
CASPT2d 4.13
Expt.e 4.01 �n-pentane�f

4.49 �MeOH�g

acc-pVDZ basis with cc-pVDZ geometry.
bcc-pVTZ basis with cc-pVDZ geometry.
cReference 48.
dReference 49.
eReference 47.
fIn n-pentane −78 °C.
gIn methanol −78 °C.

FIG. 6. Solvent effect on the changes of bond lengths �in picometers� upon
electronic excitations for methylenecyclopropene. The solvent effect denotes
the shift in aqueous solution from vacuum �defined by Eq. �96��.

TABLE X. Solvent effect on geometrical parameters �pm=10−2 Å and degrees� of methylenecyclopropene with cc-pVDZ basis. Shifts from the vacuum value
�R�in solv�−R�in vac�� are shown.

Ground state �→�� �planar� �→�� �twisted�

SAC MP2 HF SAC-CI CIS SAC-CI CIS

hex.a aq.b hex. aq. hex. aq. hex. aq. hex. aq. hex. aq. hex. aq.

C1C2 �0.2 �0.3 0.0 �0.2 �0.2 �0.5 0.1 0.3 0.7 2.5 0.0 0.2 0.4 1.2
C2C3 0.0 0.1 0.0 0.1 0.1 0.2 0.4 1.2 0.3 0.9 0.0 0.1 �0.1 �0.3
C1C4 0.1 0.3 0.1 0.3 0.2 0.6 0.2 0.4 �1.1 �3.4 �0.1 �0.3 �0.6 �1.7
C2H1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1
C4H3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 �0.1 �0.1 0.1 0.3
C4H4 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.5
C2C1C3 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.4 �0.3 �0.9 0.0 0.0 �0.2 �0.6
C1C2H1 0.0 0.0 �0.3 �0.3 �0.1 �0.1 0.0 0.7 0.1 0.1 �0.3 �0.6 �0.3 �0.9
C1C4H3 0.0 0.0 �0.3 �0.3 �0.1 �0.1 �0.2 �0.2 0.1 0.2 0.4 1.0 0.3 0.7
C1C4H4 0.0 0.0 0.0 0.1 0.0 0.0 �0.2 �0.2 0.0 0.2 0.6 0.0 0.0 0.1
oopc �0.5 �1.3 �0.2 �1.1

aIn n-hexane.
bIn water.
cOut-of-plane angle, see Fig. 5.

024104-19 SAC and SAC-CI method in PCM J. Chem. Phys. 133, 024104 �2010�

Downloaded 13 Oct 2010 to 130.54.130.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



ken lines, respectively. The LR approximated CIS calcula-
tion cannot provide a reliable prediction of the solvent effect
even in its qualitative trend. The solvent effect on �Re is
very small; it is less than 1 pm. The solvent effect on the
geometrical parameters is quite small for methylenecyclo-
propene while the effect on the excitation energy is signifi-
cant.

Table XI shows the excitation energies in vacuum. The
basis set dependence of the excitation energy is not very
large. The SAC-CI calculation overestimated the vertical ex-
citation energy by about 0.6 eV, compared with the case of
the experiment in n-pentane. Except for experimental uncer-
tainty, because of peak broadness, this discrepancy could be
attributed to the lack of triple and higher excitations. The
maximum coefficient of double excitations in the present
SAC-CI calculation was 0.3, and therefore the state has a
weak multielectron excitation character. The present singles
and doubles SAC-CI calculation is less adequate for very
accurate calculations. The CASPT2 study49 yielded better
excitation energy than was obtained using the SAC-CI
method. The geometrical relaxation in an excited state re-
markably affects the transition energy. Even in planar con-
formation, the adiabatic transition energy is 1.2 eV less than
the vertical excitation energy owing to the bond alternation
that occurs in the �→�� state. The twist of the C1C4 bond
further stabilizes the excited state. These relatively large re-
laxations cause the absorption peak to be broader.

The solvent shifts of transition energies from the vacuum
are shown in Table XII. The polar and nonpolar solvents for
the SAC-CI calculation were water and n-hexane, respec-
tively. The polar solvent increases the vertical excitation en-
ergy but the nonpolar solvent decreases it. The direction of
the dipole moment of methylenecyclopropene is changed by
the excitation. The orientation of polar solvent to the ground
state destabilizes the excited state because the direction of
the dipole moment is opposite. In nonpolar solvent, stabili-
zation by solvent in the ground state and the excited state are
similar, and the effect results in a small redshift. The solvent
effects on the adiabatic transitions become small even in a
polar solvent because equilibrium solvation similarly affects
the ground and excited states. The calculated nonpolar to
polar solvent shift is 0.2 eV. This result is close to that of the

CASPT2 calculation,49 and significantly underestimates the
experimental findings.47 Explicit solvent molecules treated
by a QM method may be important to reproduce the solvent
shift by the analogy of the �→�� transition of acrolein.

The calculated dipole moments, the Cartesian compo-
nent, and the norm are shown in Table XIII. The moments in
the ground and planar �→�� states have opposite signs. The
direction of the twisted �→�� state is the same as the
ground state. The atomic charges are shown in Table XIV.
The charge separation between ring and methylene is in-
duced by the �→�� excitation in planar conformation. The
twisted �→�� state has rather small atomic charges. A zwit-
terionic character proposed by Johnson and Schmidt46 was
not obtained for the twisted conformation in the present cal-
culation, probably because we have used bond lengths of
twisted conformation optimized in the excited state. The re-
laxation of bond lengths significantly affects the atomic
charge distribution in the excited state. The present calcula-
tions show the importance of the optimization of excited
state geometry to study the sudden polarization effect of me-
thylenecyclopropene and other related phenomena. The
present PCM SAC-CI method has the potential for such ap-
plications.

V. CONCLUSIONS

In this paper we presented the theory, implementation,
and applications of the SAC/SAC-CI method, including the
solvent effect, by means of the PCM. The PCM-SAC/
SAC-CI theory was developed to study the electronic exci-
tation of molecules in solution. The PCM theory has been
incorporated into the SAC and SAC-CI theories by consid-
ering an energy functional approach, which gives a consis-
tent formulation, like the variational principle, although we
used the nonvariational theory of the SAC and SAC-CI. The
analytical energy gradient of the PCM-SAC and PCM-
SAC-CI was formulated in terms of the SAC and SAC-CI
energy functional. The PCM-SAC-CI method is a SS ap-
proach, in which the solute-solvent interaction operators de-
pend on the QM charge distribution of the solute in the spe-
cific excited states.

TABLE XII. Solvent shift on excitation energies �in eV� of methylenecyclopropene.

Method

Vertical Adiabatic �planar� Adiabatic �twisted�

Nonpolara Polarb Shiftc Nonpolar Polar Nonpolar Polar

SAC-CI �DZ�d �0.06 +0.11 0.17 �0.04 �0.11 0.00 0.00
SAC-CI �TZ�e �0.07 +0.13 0.20 �0.05 �0.11 0.00 0.00
CASPT2 �DZ�f �0.01 +0.16 0.17
CASPT2 �TZ�f �0.01 +0.18 0.19
Expt.g 0.48

aIn nonpolar solvent, n-hexane for SAC-CI.
bIn polar solvent, water for SAC-CI.
cNonpolar to polar solvent shift, n-pentane to methanol for experiment.
dcc-pVDZ basis with cc-pVDZ geometry.
ecc-pVTZ basis with cc-pVDZ geometry.
fReference 48, PCM.
gReference 47.
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The PCM-SAC and PCM-SAC-CI theories were imple-
mented on the latest version of the SAC-CI program incor-
porated with the GAUSSIAN development version. It is pos-
sible to perform the molecular geometry optimization in
solution in the ground and excited states. Several combina-
tions of molecular geometry, the target electronic state, and
solvation models �equilibrium or nonequilibrium� are avail-
able. Some typical calculation routes are presented, for ex-
ample, solvatochromism of electronic spectra, adiabatic tran-
sitions, and photochemical reactions in solution.

The equilibrium geometry and electronic transitions of
s-trans-acrolein and methylenecyclopropene were studied
with the PCM-SAC and PCM-SAC-CI methods in vacuum
and in nonpolar and polar solvents. The SAC calculations
could well reproduce the experimental geometry in vacuum.
It is possible to calculate the energy, wave function, and
optimized geometry using the PCM-SAC method, in which
both the electron correlation and solvent effects are self-
consistently taken into account. For the ground state geom-
etry of these molecules, the coupling of the electron correla-
tion and solvent effects was small.

The PCM-SAC-CI method can calculate the energy,
wave function, and optimized geometry in solution by con-
sidering the electron correlation with the SS approach. The
effect of solvents on the vertical and adiabatic excitation en-
ergies were studied for s-trans-acrolein. The effects on the
lowest n→�� and �→�� states of s-trans-acrolein are red-
and blueshifts, respectively, for the vertical excitations. The
PCM-SAC/SAC-CI can reproduce the observed trends but
the shifts were underestimated, probably because of the lack

of explicit solvent molecules. The excited state geometry
was optimized in vacuum and in solution. The nonplanar
twisted geometry was found in the �→�� state. The solvent
effects on the ground and excited states were investigated
with the dipole moment and Mulliken charges. Relatively
large charge polarization was obtained for the �→�� state.

The redshift was obtained for the lowest vertical �
→�� excitation of methylenecyclopropene in polar solution.
The observed trend was reproduced but the shift value was
underestimated by the PCM-SAC/SAC-CI calculations.
Adiabatic transition was studied and large geometry relax-
ation was obtained. The calculated dipole moment and Mul-
liken charges explained the mechanism of solvation in the
ground and excited states.

The solvent effects on the optimized geometry in the
excited state differ significantly between the PCM-SAC-CI
and CIS results. This discrepancy could be attributed to the
LR approximation used in the CIS calculation. The present
study shows the importance of the SS approach to study the
excited states; the LR approach may cause serious errors.

In this paper the PCM-SAC/SAC-CI equations are pre-
sented in the Hamiltonian matrix formula. The Hamiltonian
matrix algorithm has been replaced by the MO integral direct
algorithm in the latest SAC-CI program. The PCM-SAC/
SAC-CI in the MO integral direct algorithm will be reported
in a forthcoming paper. The presented formulation is appli-
cable to other spin states. The implementation of triplet and
doublet states is straightforward, and will also be reported in
a forthcoming paper.

TABLE XIII. Dipole moment �debye� of methylenecyclopropene. The dipole moment �d� and its Cartesian components are shown.

State

Vacuum Aqueous

x y z �d� Expt.a x y z �d�

Ground 0.000 0.000 �1.859 1.859 1.90 0.000 0.000 �2.462 2.462
�→�� �planar� 0.000 0.000 1.195 1.195 0.000 0.000 1.421 1.421
�→�� �twisted� 0.334 0.000 �1.177 1.223 0.860 0.000 �1.158 1.442

aReference 69.

TABLE XIV. Mulliken atomic charges of methylenecyclopropene computed with the SAC/SAC-CI effective
density matrix.

Vacuum Aqueous

Ground �→�� �planar� �→�� �twisted� Ground �→�� �planar� �→�� �twisted�

C1 �0.003 0.075 �0.076 �0.015 0.081 �0.115
C2 �0.025 �0.124 �0.018 �0.021 �0.149 �0.023
C3 �0.025 �0.124 �0.018 �0.021 �0.149 �0.023
H1 0.046 0.035 0.045 0.069 0.050 0.066
H2 0.046 0.035 0.045 0.069 0.050 0.066
C4 �0.103 �0.040 �0.077 �0.149 �0.050 �0.086
H3 0.032 0.071 0.042 0.035 0.083 0.051
H4 0.032 0.071 0.057 0.035 0.083 0.064

Ringa 0.039 �0.103 �0.022 0.080 �0.117 �0.029
Meb �0.039 0.103 0.022 �0.080 0.117 0.029

aTotal atomic charges of ring �C1C2C3H1H2�.
bTotal atomic charges methylene group �C4H3H4�.
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APPENDIX: PCM-SAC EQUATIONS
FOR THE Z-AMPLITUDES

The explicit form of the Z-amplitude equations for the
PCM-SAC in Eq. �40� and its detailed derivation are pre-
sented here. The PCM SAC energy functional is given as

LPCM
SAC = 	

I

CIH̄0I
HF�1 − 	

K
	

I

ZKCIS̄KI

+ 	

K

ZK�HK0
HF + 	

I

CIH̄KI
HF
 +

1

2
�QSAC�VSAC,

�A1�

where

�QSAC = 	
I

CIQ0I�1 − 	
K

	
I

ZKCIS̄KI

+ 	

K

ZK�QK0 + 	
I

CIQ̄KI
 �A2�

and

�VSAC = 	
I

CIV0I�1 − 	
K

	
I

ZKCIS̄KI

+ 	

K

ZK�QK0 + 	
I

CIV̄KI
 . �A3�

The PCM-Z-SAC equations can be obtained as Eq. �40�,

�LPCM
SAC

�CI
= 0 = H̄̄0I

PCM + 	
K

ZKYKI
PCM + 	

KL

ZKZLWKLI. �A4�

The differentiation of the energy functional may be written
as follows:

�LPCM
SAC

�CI
= H̄̄0I

HF − H̄̄0I
HF	

K
	

J

ZKCJS̄KJ − 	
J

CJH̄0J
HF	

K

ZKS̄̄KI

+ 	
K

ZKH̄̄KI
HF +

1

2

��QSAC

�CI
�VSAC

+
1

2
�QSAC

��VSAC

�CI
, �A5�

where

��QSAC

�CI
= Q0I − Q0I�	

K
	

J

ZKCJS̄KJ

− 	

J

CJQ0J�	
K

ZKS̄̄KI
 + 	
K

ZKQ̄̄KI �A6�

and

��VSAC

�CI
= V0I − V0I�	

K
	

J

ZKCJS̄KJ

− 	

J

CJV0J�	
K

ZKS̄̄KI
 + 	
K

ZKV̄̄KI. �A7�

The corresponding SAC energy in terms of the Hamiltonian
with fixed HF field can be defined by

�ESAC
HF = 	

J

CJH̄0J
HF. �A8�

For a clear expression we define similar notations in terms of
Q and V by

	
J

CJQ0J = �SAC �A9�

and

	
J

CJV0J = �SAC. �A10�

Inserting Eqs. �A2�, �A3�, and �A6�–�A10� into Eq. �A5�, we
obtain

�LPCM
SAC

�CI
= H̄̄0I

HF + 	
K

ZK�H̄̄KI
HF − H̄̄0I

HF	
J

CJS̄KJ − �ESAC
HF S̄̄KI
 +

1

2�Q0I + 	
K

ZK�Q̄̄KI − Q0I	
J

CJS̄KJ − S̄̄KI�SAC
�
���SAC + 	

K

ZK�	
J

CJV̄KJ + VK0 − �SAC	
J

CJS̄KJ
� +
1

2�V0I + 	
K

ZK�V̄̄KI − V0I	
J

CJS̄KJ − S̄̄KI�SAC
�
���SAC + 	

K

ZK�	
J

CJQ̄KJ + QK0 − �SAC	
J

CJS̄KJ
� . �A11�

Arranging Eq. �A11� as Eq. �A4�, we may now write the following:
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�LPCM
SAC

�CI
= H̄̄0I

HF +
1

2
Q0I�SAC +

1

2
V0I�SAC + 	

K

ZK�H̄̄KI
HF − H̄̄0I

HF	
J

CJS̄KJ − �ESAC
HF S̄̄KI
 +

1

2	
K

ZK�Q̄̄KI − Q0I	
J

CJS̄KJ

− S̄̄KI�SAC
�SAC +
1

2	
K

ZK�V̄̄KI − V0I	
J

CJS̄KJ − S̄̄KI�SAC
�SAC +
1

2
Q0I	

K

ZK�	
J

CJV̄KJ + VK0 − �SAC	
J

CJS̄KJ

+

1

2
V0I	

K

ZK�	
J

CJQ̄KJ + QK0 − �SAC	
J

CJS̄KJ
 +
1

2	
K

ZK�Q̄̄KI − Q0I	
J

CJS̄KJ − S̄̄KI�SAC
	
L

ZL�	
J

CJV̄LJ

+ VL0 − �SAC	
J

CJS̄LJ
 +
1

2	
K

ZK�V̄̄KI − V0I	
J

CJS̄KJ − S̄̄KI�SAC
	
L

ZL�	
J

CJQ̄LJ + QL0 − �SAC	
J

CJS̄LJ
 . �A12�

Consequently, the constant terms are

H̄̄0I
PCM = H̄̄0I

HF + 1
2Q0I�SAC + 1

2V0I�SAC. �A13�

The terms that are linear in Z are

YKI
PCM = YKI

HF +
1

2�Q̄̄KI − Q0I	
J

CJS̄KJ − S̄̄KI�SAC
�SAC

+
1

2�V̄̄KI − V0I	
J

CJS̄KJ − S̄̄KI�SAC
�SAC

+
1

2
Q0I�	

J

CJV̄KJ + VK0 − �SAC	
J

CJS̄KJ

+

1

2
V0I�	

J

CJQ̄KJ + QK0 − �SAC	
J

CJS̄KJ
 ,

�A14�

where

YKI
HF = H̄̄KI

HF − H̄̄0I
HF	

J

CJS̄KJ − �ESAC
HF S̄̄KI �A15�

contains the fixed HF contributions. The terms that quadratic
in Z are

WKLI =
1

2�Q̄̄KI − Q0I	
J

CJS̄KJ − S̄̄KI�SAC

��VL0 + 	

J

CJV̄LJ − �SAC	
J

CJS̄LJ

+

1

2�V̄̄KI − V0I	
J

CJS̄KJ − S̄̄KI�SAC

��QL0 + 	

J

CJQ̄LJ − �SAC	
J

CJS̄LJ
 . �A16�

Using the following vector notations for transformed matrix
elements:

v̄K = VK0 + 	
J

CJV̄KJ, �A17�

q̄K = QK0 + 	
J

CJQ̄KJ, �A18�

and

s̄K = SK0 + 	
J

CJS̄KJ = 	
J

CJS̄KJ, �A19�

we obtain rather compact forms

YKI
PCM = YKI

HF + 1
2 Q̄̄KI�SAC + 1

2 V̄̄KI�SAC − S̄̄KI�SAC�SAC

+ 1
2Q0Iv̄K + 1

2V0Iq̄K − s̄K�Q0I�SAC + V0I�SAC�

�A20�

and

WKLI = 1
2 Q̄̄KIv̄L + 1

2 V̄̄KIq̄L + S̄̄KI��SAC�SACs̄L − 1
2�SACv̄L

− 1
2�SACq̄L� + 1

2 s̄Ks̄L�Q0I�SAC + V0I�SAC�

− 1
2 s̄K�Q0Iv̄L + V0Iq̄L� − 1

2 s̄L�Q̄̄KI�SAC + V̄̄KI�SAC� .

�A21�

1 W. Liptay, Angew. Chem., Int. Ed. Engl. 8, 177 �1969�; E. Buncel and S.
Rajagopal, Acc. Chem. Res. 23, 226 �1990�; C. Reichardt, Chem. Rev.
�Washington, D.C.� 94, 2319 �1994�.

2 J. Kroon, J. W. Verhoeven, M. N. Paddon-Row, and A. M. Oliver, An-
gew. Chem., Int. Ed. 30, 1358 �1991�; P. Chen and T. J. Meyer, Chem.
Rev. �Washington, D.C.� 98, 1439 �1998�; A. Vlček, Jr., Coord. Chem.
Rev. 200–202, 933 �2000�; H. Imahori, M. E. El-Khouly, M. Fujitsuka,
O. Ito, Y. Sakata, and S. Fukuzumi, J. Phys. Chem. A 105, 325 �2001�; F.
Barrière, N. Camire, W. E. Geiger, U. T. Mueller-Westerhoff, and R.
Sanders, J. Am. Chem. Soc. 124, 7262 �2002�.

3 Y. Xu, W. K. Chen, M. J. Cao, S. H. Liu, J. Q. Li, A. I. Philippopoulos,
and P. Falaras, Chem. Phys. 330, 204 �2006�; C. Barolo, M. K. Nazeer-
uddin, S. Fantacci, D. Di Censo, P. Comte, P. Liska, G. Viscardi, P.
Quagliotto, F. De Angelis, S. Ito, and M. Grätzel, Inorg. Chem. 45, 4642
�2006�; M. K. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. De
Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, and M. Grätzel, J.
Photochem. Photobiol., A 185, 331 �2007�.

4 H. Nakatsuji and K. Hirao, Chem. Phys. Lett. 47, 569 �1977�; J. Chem.
Phys. 68, 2053 �1978�.

5 H. Nakatsuji, Chem. Phys. Lett. 59, 362 �1978�; 67, 329 �1979�; 67, 334
�1979�.

6 K. Emrich, Nucl. Phys. A 351, 379 �1981�; J. Geertsen, M. Rittby, and R.
J. Bartlett, Chem. Phys. Lett. 164, 57 �1989�; D. C. Comeau and R. J.
Bartlett, ibid. 207, 414 �1993�; J. F. Stanton and R. J. Bartlett, J. Chem.
Phys. 98, 7029 �1993�.

7 H. Monkhorst, Int. J. Quantum Chem., Quantum Chem. Symp. 11, 421

024104-23 SAC and SAC-CI method in PCM J. Chem. Phys. 133, 024104 �2010�

Downloaded 13 Oct 2010 to 130.54.130.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1002/anie.196901771
http://dx.doi.org/10.1021/ar00175a004
http://dx.doi.org/10.1021/cr00032a005
http://dx.doi.org/10.1021/cr00032a005
http://dx.doi.org/10.1002/anie.199113581
http://dx.doi.org/10.1002/anie.199113581
http://dx.doi.org/10.1021/cr941180w
http://dx.doi.org/10.1021/cr941180w
http://dx.doi.org/10.1016/S0010-8545(00)00308-8
http://dx.doi.org/10.1016/S0010-8545(00)00308-8
http://dx.doi.org/10.1021/jp002158b
http://dx.doi.org/10.1021/ja020309d
http://dx.doi.org/10.1016/j.chemphys.2006.08.012
http://dx.doi.org/10.1021/ic051970w
http://dx.doi.org/10.1016/j.jphotochem.2006.06.028
http://dx.doi.org/10.1016/j.jphotochem.2006.06.028
http://dx.doi.org/10.1016/0009-2614(77)85042-2
http://dx.doi.org/10.1063/1.436028
http://dx.doi.org/10.1063/1.436028
http://dx.doi.org/10.1016/0009-2614(78)89113-1
http://dx.doi.org/10.1016/0375-9474(81)90179-2
http://dx.doi.org/10.1016/0009-2614(89)85202-9
http://dx.doi.org/10.1016/0009-2614(93)89023-B
http://dx.doi.org/10.1063/1.464746
http://dx.doi.org/10.1063/1.464746


�1977�; E. Dalgaard and H. Monkhorst, Phys. Rev. A 28, 1217 �1983�; D.
Mukherjee and P. K. Mukherjee, Chem. Phys. 39, 325 �1979�; M. Taka-
hashi and J. Paldus, J. Chem. Phys. 85, 1486 �1986�.

8 H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 �1990�; H. Koch and
H. J. Aa. Jensen, P. Jørgensen, and T. Helgaker, ibid. 93, 3345 �1990�.

9 H. Nakatsuji, Bull. Chem. Soc. Jpn. 78, 1705 �2005�; J. Hasegawa and
H. Nakatsuji, in Radiation Induced Molecular Phenomena in Nucleic
Acid: A Comprehensive Theoretical and Experimental Analysis, edited by
M. Shukla and J. Leszczynsk �Springer, New York, 2008�, Chapts. 4 and
93–124; M. Ehara, J. Hasegawa, and H. Nakatsuji, in Theory and Appli-
cations of Computational Chemistry: The First 40 Years, A Volume of
Technical and Historical Perspectives, edited by C. E. Dykstra, G. Fren-
king, K. S. Kim, and G. E. Scuseria �Elsevier, Oxford, 2005�, pp. 1099–
1141.

10 S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 �1981�.
11 J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. �Washington, D.C.�

105, 2999 �2005�.
12 J. S. Arponen, R. F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2519

�1987�.
13 E. A. Salter, G. W. Trucks, and R. J. Bartlett, J. Chem. Phys. 90, 1752

�1989�; R. J. Bartlett, in Modern Electronic Structure Theory, Part II,
edited by D. R. Yarkony �World Scientific, Singapore, 1995�, pp. 1047–
1131.

14 H. Koch and H. J. Aa Jensen, P. Jørgensen, T. Helgaker, G. E. Scuseria,
and H. F. Schaefer III, J. Chem. Phys. 92, 4924 �1990�.

15 O. Christiansen and K. V. Mikkelsen, J. Chem. Phys. 110, 1365 �1999�;
110, 8348 �1999�; A. Osted, J. Kongsted, K. V. Mikkelsen, and O. Chris-
tiansen, Mol. Phys. 101, 2055 �2003�.

16 T. Nakajima and H. Nakatsuji, Chem. Phys. 242, 177 �1999�.
17 R. Cammi, J. Chem. Phys. 131, 164104 �2009�.
18 F. J. Olivares del Valle and J. Tomasi, Chem. Phys. 150, 134 �1991�; M.

Aguilar, F. J. Olivares del Valle, and J. Tomasi, ibid. 150, 151 �1991�; F.
J. Olivares del Valle, R. Bonacorsi, R. Cammi, and J. Tomasi, J. Mol.
Struct.: THEOCHEM 230, 295 �1991�; F. J. Olivares del Valle, M. Agui-
lar, and S. Tolosa, ibid. 279, 223 �1993�; F. J. Olivares del Valle and M.
Aguilar, ibid. 280, 25 �1993�.

19 J. Hasegawa, S. Bureakaw, and H. Nakatsuji, J. Photochem. Photobiol., A
189, 205 �2007�.

20 J. F. Stanton, J. Chem. Phys. 99, 8840 �1993�; J. F. Stanton and J. Gauss,
ibid. 100, 4695 �1994�; 101, 8938 �1994�.

21 R. Cammi, S. Corni, B. Mennucci, and J. Tomasi, J. Chem. Phys. 122,
104513 �2005�.

22 J. Frenkel, Wave Mechanics-Advanced General Theory �Oxford Univer-
sity Press, Oxford, 1979�; R. Cammi and J. Tomasi, Int. J. Quantum
Chem. 60, 297 �1996�.

23 J. Olsen and P. Jørgensen, in Modern Electronic Structure Theory, Part II,
edited by D. R. Yarkony �World Scientific, Singapore, 1995�.

24 S. Corni, R. Cammi, B. Mennucci, and J. Tomasi, J. Chem. Phys. 123,
134512 �2005�.

25 M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni,
and G. Scalmani, J. Chem. Phys. 124, 124520 �2006�.

26 J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, Mol. Phys.
100, 1813 �2002�.

27 B. Mennucci, R. Cammi, and J. Tomasi, J. Chem. Phys. 109, 2798
�1998�.

28 R. A. Marcus, J. Chem. Phys. 24, 966 �1956�.
29 A. Klamt, J. Phys. Chem. 100, 3349 �1996�.
30 R. Cammi and J. Tomasi, Int. J. Quantum Chem. Symp. 56, 465 �1995�;

M. A. Aguilar, J. Phys. Chem. A 105, 10393 �2001�.
31 H. M. Senn and W. Thiel, Angew. Chem., Int. Ed. 48, 1198 �2009�.
32 J. Gao and X. Xia, Science 258, 631 �1992�; J. Gao, J. Am. Chem. Soc.

115, 2930 �1993�; M. L. Sánchez, M. E. Martín, M. A. Aguilar, and F. J.
Olivares del Valle, Chem. Phys. Lett. 310, 195 �1999�.

33 J. Gao, J. Comput. Chem. 18, 1061 �1997�; J. Kongsted, A. Osted, K. V.
Mikkelsen, and O. Christiansen, J. Chem. Phys. 118, 1620 �2003�.

34 M. Caricato, B. Mennucci, G. Scalmani, G. W. Trucks, and M. J. Frisch,
J. Chem. Phys. 132, 084102 �2010�.

35 R. Fukuda and H, Nakatsuji, J. Chem. Phys. 128, 094105 �2008�.
36 G. Mackinney and O. Temmer, J. Am. Chem. Soc. 70, 3586 �1948�.

37 K. Inuzuka, Bull. Chem. Soc. Jpn. 33, 678 �1960�.
38 A. F. Moskvin, O. P. Yablonskii, and L. F. Bondar, Theor. Exp. Chem. 2,

636 �1966�.
39 A. M. D. Lee, J. D. Coe, S. Ullrich, M.-L. Ho, S.-J. Lee, B.-M. Cheng,

M. Z. Zgierski, I-C. Chen, T. J. Martínez, and Albert Stolow, J. Phys.
Chem. A 111, 11948 �2007�.

40 S. Iwata and K. Morokuma, J. Am. Chem. Soc. 97, 966 �1975�; S. Ten-
no, F. Hirata, and S. Kato, J. Chem. Phys. 100, 7443 �1994�; H. C.
Georg, K. Coutinho, and S. Canuto, ibid. 123, 124307 �2005�; G. Bran-
cato, N. Rega, and V. Barone, ibid. 125, 164515 �2006�; S. A. do Monte,
T. Müller, M. Dallos, H. Lischka, M. Diedenhofen, and A. Klamt, Theor.
Chem. Acc. 111, 78 �2004�.

41 F. Aquilante, V. Barone, and B. O. Roos, J. Chem. Phys. 119, 12323
�2003�.

42 M. E. Martín, A. Muñoz Losa, and I. Fdez -Galván, and M. A. Aguilar,
J. Chem. Phys. 121, 3710 �2004�.

43 A. Muñoz Losa and I. Fdez Galván, M. A. Aguilar, and M. E. Martín, J.
Phys. Chem. B 111, 9864 �2007�.

44 K. Aidas, A. Møgelhøj, E. J. K. Nilsson, M. S. Johnson, K. V. Mikkelsen,
O. Christiansen, P. Söderhjelm, and J. Kongsted, J. Chem. Phys. 128,
194503 �2008�.

45 B. Saha, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 125, 014316
�2006�.

46 R. P. Johnson and M. W. Schmidt, J. Am. Chem. Soc. 103, 3244 �1981�.
47 S. W. Staley and T. D. Norden, J. Am. Chem. Soc. 106, 3699 �1984�.
48 R. Cammi, L. Frediani, B. Mennucci, J. Tomasi, K. Ruud, and K. V.

Mikkelsen, J. Chem. Phys. 117, 13 �2002�.
49 M. Merchán, R. González-Luque, and B. O. Roos, Theor. Chim. Acta 94,

143 �1996�.
50 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN, Revision

H.06, Gaussian Inc., Wallingford, CT, 2009.
51 R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 �2007�.
52 T. Nakajima and H. Nakatsuji, Chem. Phys. Lett. 280, 79 �1997�.
53 A. Dalgarno and A. L. Stewart, Proc. R. Soc. London, Ser. A 247, 245

�1958�; N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031
�1984�.

54 R. Cammi, L. Frediani, B. Mennucci, and K. Ruud, J. Chem. Phys. 119,
5818 �2003�.

55 H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, and H. Nakai, SAC-CI guide,
2005, PDF file is available at http://www.qcri.or.jp/sacci/.

56 R. Cammi and J. Tomasi, J. Chem. Phys. 100, 7495 �1994�.
57 K. Toyota, M. Ishida, M. Ehara, M. J. Frisch, and H. Nakatsuji, Chem.

Phys. Lett. 367, 730 �2003�.
58 R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A 103, 9100

�1999�.
59 T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 �1989�.
60 H. Nakatsuji, Chem. Phys. 75, 425 �1983�; H. Nakatsuji, J. Hasegawa,

and M. Hada, J. Chem. Phys. 104, 2321 �1996�.
61 E. Cancès and B. Mennucci, J. Math. Chem. 23, 309 �1998�; E. Cancès,

B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 �1997�; B. Men-
nucci, E. Cancès, and J. Tomasi, J. Phys. Chem. B 101, 10506 �1997�.

62 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision
A.02, Gaussian Inc., Wallingford, CT, 2009.

63 E. A. Cherniak and C. C. Costain, J. Chem. Phys. 45, 104 �1966�.
64 C. E. Blom, G. Grassi, and A. Bauder, J. Am. Chem. Soc. 106, 7427

�1984�.
65 J. M. Hollas, Spectrochim. Acta, Part A 19, 1425 �1963�.
66 M. Reguero, M. Olivucci, F. Bernardi, and M. A. Robb, J. Am. Chem.

Soc. 116, 2103 �1994�; W.-H. Fang, ibid. 121, 8376 �1999�; A. Muñoz
Losa, M. E. Martín, and I. Fdez. Galván, and M. A. Aguilar, Chem. Phys.
Lett. 443, 76 �2007�.

67 R. S. Becker, K. Inuzuka, and J. King, J. Chem. Phys. 52, 5164 �1970�.
68 A. D. Walsh, Trans. Faraday Soc. 41, 498 �1945�.
69 T. D. Norden, S. W. Staley, W. H. Taylor, and M. D. Harmony, J. Am.

Chem. Soc. 108, 7912 �1986�.
70 K. Sneskov, E. Matito, J. Kongsted, and O. Christiansen, J. Chem.

Theory Comput. 6, 839 �2010�.

024104-24 Cammi et al. J. Chem. Phys. 133, 024104 �2010�

Downloaded 13 Oct 2010 to 130.54.130.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevA.28.1217
http://dx.doi.org/10.1016/0301-0104(79)80153-6
http://dx.doi.org/10.1063/1.451241
http://dx.doi.org/10.1063/1.458814
http://dx.doi.org/10.1063/1.458815
http://dx.doi.org/10.1246/bcsj.78.1705
http://dx.doi.org/10.1016/0301-0104(81)85090-2
http://dx.doi.org/10.1021/cr9904009
http://dx.doi.org/10.1103/PhysRevA.36.2519
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.457710
http://dx.doi.org/10.1063/1.478026
http://dx.doi.org/10.1080/0026897031000109338
http://dx.doi.org/10.1016/S0301-0104(99)00004-X
http://dx.doi.org/10.1063/1.3245400
http://dx.doi.org/10.1016/0301-0104(91)80124-Z
http://dx.doi.org/10.1016/0301-0104(91)80125-2
http://dx.doi.org/10.1016/0166-1280(91)85186-B
http://dx.doi.org/10.1016/0166-1280(91)85186-B
http://dx.doi.org/10.1016/0166-1280(93)90070-R
http://dx.doi.org/10.1016/0166-1280(93)87091-Q
http://dx.doi.org/10.1016/j.jphotochem.2007.01.033
http://dx.doi.org/10.1063/1.465552
http://dx.doi.org/10.1063/1.466253
http://dx.doi.org/10.1063/1.1867373
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:1<297::AID-QUA30>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:1<297::AID-QUA30>3.0.CO;2-9
http://dx.doi.org/10.1063/1.2039077
http://dx.doi.org/10.1063/1.2183309
http://dx.doi.org/10.1080/00268970110117106
http://dx.doi.org/10.1063/1.476878
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1021/jp950607f
http://dx.doi.org/10.1002/qua.560560850
http://dx.doi.org/10.1021/jp011598f
http://dx.doi.org/10.1002/anie.200802019
http://dx.doi.org/10.1126/science.1411573
http://dx.doi.org/10.1021/ja00060a047
http://dx.doi.org/10.1016/S0009-2614(99)00735-6
http://dx.doi.org/10.1002/(SICI)1096-987X(199706)18:8<1061::AID-JCC10>3.0.CO;2-G
http://dx.doi.org/10.1063/1.1529680
http://dx.doi.org/10.1063/1.3314221
http://dx.doi.org/10.1063/1.2832867
http://dx.doi.org/10.1021/ja01191a013
http://dx.doi.org/10.1246/bcsj.33.678
http://dx.doi.org/10.1021/jp074622j
http://dx.doi.org/10.1021/jp074622j
http://dx.doi.org/10.1021/ja00838a002
http://dx.doi.org/10.1063/1.466888
http://dx.doi.org/10.1063/1.2033750
http://dx.doi.org/10.1063/1.2359723
http://dx.doi.org/10.1007/s00214-003-0530-7
http://dx.doi.org/10.1007/s00214-003-0530-7
http://dx.doi.org/10.1063/1.1625363
http://dx.doi.org/10.1063/1.1775182
http://dx.doi.org/10.1021/jp071993r
http://dx.doi.org/10.1021/jp071993r
http://dx.doi.org/10.1063/1.2918537
http://dx.doi.org/10.1063/1.2200344
http://dx.doi.org/10.1021/ja00402a002
http://dx.doi.org/10.1021/ja00324a065
http://dx.doi.org/10.1063/1.1480871
http://dx.doi.org/10.1007/s002140050169
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1016/S0009-2614(97)01097-X
http://dx.doi.org/10.1098/rspa.1958.0182
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1063/1.1603728
http://www.qcri.or.jp/sacci/
http://dx.doi.org/10.1063/1.466842
http://dx.doi.org/10.1016/S0009-2614(02)01629-9
http://dx.doi.org/10.1016/S0009-2614(02)01629-9
http://dx.doi.org/10.1021/jp991564w
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1016/0301-0104(83)85209-4
http://dx.doi.org/10.1063/1.470927
http://dx.doi.org/10.1023/A:1019133611148
http://dx.doi.org/10.1063/1.474659
http://dx.doi.org/10.1021/jp971959k
http://dx.doi.org/10.1063/1.1727291
http://dx.doi.org/10.1021/ja00336a022
http://dx.doi.org/10.1021/ja00084a056
http://dx.doi.org/10.1021/ja00084a056
http://dx.doi.org/10.1021/ja982334i
http://dx.doi.org/10.1016/j.cplett.2007.06.037
http://dx.doi.org/10.1016/j.cplett.2007.06.037
http://dx.doi.org/10.1063/1.1672755
http://dx.doi.org/10.1039/tf9454100498
http://dx.doi.org/10.1021/ja00285a005
http://dx.doi.org/10.1021/ja00285a005
http://dx.doi.org/10.1021/ct900641w
http://dx.doi.org/10.1021/ct900641w

