Supporting Information

Conformational dependence of the circular dichroism spectrum of α -hydroxyphenylacetic acid: A ChiraSac study

Tomoo Miyahara^{a,*} and Hiroshi Nakatsuji^{a,*}

^a Quantum Chemistry Research Institute, JST, CREST, Kyodai Katsura Venture Plaza, North building 107, 1-36 Goryo-Oohara, Nishikyo-ku, Kyoto, 615-8245, Japan

().			
Atom	Х	Y	Z
(See Figure 2)			
C_1^*	-1.08975	-0.27733	0.776661
H_2	-1.24894	0.253274	1.72652
C_3	0.380655	-0.13758	0.377177
C_4	1.087667	1.034777	0.667064
C_5	2.422126	1.165433	0.283581
C_6	3.062548	0.123401	-0.39081
C_7	2.361596	-1.04929	-0.67585
C_8	1.025424	-1.17996	-0.29398
H ₉	0.592993	1.848148	1.192163
H_{10}	2.96353	2.07825	0.517633
H_{11}	4.103847	0.223094	-0.68558
H_{12}	2.855775	-1.8675	-1.19322
H_{13}	0.480345	-2.09703	-0.4906
O_{14}	-1.49204	-1.619	0.916038
H_{15}	-2.13064	-1.78445	0.196472
C ₁₆	-1.98767	0.387781	-0.27021
O ₁₇	-2.74062	-0.24208	-0.98496
O_{18}	-1.86034	1.723854	-0.31579
H_{19}	-2.44853	2.040688	-1.02756

Table S1. Coordinates (in Å) of the most stable conformation, $\Delta=0^{\circ} (\Delta 1=0^{\circ}, \Delta 2=0^{\circ} \text{ or } \Delta 3=0^{\circ})$ of α -hydroxyphenylacetic acid (HPAA).

A 1 ^a	EE p	$\frac{1}{0 \text{ so}^{c}}$	A Rot ^d	A e		EE p	$\frac{2}{0 \text{ sc}^{c}}$	$\frac{A}{Pot^{d}}$	О ^е			
	<u> </u>		_0.25	102.3		5.45	0.027	55 70	19.9			
30	4.00 4.61	0.0007	0.43	79.5		5. 1 5 5.36	0.027	28 72	34.8			
50 60	4.60	0.0002	-0.91	112.9		5.03	0.004	-16 32	123.5			
90	4 60	0.0001	-0.98	153.8		4 88	0.002	-26.08	120.0 168.3			
120	4 65	0.0002	-0.40	130.8		5.04	0.003	-31 56	128.8			
150	4.63	0.0001	-0.35	125.8		5.13	0.023	-16.12	100.5			
180	4.62	0.0006	-0.04	93.9		5.24	0.013	10.04	80.6			
210	4.57	0.0004	-0.09	97.4		5.19	0.002	0.65	88.0			
240	4.61	0.0000	0.05	13.8		5.06	0.001	-10.14	138.9			
270	4.60	0.0001	-0.10	159.0		4.89	0.002	-13.37	143.7			
300	4.59	0.0004	-0.10	100.7		5.04	0.011	-10.34	101.2			
330	4.64	0.0001	-0.45	155.6		5.21	0.030	18.02	78.7			
				OH rota	tion							
		1^{1}	A		_	$2^{1}A$						
$\Delta 2^{a}$	EE ^b	Osc ^c	Rot ^d	θ^{e}		EE ^b	Osc ^c	Rot ^d	θ^{e}			
0	4.66	0.0007	-0.25	102.3		5.45	0.027	55.70	49.9			
30	4.66	0.0001	-0.23	115.6		5.50	0.023	59.05	47.0			
60	4.64	0.0000	-0.38	112.2		5.37	0.020	64.20	44.3			
90	4.62	0.0001	-0.39	106.4		5.30	0.016	49.91	44.0			
120	4.67	0.0000	-0.38	139.2		5.28	0.015	39.21	48.4			
150	4.67	0.0002	-0.11	97.6		5.28	0.015	38.89	50.3			
180	4.65	0.0004	-0.10	93.7		5.29	0.016	48.49	48.5			
210	4.64	0.0006	-0.18	96.9		5.31	0.016	48.29	48.6			
240	4.64	0.0006	-0.29	106.7		5.26	0.015	44.79	53.5			
270	4.61	0.0004	-0.06	93.8		5.19	0.015	41.65	51.3			
300	4.63	0.0007	-0.05	92.5		5.23	0.017	38.71	52.7			
330	4.63	0.0007	0.11	85.7		5.34	0.024	55.77	49.8			
			•	Phenyl rot	tatior	1		1.				
	EE b		$\frac{\mathbf{A}}{\mathbf{D} + \mathbf{d}}$	0 e		rr b		$\frac{A}{D + d}$	o e			
Δ3 "	EE °		Rot	θ -				Rot a	θ.			
0	4.66	0.0007	-0.25	102.3		5.45	0.027	55.70	49.9			
<i>5</i> 0	4.63	0.0002	-0.12	96.0		5.53 5.55	0.020	52.52 28.72	46.3			
6U 00	4.05	0.0001	0.36	61.1		5.55 5.57	0.007	28.72	50.6 50.4			
90 120	4.68	0.0001	0.07	82.8		5.57 5.40	0.002	14.70	52.4			
120	4.01	0.0000	-0.21	118.9		5.49 5.50	0.002	12.29	47.9			
150	4.08	0.0003	0.25	75.3		5.50	0.014	30.12	48.8			

Table S2. 1 and 2^{1} A excited states for COOH, OH and phenyl rotations.

^a $\Delta 1$, $\Delta 2$ and $\Delta 3$ are dihedral angle change for COOH, OH and phenyl rotations, respectively. ^b Excitation energy (in eV). ^c Oscillator strength. ^d Rotatory strength (10 cgs). ^d Angle in Eq.(3).

Dihedi	al angle chang	e (°) ^a	Existence	e ratio (%)	Relative energy (kcal/mol)
phenyl ($\Delta 3$)	$COOH(\Delta 1)$	OH (Δ2)	27°C	527°C	
0	0	0	23.9	2.8	0.00
30	0	0	8.2	1.9	0.64
150	0	0	7.9	1.8	0.67
150	0	30	5.9	1.7	0.83
0	30	330	5.6	1.6	0.87
0	0	330	5.3	1.6	0.90
150	330	30	4.7	1.5	0.98
0	0	30	4.0	1.4	1.07
30	0	330	3.0	1.3	1.24
0	330	30	2.2	1.1	1.41
30	30	330	2.0	1.1	1.47
30	0	30	1.9	1.1	1.52
60	0	0	1.4	1.0	1.71
30	330	30	1.4	1.0	1.71
120	0	30	1.3	0.9	1.72
60	0	30	1.1	0.9	1.83
Othe	er 848 conform	ers	20.3	77.4	

Table S3. Top 14 highest existence ratios among the 864 conformers of α -hydroxyphenylacetic acid from the Boltzmann distributions using the single point CCSD/6-31G(d) energies at the B3LYP/6-31G(d) geometries at 27°C and 527°C.

 ${}^{a}\Delta = 0^{\circ}$ at the most stable conformation.

Figure S1. SAC-CI UV spectrum of α -hydroxyphenylacetic acid at the most stable conformation, $\Delta = 0^{\circ} (\Delta 1 = 0^{\circ}, \Delta 2 = 0^{\circ} \text{ or } \Delta 3 = 0^{\circ})$, compared with the experimental UV spectrum (black line) [47].

Conformat	LUMO+2	
Δ1=0°		
Δ1=90°	• • • • • • • • • • • • • • • • • • •	ૢૢૢૢૢ ૺૼૢૺૼૢૻ
Δ1=180°		
Δ1=270°		۽ ڇ و

Figure S2. Molecular orbital pictures of the π^* orbital of the COOH group at at $\Delta 1=0$, 90, 180 and 270° in the COOH rotation. The aqua blue circles represent the OH group. The contour value of the isosurfaces is 0.05.

	Δ1=0°	Δ1=30°	Δ1=60°	Δ1=90°	Δ1=120°	Δ1=150°	Δ1=180°	Δ1=210°	Δ1=240°	Δ1=270°	Δ1=300°	Δ1=330°
LUMO+2 (π*, COOH)		میں کی جو میں کی جو رقب ہو		میں دوجہ در رف درجہ در		**************************************		19-0-9-1 19-0-9-1 19-0-9-1	پ نېر و. مېرور	, **		
LUMO+1 (π*, Phenyl)	*?** **** ***				100 100 100 100 100 100	نهي. حوي هر	**** •**		, , , , , , , , , , , , , , ,	نه و ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	*** * ● ● •	™g.¢ •●*●* •● ₂ ●.
LUMO (π*, Phenyl)												
HOMO (π, Phenyl)									, , ,			
HOMO-1 (π, Phenyl)												
HOMO-2 (non-bonding) (OH(+COOH))		S	 5,3						م می موجعی به رومی	می نومی رفوعی		<u>ě</u>
HOMO-3 (non-bonding) (COOH(+OH))				ş.								

Figure S3. Molecular orbital pictures from HOMO-3 to LUMO+2 at several conformational angles of the carboxyl (COOH) rotation. The contour value of the isosurfaces is 0.05.

	Δ2=0°	Δ2=30°	Δ2=60°	Δ2=90°	Δ2=120°	Δ2=150°	Δ2=180°	Δ2=210°	Δ2=240°	Δ2=270°	Δ2=300°	Δ2=330°
LUMO+2 (π*, COOH)							میں موجعی ا		 			
LUMO+1 (π*, Phenyl)	**3** **** ***	-494 @@- .4_90	,**** •*** •*	,≮≱• ⊕* ● • , ▲ ,●,	,fg., () () () () ()	590 ••• ••	≪9-4 • • • • •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		294 9 9 9 9 9 9 9 9 9 9 9		***** •*** •**
LUMO (π*, Phenyl)												
HOMO (π, Phenyl)	*** \$						*** • •					
HOMO-1 (π, Phenyl)		-494 JU2D	series Total	,434 TJ	, era Tj	for T	***)0,0)			**** () () () () ()		
HOMO-2 (non-bonding) (OH(+COOH))									8 13 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	*** ,*****		
HOMO-3 (non-bonding) (COOH(+OH))						بېر					×.	

Figure S4. Molecular orbital pictures from HOMO-3 to LUMO+2 at several conformational angles of the hydroxyl (OH) rotation. The contour value of the isosurfaces is 0.05.

	Δ 3=0°	Δ 3=30°	Δ 3=60°	Δ 3=90°	Δ3=120°	Δ3=150°
LUMO+2 (π*, COOH)				22 20 ² 02 20 ² 02	***	
LUMO+1 (π*, Phenyl)	10 10 10 10 10 10 10 10 10 10 10 10 10 1		•***** •***** •*****	**** **** ***	****** @@. .~``@.	***** ***** ****
LUMO (π*, Phenyl)					****** ** ® @ ®@**	
HOMO (π, Phenyl)					***** *****	
HOMO-1 (π, Phenyl)				** •	•••,• •••	•••)0,0
HOMO-2 (non-bonding) (OH)			٢	٩		** ***
HOMO-3 (non-bonding) (COOH)						

Figure S5. Molecular orbital pictures from HOMO-3 to LUMO+2 at several conformational angles of the phenyl rotation. The contour value of the isosurfaces is 0.05.

Figure S6. Boltzmann averaged SAC-CI CD spectra using the single point CCSD/6-31G(d) energies at the B3LYP/6-31G(d) geometries of α -hydroxyphenylacetic acid at 27 (purple line), 127 (blue line), 227 (green line) , 327 (yellow line), 427 (orange line) and 527 (red line)^oC, compared with the experimental CD spectrum (27^oC, black line) [47]. Arrows indicates the changes in raising the temperature