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1. INTRODUCTION

Hellmann-Feynman (H-F) theorem gives an intuitive expression
of the force based on an electrostatic interaction between the
electron density and nuclei.! This simplicity is very valuable in
studying complex chemical phenomena such as molecular geometry,
chemical reaction and molecular vibration.2 A past defect of this
approach was that the calculation of a wavefunction which satisfies
the H-F theorem was believed to be difficult.3

However, we recently found a promising method of calculating
a reliable H-F force.4~7 Here, we briefly review the method start-
ing from the underlying theorem and examine the accuracy of the
calculated H~F force. We then show some recent applications of the
method to geometry optimizations of the molecules in ground and
excited states and of the transition state of a chemical reaction.
It has also been applied to the analysis of chemical reaction
parths.8

Further, when we use the H-F theorem, an analytic expression
of the second derivative of energy becomes much simpler and more
9erspective than a straightforward second derivative of the energy.

9 We report calculations of force constants (both positive and
negative) by this method and explain the electronic origins of the
second derivatives.

2. THEOREM

A force acting on nucleus A, Fp is written as
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where the first term is the H-F force and the rest is an error term
which vanishes identically for a correct wavefunction. It is expres-
sed as a sum of the AO error A associated with each basis x,. (In
Eq. (1), Ry is a nuclear coordinate and x, the center of a basis

Xr-) It is shown that the AO error is expressed as

A =2 )} Cry (SCF requirement projected on |r'>) (2)
1

where cyi is a mixing coefficient of the basis X, in an orbital ¢4,
and r' is a derivative 3xy/dx, of the basis r = x,. Eq. (2) proves
the following theorem:

A sufficient condition for a general SCF wavefunction to satisfy
the Hellmann-Feynman theorem is that the basis set includes the
derivative r' for any basis r. The basis set {r, r', r", ...}
is such a basis. If the basis is recurrent in the sense r =
r(n), then the number of elements can be finite.

This theorem is valid for general SCF theories including closed-
shell Hartree-Fock, UHF, RHF for open-shell and excited states,
general MC-SCF, and some types of GVB theory. Note that if only

the force acting on a nucleus A, Fjp, is concerned, the derivative

r' may be added only to those bases whose centers are on the nucleus
A (see Eq. (1)).

3. A NEW FORCE METHOD

The above theorem gives a basis for a systematic method of im-
proving a wavefunction so that it satisfies the Hellmann-Feynman
theorem. As a first stage of such an approach, we have considered
an approximation in which only the first derivative AO's {r'} are
added to the "parent" AO's {r}. (The set {r, r'} is called a "fami-
1y".) Then, all of the A0 errors of the parent AO's vanish identi-
cally as Eq. (2) shows, but the AO errors of the added derivative
AO0's remain. However, if the parent basis set is already a good
basis, the mixing coefficient cy'{ of the added derivative AO's r'
should be small, so that from Eq. (2) the AO error of the added AO
r', Ayv, may be neglected. This approximation has been confirmed
to be very good: test calculations were performed for the closed-
shell Hartree-Fock method,4,6 open-shell RHF5 and UHF methods, and
MC-SCF method.? Further, it was also shown that other properties,
such as dipole moment, quadrupole moment, etc., are improved at the
same time.
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Table 1. AO error, Hellmann-Feynman force and energy gradient
of CO (a.u.).a,b

Force on Carbon Force on Oxygen
Parent Family Parent Family
[3s2p] [3s2p] [3s2p] [3s2p]
plus first plus first
derivatives derivatives
AO error
st 0.4943 0.0062 -0.7986 -0.0079
s2 -0.0932 0.0052 0.0167 0.0
s3 0.0012 0.0002 -0.0096 -0.0008
plo 0.3816 0.0117 -0.7835 -0.0248
p20 0.0023 0.0003 -0.0036 -0.0002
pim 0.2574 0.0104 -0.6379 -0.0102
p2m -0.0001 0.0002 -0.0005 -0.0014
Total error 1.3007 0.0446 -2.8553 -0.0565
H-F force -3.1998 -1.7094 4.7543 1.7213
Energy gradient -1.8990 -1.6648 1.8990 1.6648

4The CO length is 0.8636 & (experimental equilibrium length,
1.1283 X). The CO is on the ¢ axis in the direction from C to
0. The [3s2p] set is due to Dunning and Hay.?

bscr energy is -112.3278 a.u. for the parent set and -112.4480
a.u. for the family set.

4, APPLICATION OF THE NEW FORCE METHOD

Table 1 shows the AO error, H-F force, and energy gradient of CO
obtained from the parent and family sets of the [3s2p] set.10 By the
addition of the first derivative AO's, the error term decreases dram-
matically. With the family set, the H-F force agrees well with the
direct energy gradient, showing that the H-F theorem is essentially.
satisfied. The energy lowering due to an addition of the first deri-
vative AO0's (a kind of polarization function) is 0.1202 a.u.

Figure 1 shows plots of the transverse forces acting on the
proton of Hj0, calculated by several methods, against the HOH angle.
When we use the family set, the curves for the H-F force and the
energy gradient almost superpose each other; the H-F theorem is
satisfied over a wide range of valence angle. Further, by the addi-
tion of the first derivative AO's, the calculated equilibrium angle
changes from 112.50 to 107.0° and becomes closer to the experimental
value, 104,50,
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Fig. 1. Hellmann-Feynman force and energy gradient for the trans-
verse force acting on the proton of Hy0 vs the bond angle.
The basis sets are the parent and family sets of the
[3s2p/2s] set.10

Table 2 shows the bond lengths and force constants of several
diatomic molecules. When the family sets are used, the calculated
values are essentially the same independent of the forces used. In
further examination, the H-F force method tends to give a bond length
a bit longer (~0.01 &) than the energy gradient values. Comparing
the results of the parent and family sets, we see that the force
constants are improved considerably by the addition of the first
derivative AO's.

Table 3 shows the geometries of the ground state, triplet ex-
cited state, and ionized state of HNO determined by the present H-F
force method. We have used closed and open-shell RHF method. Since
the m>n* transition reduces the electron density from the w bonding
region of the N-O bond, the N-O length increases by this transition.
The same is true for the ionization from the m MO. Since both m>m*
transition and the ionization from m MO do not cause much change in
the electron density on the o plane, the changes in the N-H length
and the HNO angle are relatively small.
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Table 3.

Geometries of the ground state, triplet excited

state, and ionized state of HNO determined by

the Hellmann-Feynman force.®

State R(N-0) R(N-H) HNO
R A deg

Ground Force-optimized 1.193 1.029 108.8
Exptl. 1.212 1.063 108.6

3(n+n*) Excited Force-optimized 1.538 1.015 101.5
2(n>») Ionized Force-optimized 1.297 1.011 110.9

4The family set of the 4-31G set is used.

5. ANALYTIC SECOND DERIVATIVE OF POTENTIAL ENERGY

When the Hellmann-Feymnan theorem is satisfied for the first
derivative of energy, the analytic expression of the second deriva-
tive becomes much simpler than the straightforward second derivative
of the energy. Further, the intuitive physical meaning of the H-F
force is extended to the second derivative. Though these merits
have been noted by several authors,d it was difficult to realize
them, except for some simple systems, because of a lack of a practi-
cal method to calculate a wavefunction which satisfies the H-F
theorem. However, the present approach has removed this obstacle.

A straightforward second derivative of the Hartree-Fock energy
gives an expression

2 32H 9P 9H 32V
o E _ 2 P rs rs rs nuc
BXABYB s rs BXAaYB r,8 aYB BXA BXAaYB
a2s aD__ 3S
z D rs _ 2 rs rs
rs 98X, oY Y oX
r,s A"B r,s B A (3)
1 [ 5 |
+5 ) P_P (rt,lsu)]
rstu rs tu BXABYB .
2 aPrs K 1|
—— P = (rt| su)]
rstu aYB tu LQXA

where Hyg, Syg, and P,.o are the core-Hamiltonian matrix overlap
matrix, and bond order density matrix, respectively and
occ
D = €.c_.C .
rs g irisi
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with e; the orbital energy. (rt||su) is an appropriate sum of the
Coulomb and exchange repulsion integrals!! and Voue 1s the nuclear
repulsion energy. On the other hand, when the H-F theorem is satis-—
fied for. the first derivative, only the parts of the first three
terms of Eq. (3) remain. Most of the complex terms drop out, and
we obtain 5

BZE 9 Vnuc 2 | x I
= P <r ) s>
9% 0 OX o N
X, X, YB s Spp Za YA 0
XA 9s 4)
+ ZSPr Z, (<3—Y-,——|s>+<r| 'aY >)
A A
rs XA,
+ Z 3?;— ZA <r|r3ls)
r,s A
where
2 2,,5 , 4 .
i} (rA 3xA)/rA +-§w6(A) XA = YA
8 (A . (5)
aYA 3
Ta
3xAYA/rA XA*YA

Thus equation is much simpler to calculate than Eq. (3) and, further-
more, a simple physical meaning is associated with each term as
follows. The first two terms of Eq. (4) show a change in the H-F
force when only nucleus A is moved while the electron density sur-
rounding it remains unaltered. They consist of an electric field
gradient at nucleus A and a contribution from the density at the
nucleus (Fermi term). The third term includes the derivative of
the basis AO's and represents the H-F force on A due to the dis-
placed AO's of atom B with keeping the AO coefficients unaltered.
Then, the sum of the first three terms shows a net effect when the
nucleus and the AO's associated with it are moved s1mu1taneous1y
without changing their AO coefficients (complete follow1ng ). The
last term represents the effect of reorganization of the electron
density matrix due to the nuclear motion, 3Prg/d3Yg. It arises from
the two sources since it is given by a sum of the two terms

aPrs ) oic . e (1
BYB i risj ij
»d (6)

OoCC unocc

N U AR S

i a

.C + ¢c C .
rl1 sa ra Sl)
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where S(]) is a derivative of the overlap <¢1|¢i> and u§1) is a
m1x1ng coeff1c1ent between occupied and unoccupied MO's. The first
term is the renormalization term which arises in order to keep the
total wavefunction normalized during the vibration and the second
term represents the relaxation of molecular charge distribution
during the vibration through a mixing between occupied and unoccupied
orbitals.

The role of the reorganization term during a nuclear rearrange-
ment process is generally very important. The renormalization term
usually gives a positive contribution to the force constant and is
one of the important origins of the electron-cloud incomplete fol-
lowing, which is a density origin of a stable geometry.2 On the
other hand, the relaxation term usually gives a negative contribu-
tion to the force constant and works to lower the barrier. It is
a origin of the electron-cloud preceding, which is a density origin
of many nuclear rearrangement processes.Z2 The role of the relaxatiOn
term during the course of a chemical reaction is of special interest.

6. CALCULATION OF THE SECOND DERIVATIVES OF STABLE MOLECULE AND
TRANSITION STATE

The preceding formula for the second derivatives has been ap-
plied to the studies of the force constants of several di- and poly-
atomic molecules.’»8 Here, we show the results for CO and CH3 as
prototypes of stable molecules and transition states. The later is
the transition state of the reaction, CH4, + H~ -+ H™ + CH4, which is
a model of SN2 reaction. We have used the family set of the 4-31G
set, so that the H-F theorem is essentially satisfied for the first
derivatives as shown in the previous section.

Table 4 shows the analysis of the second derivatives. The
force constant of CO was expressed in two different ways,-aFC/BXC
and 3Fp/3Xp. It is a sum of large cancelling contributions. The
nuclear term is positive. The Fermi term and the displaced A0 term
are very large because of the large inner-shell contribution, but
they are cancelling. The sum of the second to fourth terms repre-
sents the effect of the AO density completely following the nuclear
motion. The sum of the nuclear and completely following terms is
negative for CO. In the next three rows the reorganization terms
are given. In Figure 2, we have given the contour map of the den-
sity differential

ris aPrs/aRAB XrQE)Xs(E)

’

It shows the change in density when the bond distance is shortened.
For stretching mode the renormalization term seems always to be
positive (Table 4). When two atoms A and B come closer, the over-
laps between the AO's become larger. Therefore, in order to keep
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Figure 2.

. N 3,.¢/

RELAXATION TERM

Contour map of the density differential 2 9P, ¢/9Q %
Xr(r)xg(r) for CO and for the normal mode Qp(AY) of

CHg. From the top to the bottom, a sketch of the normal
mode, the renormalization term, the relaxation term, and
the sum of them are shown. The real lines correspond to
an increase in density, and the broken lines correspond
to a decrease, with the contour values of 0, *1, 2, +3,
+4, *5, and %6 corresponding to 0.0, 0.001, #0.003,
+0.01, #0.03 0.1, and #0.3 a.u., respectively.
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Table 4. Force constants of CO and CHF and their analyses

(a.u.)
a -b
co cH;
_ % PO 3F 40y B (4
X, %, Q1) 3q, 12
Nuclear term 9.906 9.906 0.440 0.142
3x2-r2
z, P <r|—2As> -16.522  -14.454 -0.412 -0.089
A rs rs | . . . .
A

4 <
Z, | P g <r|- 3ms(A)|s> 3032.572 9899.184 1.371 79.873

ZA Z Prs <r' —% s> -3027.701 -9897.233 -1.337 -79.888
r
A
Total -1.744 -2.596 0.062 0.038
Renormalization term 4.061 5.697 0.036 0.181
Relaxation term -1.002 -1.785 -0.043 =-0.329
Total 3.059 3.911 =-0.007 -0.148
Grand total 1.315 1.315 0.055 -0.110
Experimental value 1.222 1.222

8Calculated for CO at the experimental geometry (Rgo=1.1283 R)
and for CHg at the transition state geometry determined by the
present method (see text).

bThe normal mode Qq is the totally symmetric C-Hy stretching
mode and Qp is the so-called reaction coordinate. See figures
in the text.

the total density normalized, the electron density should flow out of
the A-B region as shown at the upper map of Figure 2. When two atoms
A and B go apart, the reverse flow of electron density should occur.
Thus, the density reorganization due to the renormalization term cor-
responds to the electron-cloud incomplete following? and gives a po-
sitive contribution to the force constant. On the other hand, in the
relaxation term, the density increases in the bond region as the two
atoms come closer. This behavior is the electron-cloud preceding?
and works to stabilize the system. Then, the relaxation term gives
negative contribution to the force constant as seen in Table 4. At
the bottom of Figure 2, the total reorganization density is shown.

It reflects mainly the renormalization term and then the net effect
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of reorganization term gives positive contribution to the force con-
stant.

The calculated force constant of CO is 1.315 a.u. It is 7.6%
larger than the experimental value. This is a trend of the Hartree-
Fock results and an inclusion of electron correlation will reduce
the difference. Though different analyses were obtained from
- 3F¢/dXc and 3Fp/dXgy, the final results are the same because the
H-F theorem is essentially satisfied for the first derivative.

We next show the results for the transition state CHj of the
reaction,

CH, + H ~» H +CH,.
In the first stage, the geometry of the transition state was deter-
mined by the present force method. It was calculated to belong to
the D3y symmetry with C-Hy = 1.700 & and C-He = 1.063 & where Hy
and H, denote axial and equatorial hydrogens, respectivelz; This
may be compared with the results of Dedieu and Veillard, ! C-H, =

1.737 & and C-Hg = 1.062 &, and of Leforestier,!3, C-H, = 1.70 &
and C-H, = 1.07 A.

The normal modes of the transition state CHgj are determined by
diagonalizing the Hessian matrix. They consist of the twelve modes;
the two A}, two Ay, three E', and one E" symmetry modes. Among
these, one normal mode has negative force constant and all others
have positive ones. In Table 4, we have shown only the two normal
modes of the A] and A} symmetries, which may be illustrated as

Q1(A1) is the totally symmetric vibration of the axial C-Hp bonds.
Qy (AY) is the so-called reaction coordinate involving Walden inver-
sion and has negative force constant near the transition state.

In Table 4, we gave the second derivatives and their analyses.
In comparison with CO, the Fermi and displaced AO terms are small
because of a large contribution of the coordinates of hydrogens in
the normal mode. This is especially so for the Qq mode in which
carbon does not move during the mode. For CHg, the sum of the
nuclear term and the completely following term is positive in con-
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trast to CO. From our experience, this seems to be common to the
hydride molecules. A remarkable feature of the reaction coordinate
Q2 is that it has a large negative relaxation term. Because of this
contribution, the force constant of the Q) mode is negative. At this
geometry (transition state) the potential surface of CHj is maximum
along the Q2 coordinate and minimum for all others. For the coor-
dinate Qq, the force constant is positive, though the reorganization
term gives a small negative contribution.

An interesting behavior of electron density along the reaction
coordinate is seen from the density differential map shown in the
right-hand side of Figure 2. Referring to the relaxation term, we
see a typical pattern of the electron-cloud preceding: the density
reorganizes itself so as to precede the nuclear motion along the Qp
coordinate. It occours in all the regions near the moving nuclei,
C, Hy, and Hy. In the renormalization term, however, the density
near the C and H, shows a pattern of the electron-cloud imcomplete
following. Near the H,, the renormalization term also exhibits the
electron-cloud preceding. In the total sum, the relaxation term
surpasses the renormalization term and a beautiful pattern of the
electron-cloud preceding is seen. As shown in Table 4, this is an
origin of the negative force constant of the reaction coordinate Q.

7. CONCLUSION

Here, we have viewed a possibility of an accurate Hellmann-Feyn-
man force approach for the studies of the first and second deriva-
tives of a potential energy hypersurface. Theoretical and physical
simplicity of the underlying concept and the reliability of the cal-
culated results would help us to further understand chemical pheno-
mena and to construct a predictive model with a quantum-chemical
intuition.

Now that the first obstacle along this approach has been re-
moved, the next step would be (1) to develop a method which fully
utilizes the structures of the theory for rapid computations of the
desired wavefunction and (2) to apply the present approach to a
wider field of chemistry to get a deeper understanding of the phe-
nomena with intuitive concept and quantitative accuracy.
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