Supporting Information

Photoelectron Spectrum of NO$_2^-$: SAC-CI Gradient Study of Vibrational-Rotational Structures

Tomoo Miyahara$^{[a]}$ and Hiroshi Nakatsuji*

$^{[a]}$ Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan

*E-mail: h.nakatsuji@qcri.or.jp.
Basis set dependence for the photoelectron spectra of NO$_2^-$

We showed the photoelectron spectra of NO$_2^-$ using the cc-pVTZ(-f) basis sets in Figures S1 to S4. The photoelectron spectra with the cc-pVTZ(-f) basis set are almost the same as those with the aug-cc-pVTZ basis set. Thus, the basis set dependence is small for the photoelectron spectra of NO$_2^-$.
Figure S1. Experimental and SAC-CI photoelectron spectra of NO$_2^-$ at 350K. The SAC-CI theoretical spectrum (Total) with the cc-pVTZ(-f) basis set is the sum of the contributions from the vibrational ground state (1$_0^2S^+_0$ (a)) and from the vibrational excited states (1$_0^2S^+_1$ (b), 1$_0^2S^+_1$ (c) and 1$_2^2S^+_0$ (d)). The inset of the experimental spectrum shows the enlarged view of the range 1.2-1.5 eV in the electron kinetic energy. The inset of the SAC-CI spectrum (Total) shows the schematic diagram of the vibrational excitations accompanying to the ionization from NO$_2^-$ to NO$_2$. Horizontal axis represents the vibrational coordinate.
Figure S2. Experimental and SAC-CI photoelectron spectra of NO$_2^-$ at 700K. The SAC-CI theoretical spectrum (Total) with the cc-pVTZ(-f) basis set is the sum of the contributions from the vibrational ground state (1_a^2) and from the vibrational excited states (1_b^2, 1_c^2, 1_d^2, 1_e^2, 1_f^2, 1_g^2). The inset of the SAC-CI spectrum (Total) shows the schematic diagram of the vibrational excitations accompanying to the ionization from NO$_2^-$ to NO$_2$. Horizontal axis represents the vibrational coordinate.
Figure S3. Experimental and SAC-CI photoelectron spectra at 350K including rotational effects of NO$_2$−. The SAC-CI theoretical spectrum (Total) with the cc-pVTZ(−f) basis set is the sum of the contributions from the vibrational ground state ($1^0_0^0 2^0_0 3^0_0$ (a)) and from the vibrational excited states ($1^0_0^0 2^0_0 3^0_1$ (b), $1^0_0^0 2^0_0 3^1_0$ (c) and $1^0_0^0 2^0_0 3^1_1$ (d)). The inset of the experimental spectrum shows the enlarged view of the range 1.2-1.5 eV in the electron kinetic energy. The inset of the SAC-CI spectrum (Total) shows the schematic diagram of the vibrational excitations accompanying to the ionization from NO$_2$− to NO$_2$. Horizontal axis represents the vibrational coordinate.
Figure S4. Experimental and SAC-CI photoelectron spectra at 700K including rotational effects of NO$_2^-$. The SAC-CI theoretical spectrum (Total) with the cc-pVTZ-(f) basis set is the sum of the contributions from the vibrational ground state (10_02$^-_0$3$^-_0$(a)) and from the vibrational excited states (10_02$^-_0$3$^-_1$(b), 10_02$^-_0$3$^-_1$(c), 10_02$^-_0$3$^-_0$(d), 10_02$^-_2$3$^-_0$(e), 10_02$^-_2$3$^-_1$(f) and 10_02$^-_3$3$^-_0$(g)). The inset of the SAC-CI spectrum (Total) shows the schematic diagram of the vibrational excitations accompanying to the ionization from NO$_2^-$ to NO$_2$. Horizontal axis represents the vibrational coordinate.