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ABSTRACT
The chemical formula theory (CFT) proposed in Paper I of this series [H. Nakatsuji et al., J. Chem. Phys. 149, 114105 (2018)] is a simple
variational electronic structure theory for atoms and molecules. The CFT constructs simple, conceptually useful wave functions
for the ground and excited states, simultaneously, from the ground and excited states of the constituent atoms, reflecting the
spirits of the chemical formulas. The CFT wave functions are also designed to be used as the initial wave functions of the free
complement (FC) theory, that is, the exact theory producing the exact wave functions of the Schrödinger accuracy. This combined
theory is referred to as the FC-CFT. We aim to construct an exact wave function theory that is useful not only quantitatively but
also conceptually. This paper shows the atomic applications of the CFT and the FC-CFT. For simplicity, we choose the small
atoms, Be and Li, and perform variational calculations to essentially exact levels. For these elements, a simple Hylleraas CI type
formulation is known to be potentially highly accurate: we realize it with the CFT and the FC-CFT. Even from the CFT levels, the
excitation energies to the Rydberg excited states were calculated satisfactorily. Then, with increasing the order of the FC theory
in the FC-CFT, all the absolute energies and the excitation energies of the Be and Li atoms were improved uniformly and reached
rapidly to the essentially exact levels in order 3 or 4 with moderately small calculational labors.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5065565

I. INTRODUCTION

Chemical formulas that represent molecular structural
formulas and chemical reaction formulas as illustrated in Fig. 1
of Ref. 1 are used in chemistry like a language of the chemists
for describing their chemistry: this is seen in any textbook of
chemistry and chemical biology. What are central to chem-
ical formulas are the local atomic concept, from-atoms-to-
molecule concept, three-dimensional atomic arrangements,
and the transferability of these basic concepts. Among them,
what is most important is the atomic concept that has long
history from Dalton. In the chemical formulas, atoms are
shown by dots and chemical formulas are essentially the

assembly of the dots representing the constituent atoms. They
are connected by lines that indicate chemical bonds, but their
meanings are vague. This situation is clear considering the
history: only quantum mechanics can describe the nature of
these lines, but its birth was much later than that of the chem-
ical formulas. Furthermore, quantum mechanics has clarified
that these dots in chemical formulas are not simply the dots,
but they represent the many atomic electronic states asso-
ciated with these dots that characterize the nature of the
atoms.

Although the chemical formulas provide useful concep-
tual basis and tools for chemists, the basic principles of chem-
istry are provided by the principles of quantum mechanics
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like the Schrödinger equation and the Dirac equation. These
equations describe the governing principles of chemistry. Our
laboratory has already a history of the research aiming to
solve these basic equations of chemistry. One of the authors
initiated the studies on the structure of the exact wave func-
tion and proposed a general method of constructing the wave
functions that have the exact structure from some approxi-
mate wave functions.2,3 When we apply the variational prin-
ciple to the wave functions having the exact structure, it is
guaranteed that we get the exact solutions of the Schrödinger
equation as their solutions. However, for atoms and molecules
whose Hamiltonians include the Coulombic potentials that
diverge at the position of the charged particles, we encoun-
tered the divergence difficulty, but this was resolved by intro-
ducing the scaled Schrödinger equation4

g(H − E)ψ = 0 (1)

that is free from the diverging difficulty originating from the
existence of the Coulombic potentials, where g is the scaling
operator defined by

g =
∑
i,A

riA +
∑
i>j

rij. (2)

Since g is always positive, the Schrödinger equation and the
scaled Schrödinger equation have the same set of solutions of
the wave functions and the energies. This research became
a basis for us to formulate a general theory of solving the
Schrödinger and Dirac equations in the way that is useful for
chemists both quantitatively and conceptually.1–14 It was easy
to show that the following recursion formulas4

ψn+1 = [1 + Cng(H − En)]ψn,

ψexact =
∏
n

[1 + Cng(H − En)] · ψ0, (3)

which were referred to as the simplest iterative complement
(or configuration) interaction (ICI) formulas, give the exact
wave function starting from some approximate initial wave
function ψ0 without meeting the divergence difficulty. The
second equation of Eq. (3) can be rewritten in the form

ψexact =
∑
I

cIφI, (4)

with the use of the independent analytical functions {φi} that
consist of the right-hand side of Eq. (3) attached with the indi-
vidual coefficients {ci}. We refer to the functions {φi} as the
complement functions (cf’s) since they are the element of the
complete set of the functions that describes the exact wave
function as given by Eq. (4). Since these complement functions
are dealt freely in Eq. (4), we call this theory free-complement
(FC) theory. Thus, the FC theory is the theory that gives the
exact wave function from any approximate wave function ψ0
of the system, which may be expressed as

ψexact = FC(ψ0). (5)

The formation of the cf’s of Eq. (4) is a very rapid step, and
this wave function ψexact has an exact structure. Namely, it
is guaranteed that the exact wave function is included in

Eq. (5) to the accuracy of the order n. Therefore, when we opti-
mize the set of the coefficients {ci} by the variational method
or the sampling type method like the local Schrödinger
equation (LSE) method,8 we are guaranteed to obtain the
exact wave functions of the system to the accuracy of the
order n.

After this theoretical breakthrough reported in 2004,4 we
have already published many examples obtained by the varia-
tional method6,7,9,11 and the LSE method.8,10–13 As expected
from Eq. (5), the choice of ψ0 is very important since the
exact wave function has the mathematical structure charac-
teristic to ψ0 and the convergence speed and the calculational
labors are dependent on the choice of ψ0. Furthermore, if ψ0
has the structure that is easily understandable, then we may
be able to understand conceptually the chemical implication
from the exact wave function ψexact. We think this feature to
be important.

In Ref. 1, we have proposed to take the chemical formu-
las widely used in chemical studies as the conceptual basis
of our FC theory and proposed the chemical formula theory
(CFT or ChFT) of atomic and molecular electronic structures.
The CFT is an approximate general variational theory that
describes the electronic structures of atoms and molecules
based on the concepts of the chemical formulas. The central
concept of the CFT is the from-atomic-states-to-molecular-
states (FASTMS) concept that is based on the from-atoms-
to-molecules (FATM) concept of the chemical formulas. This
concept means that from all the atomic electronic states of
the constituent atoms, the ground and excited states of the
molecule under consideration are formed. This implies that
we may use all the atomic states of the constituent atoms
as if they are the elements of the basis set to form, through
their interactions governed by the variational principle, the
ground and excited states of the molecule under consider-
ation. Therefore, the CFT deals with the ground and excited
states at the same time from the beginning.

Referring to the Moore’s books of atomic energy levels
and more advanced versions published by NIST,15 we can get
the detailed information on the energy levels of the atomic
electronic states associated with each atom. For example, our
most familiar atom, carbon has the atomic states, the 3P(0),
1D(10 193), and 1S(21 648) states arising from the 2s22p2 con-
figuration, the 5S(33 735), 3D(64 090), and 3P(75 256) states
arising from the 2s2p3 configuration, where the energies from
the 3P ground state are shown in the parentheses in cm−1, and
then the 3s, 3p Rydberg states from 60 333 to 73 976 cm−1. On
the other hand, the hydrogen atom has a very discrete elec-
tronic structure: the ground state is the valence 1s state and
the degenerate 2s and 2p states are very high (82 259 cm−1)
and diffuse to form chemical bonds with other atoms.

When we use the variational principle in the course of
the formation of the atomic and molecular electronic states
from the elemental atomic electronic states, the resultant
ground and excited electronic states {ψI} of the system under
consideration satisfy the very important relations

〈ψI |ψJ〉 = δIJ,

〈ψI | H |ψJ〉 = EIδIJ
(6)
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between different electronic states. This is the fundamen-
tal relation that characterizes the excited states among
themselves and against the ground state. For example, the
excited states calculated by the SAC-CI (symmetry-adapted-
cluster configuration-interaction) theory16,17 satisfy this rela-
tion among themselves and against the ground state calcu-
lated by the SAC theory.

In this paper, we apply CFT and FC-CFT to efficiently cal-
culate the ground and excited states of small atoms, three
and four electron lithium and beryllium atoms. Sims and
Hagstrom18 performed the Hylleraas CI calculations for the
ground state of the Be atom and showed that the Hylleraas CI
could give the energy correct to the chemical accuracy. Based
on this fact, we assumed that highly accurate results would
be obtained for both of the ground and excited states of the
Be and Li atoms within the Hylleraas CI type approach that
does not include the functions of the type rijrkl and higher
difficult correlation-type functions within the wave functions.
This assumption will turn out to be correct as will be seen in
this paper. We must note however that this assumption does
not hold for the heavier elements. For example, for the boron
atom, Ruiz19 could not get the chemical accuracy within the
Hylleraas CI type approach. Similar results were also published
by Clary and Handy many years ago for the ground state of
the neon atom.20 We note that at the CFT level of the study,
we do not include any rij correlation type functions. At the
FC-CFT level of the study, we produce our complement func-
tions by applying the FC theory to the functions obtained with
the CFT where we limit our rij correlation type functions to
be of only Hylleraas CI type, though for the ri type functions,
we include even up to order 5. The FC theory systematically
generates the complement functions as explained with Eq. (3).
The FC theory is completely different from the Hylleraas CI
theory.

From theoretical interest, we start from the larger atom,
Be, instead of the Li atom. In Sec. II, we first construct the
complement functions of the CFT for the ground and excited
states of the Be atom and then apply the FC theory to the CFT
wave functions to obtain essentially exact wave functions of
all the ground and excited states. For the smallness of the Li
and Be atoms and for the simplicity of the integral evaluations
for the linear rij type functions, we can use the variational
method at all levels of the calculations so that the important
relations given by Eq. (6) are satisfied from the CFT level to the
essentially exact FC-CFT levels.

II. CFT FOR GROUND AND EXCITED STATES OF
BERYLLIUM ATOM

The CFT may be considered as a theory for molecules and
not for atoms because the chemical formula for an atom is
simply a dot. This is not the case, however, since even an atom
has many different electronic states:15 we start from their
approximate functions and let them interact with each other
to give the best CFT wave function for each state through the
variational calculation. The principle expressed by Eq. (6) is the
same for both atoms and molecules.

The Be atom is a simple closed-shell many-electron atom
so that many accurate theoretical calculations have been pub-
lished. In the historical study by Sims and Hagstrom,18 the
Hylleraas CI calculations were performed for the ground state
of the Be atom which gave the energy correct to the chem-
ical accuracy. There are also studies21–25 that clarified the
electronic structures of the Be atom to high accuracy. Stanke
et al.24 performed highly accurate explicitly correlated-
Gaussian (ECG) calculations for the ground and 2s → ns
(n = 3-6) Rydberg excited states. Their results are essentially
exact so that we choose their energies at the Born-
Oppenheimer (BO) or fixed-nucleus level as the exact theo-
retical references to compare with our results of the BO level
of calculations. They examined further the finite-nuclear mass
effect, relativistic effect, quantum electrodynamics (QED)
effect, and higher QED effects.24

In Ref. 1, we have explained the CFT for atoms using the
example of the Be atom. In the ground state of the Be atom,
the 1s and 2s orbitals are occupied by two electrons, which is
designated by the complement function (cf)

φBe
0,G = A[(1s)2αβ · (2s)2αβ]. (7)

The valence-like excited state having the same 1S symmetry
lies as high as at 76 190 cm−1 (Ref. 15) as the two-electron
excited state from 2s to 2p orbital, and the cf of this state is
written as

φBe
0,2p2 = A[(1s)2αβ · {(2px)2 + (2py)2 + (2pz)2 }αβ]. (8)

We include this state in our calculations, considering the
interaction with the ground state to be important. Between
these ground and doubly excited states, there are many Ryd-
berg excited states of the same 1S symmetry: they are 2s→ ns
(n = 3, 4, 5, 6, . . .) states and their cf’s are written as

φBe
0,ns = A[(1s)2αβ · (2sns + ns2s)αβ]. (9)

We study here only the first four states lying at 54 677(3s), 64
245(4s), 69 322(5s), and 71 321(6s) cm−1, though there are more
states below the doubly excited 2p state. So, we deal with the
above six electronic states in our study, and our CFT wave
function of Be for its I-th electronic state is written as

ψBe,CFT
I =

M∑
m=0

cImφ
Be
0,m

= cI0φ
Be
0,G + cI1φ

Be
0,2p2 + cI2φ

Be
0,3s + cI3φ

Be
0,4s + cI4φ

Be
0,5s + cI5φ

Be
0,6s,

(10)

with m and I from 0 to 5 (= M). The suffix 0 of the primitive cf’s
means that it will be used later as the initial function when we
apply the FC theory to this set of the cf’s of the CFT. The CFT
wave functions of the ground and excited states are obtained
by applying the variational principle, and the solutions sat-
isfy the important relation given by Eq. (6). We note that the
highest state in the above calculations, the (2s)2 → (2p)2 state,
does not have the interaction counterpart at the higher energy
part so that this state tends to be calculated higher because
of the absence of the push-down effect as seen from Eq. (6).
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Anyway, this state was added as a kind of dummy state to
improve the lower states through Eq. (6) in the variational
calculations.

The orbital around the Be nucleus to which each electron
is accommodated is written by a single Slater orbital. First, the
2p orbital in Be(1s22p2) is simply written as

2px = x exp(−α2pr), 2py = y exp(−α2pr), 2pz = z exp(−α2pr)

(11)

because the orbital of the p symmetry appears only in this cf.
For the s orbitals, we may write them in the following form:

ns = (
n−1∑
i=0

biri) exp(−αnsr) (12)

or

ns =
n−1∑
i=0

biri exp(−α(i + 1)sr). (13)

Equation (12) follows the expressions of the exact hydrogenic
orbitals. Equation (13) is another possibility. We may fix the
coefficients bi to the optimal values, or we may deal with each
term independently. In the latter case, Eq. (12) gives a larger
number of independent terms than Eq. (13). In Ref. 1, we have
written only the former type of the orbitals, but we will exam-
ine both possibilities, though the inner 1s-like orbital of the 2s
orbital was assumed to have the form of Eq. (12). Most calcula-
tions were done with Eq. (13), dealing with the elements inde-
pendently. In the Appendix, we will give the results obtained
by using Eq. (12).

The Slater exponents {α} in these orbitals were optimized
at the present CFT level: we first optimized the exponents
of the 1s and 2s orbitals by the variational method applied
to the single CFT wave function given by Eq. (12). Then, the
Rydberg orbital exponents were optimized variationally for
each cf of φBe

0,ns in Eq. (9), fixing the 1s and 2s orbital expo-
nents. The 2p orbital exponent was optimized similarly for the

TABLE I. Optimized orbital exponents used in the present calculations for the ground
state and the valence and Rydberg excited states of 1S for the Be atom.

Orbital 1S: αns

1s 3.6915
2s 1.0090
2p for (2p)2 0.7594
3s 0.3940
4s 0.2733
5s 0.2046
6s 0.1626

cf φBe
0,2p2 , fixing the 1s orbital exponent. The optimized expo-

nents for this system are shown in Table I. The orbital expo-
nents of the 1s and 2s orbitals optimized by Clementi26 for the
ground state of the Be atom were 3.6848 and 0.9560, though
their 2s orbital did not have the inner 1s-like orbital.

In Table II, we show the energies of the ground and
excited states calculated by CFT that satisfy Eq. (6), together
with the energy expectation values of the primitive cf’s,〈
φBe

0,m
���H

���φ
Be
0,m

〉
(m = 0 ... 5). We also gave the difference from the

estimated exact energy, ∆E, in kcal/mol. Similarly, we sum-
marized the corresponding quantity of the excitation energy,
∆EX, in eV. Note that, in Tables II–V and VII–XIII, something
noteworthy is given in boldface.

We see that at the level of the primitive cf’s, the differ-
ence from the exact energy shown as ∆E is oscillating depend-
ing on the states, but at the CFT level, it becomes stable
at around 46 kcal/mol, except for the (2s)2 → (2p)2 excited
state that does not have the interaction counterparts at the
higher energy side so that it is calculated higher than the
other states. The same is true for the excitation energy: though
the excitation energies calculated from the primitive comple-
ment functions do not agree with the experimental values,
the calculated excitation energies at the CFT level agree well
with the exact BO values of Adamowitz et al.24 and the NIST

TABLE II. Energy expectation value of the primitive cf’s,
〈
φBe

0,m
����H

����φ
Be
0,m

〉
, and the energies of the CFT for the 1S states of the Be atom; absolute energy in a.u., difference from

the exact energy ∆E (kcal/mol), excitation energy in eV, and difference from the exact excitation energy ∆EX (eV) are shown. Noteworthy results indicated in boldface.〈
φBe

0,m
���H

���φ
Be
0,m

〉
CFT Exact Experimental

excitation excitation
Absolute Excitation Absolute Excitation energy energy
energy ∆E energy ∆EX energy ∆E energy ∆EX (Adamowicz et al.)a (NIST)b
(a.u.) (kcal/mol) (eV) (eV) (a.u.) (kcal/mol) (eV) (eV) (eV) (eV)

Ground (1s)2(2s)2 −14.560 059 7 67.330 −14.593 503 4 46.343
2s→ 3s −14.387 397 8 19.354 4.698 −2.080 −14.340 009 7 49.090 6.898 0.1 1 9 6.779 6.779
2s→ 4s −14.318 1 18 2 32.6 1 1 6.584 −1.506 −14.296 985 3 45.873 8.069 −0.020 8.089 8.089
2s→ 5s −14.293 150 9 36.622 7.263 −1.332 −14.279 844 9 44.972 8.535 −0.059 8.595 8.595
2s→ 6s −14.280 446 9 38.878 7.609 −1.234 −14.271 276 7 44.633 8.768 −0.074 8.842 8.843
(2s)2 → (2p)2 −14.220 759 9 (62.405)c 9.233 (−0.214)c−14.188 020 2 (82.950)c 11.034 (1.587)c 9.446

aReference 24.
bReference 15.
cSince Eexact does not exist for the (2s)2 → (2p)2 state, these values were estimated from the exact ground-state energy of Adamowicz et al.24 and the NIST
experimental excitation energy.15
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experimental values to within 0.1 eV, in average. This is an
encouraging result, considering the simplicity of the CFT
calculations. If this is general, the CFT would be a good
approximate tool for the studies of the excitation phenom-
ena and photochemistry involving different electronic states.
The agreement is not good for the (2s)2 → (2p)2 excited state
because of the absence of the push-down effect as expressed
by Eq. (6).

After finishing the CFT calculations, we proceed to the
FC-CFT to obtain accurate wave functions of the level of the
solutions of the Schrödinger equation order by order. The
FC theory produces the rapidly converging set of functions,
called complement functions (cf’s) that are the exact set of
the functions for solving the Schrödinger equations of the
system under consideration. We apply this FC theory to the
CFT wave function, and so we are automatically led to the
exact solutions of the Schrödinger equations for both ground
and excited states, since the CFT wave functions span both
ground and excited states of interest. Thus, in our FC-CFT, we
must be careful only in the stage of the CFT. Thereafter, the
FC theory takes care of almost everything toward solving the
Schrödinger equations.

III. FC-CFT FOR GROUND AND EXCITED STATES
OF BERYLLIUM ATOM

We apply the FC theory to the CFT wave functions ψBe,CFT
I

given by Eq. (10). However, since these wave functions are
given by a linear combination of the set of the cf’s {φBe

0,m}, we
actually apply the FC theory to each cf of the CFT φBe

0,m and
obtain Lm cf’s, φBe

lm ,m (lm = 0 . . . Lm). Then, the wave function of
the FC-CFT is written as

ψBe,FC-CFT
I =

M∑
m

Lm∑
lm

cIlm ,mφ
Be
lm ,m (I,m = 0, · · · ,M), (14)

where I denotes the electronic states of the Be atom, i.e., the
ground state, the 2s→ ns (n = 3, 4, 5, 6) Rydberg excited states,
and the (2s)2 → (2p)2 two-electron excited state. In compari-
son with the CFT wave function given by the first equation of
Eq. (10), the FC-CFT wave functions include the sum over the
cf’s produced by applying the FC theory. The total number of
the cf’s included in this FC-CFT wave function, NBe

FC-CF, is given
by

NBe
FC-CF =

M∑
m=0

Lm. (15)

The cf’s of the FC-CFT are produced by the standard
method of the FC theory1,4,11 applied to the wave functions
obtained by the CFT calculations. Using the cf’s of the CFT,
φBe

0,m, they are written to the second order of the FC theory as

{φBe
lm ,m } = φ

Be
0,m, riφBe

0,m, rjriφBe
0,m, rijφBe

0,m, rkrijφBe
0,m, rklrijφBe

0,m, · · · .

(16)

We use the variational principle so that we calculate the over-
lap and Hamiltonian integrals. For the Hamiltonian integrals,

among the cf’s given by Eq. (16), the cf’s including only one-
electron functions are integratable and for atoms, the cf’s
including rij are also integratable. Those including r2

ij are also
integratable, since they are expressed with the one-electron
functions as

r2
ij = r2

i + r2
j − 2(xixj + yiyj + zizj), (17)

but those including different rij ’s, like the last term of Eq. (16),
are non-integratable. Thus, for using the variational princi-
ple, we classify the cf’s to those that are integratable and to
those that are non-integratable. The former set is called i-set
and the latter the n-set. In the cf’s given in Eq. (16), only the
last term is non-integratable, except when they are written as
r2
ij. All others are integratable. For atoms, the analytical inte-

gration methods of the two-, three-, and four-electron inte-
grals that appear in the variational calculations are well estab-
lished27–32 and we have developed our own code for evaluating
the three and four electron integrals necessary for the present
calculations.33 For the ground state of the Be atom, Sims and
Hagstrom18 showed that with the Hylleraas CI method includ-
ing rij terms only linearly, we can get the energy correct to
chemical accuracy. So, assuming this fact to be true even for
the excited states, we generated the cf’s of the FC theory up
to the order three and discarded the cf’s belonging to the n-
set. Then, we calculate the linear parameters {cIlm ,m} in Eq. (14)
using the variational principle and obtain the energies and the
wave functions of the ground and excited states. This is a kind
of the FC-CFT-variational (FC-CFT-V) proposed in Ref. 1, but
for the present Be case, this method gives highly accurate
results exceeding the chemical accuracy and essentially exact
as shown below. It is true, however, that if we can calculate the
integrals for the cf’s of the last terms of Eq. (16) that include
two different rij functions, then we would also be able to get
high accuracy results even within the order two of the FC the-
ory. This is expected from the results of the integral-free local
Schrödinger equation (LSE) method8 applied to the second-
order FC-CFT wave functions of the first-row atoms including
such rijrkl terms that were published in a review article11 and
in a recent paper of this series.14

In Table III, we summarized the results of the calculations
of the CFT and the FC-CFT both performed with the varia-
tional principle. For the ns orbitals of the Rydberg states, we
used the Slater orbitals given by Eq. (13). Table III gives the
groups of the results in different “drawers,” grouped into the
first two upper drawers and the second lower three drawers.
The first upper two drawers give the energetic results, from
the left to right, the order 0 (CFT), order 1 to 3, and the refer-
ence data in the last column, and from up to down, the ground
state, the (2s) → (ns) Rydberg states, and the (2s)2 → (2p)2

valence excited state. The first drawer gives the absolute
energy in a.u., and the second drawer gives the difference from
the known exact energy, ∆E = EFC − Eexact, in kcal/mol, where
the exact energy is due to the BO values from Adamowicz
et al.24 with the ECG method. The lower three drawers give
the information on the calculated excitation energy, abbre-
viated as EX: the first drawer gives the excitation energies
in cm−1, the second and third give the difference from the

J. Chem. Phys. 150, 044105 (2019); doi: 10.1063/1.5065565 150, 044105-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. FC-CFT for the ground state and the valence and Rydberg excited states of the 1S states of the Be atom; absolute energy (EFC-CFT), difference from the exact energy
∆E = EFC-CFT − Eexact, excitation energies (EXFC-CFT), and difference from the exact excitation energy ∆EX = EXFC-CFT − EXexact (eV and cm−1 units). Noteworthy results
indicated in boldface.

FC-CFT

n (order)a 0 (CFT) 1 2 3
M (dimension)b 12 84 317 1049 Reference

Absolute energy (a.u.) Exact energy (a.u.) Adamowicz et al.c

Ground (1s)2(2s)2 −14.593 503 4 −14.653 808 0 −14.665 949 0 −14.667 111 9 −14.667 356 486
2s→ 3s −14.340 009 7 −14.403 700 2 −14.446 564 5 −14.417 978 6 −14.418 240 328
2s→ 4s −14.296 985 3 −14.356 451 9 −14.368 718 5 −14.369 842 8 −14.370 087 876
2s→ 5s −14.279 844 9 −14.338 111 8 −14.350 229 5 −14.351 269 4 −14.351 511 654
2s→ 6s −14.271 276 7 −14.328 994 3 −14.341 057 4 −14.342 137 8 −14.342 403 552
(2s)2 → (2p)2 −14.188 020 2 −14.299 795 7 −14.313 175 9 −14.319 685 7 . . .d

∆E = EFC-CFT − Eexact (kcal/mol)

Ground (1s)2(2s)2 46.343 8.502 0.883 0.153
2s→ 3s 49.090 9.124 1.052 0.164
2s→ 4s 45.873 8.557 0.859 0.154
2s→ 5s 44.972 8.409 0.805 0.152
2s→ 6s 44.633 8.414 0.845 0.167
(2s)2 → (2p)2 (82.950)d (12.810)d (4.413)d (0.329)d

Excitation energy (cm−1) Excitation energy (cm−1)
Exact (Adamowicz et al.)c Experiment (NIST)e

2s→ 3s 55 635.43 54 892.31 54 733.58 54 678.44 54 674.68 54 677.26
2s→ 4s 65 078.21 65 262.11 65 234.56 65 243.02 65 242.92 65 245.33
2s→ 5s 68 840.08 69 287.31 69 292.43 69 319.43 69 319.93 69 322.20
2s→ 6s 70 720.58 71 288.37 71 305.46 71 323.58 71 318.93 71 321.15
(2s)2 → (2p)2 88 993.28 77 696.72 77 424.74 76 251.25 76 190

∆EX = EXFC-CFT − EXexact (eV)

2s→ 3s 0.1 19 1 18 0.026 984 0.007 303 0.000 466
2s→ 4s −0.020 422 0.002 379 −0.001 036 0.000 013
2s→ 5s −0.059 493 −0.004 044 −0.003 410 −0.000 062
2s→ 6s −0.074 186 −0.003 788 −0.001 670 0.000 577
(2s)2 → (2p)2 (1.587 405)d (0.186 809)d (0.153 089)d (0.007 594)d

∆EX = EXFC-CFT − EXexact (cm−1)

2s→ 3s 960.75 217.64 58.90 3.76
2s→ 4s −164.71 19.19 −8.36 0.10
2s→ 5s −479.84 −32.62 −27.50 −0.50
2s→ 6s −598.35 −30.55 −13.47 4.65
(2s)2 → (2p)2 (12 803.28)d (1506.72)d (1234.74)d (61.25)e

aOrder of FC-CFT.
bNumber of complement functions.
cReference 24.
dSince Eexact does not exist for the (2s)2 → (2p)2 state, these values were estimated from the exact ground-state energy of Adamowicz24 and the NIST
experimental excitation energy.15
eReference 15.

theoretical exact value, ∆EX = EXFC − EXexact in eV and in cm−1,
respectively.

We note that since Be and Li atoms dealt with in this
paper are small atoms, we have highly accurate theoretical
results in the literature that are essentially the exact solu-
tions of the Schrödinger equation at the fixed nucleus level.
We use such theoretical results as our reference exact ener-
gies in this paper, since these values do not include the

effects of finite-nuclear mass, relativities, and QED, as our
calculations.

Now, we examine the results shown in Table III. In the
first column, the results of the CFT, which is the order 0 theory
for the FC-CFT, are given, but they have already been dis-
cussed in Table II. However, we want to emphasize again that
with the CFT, we could obtain reasonable quality results for all
the ground and excited states studied. We will see that this is
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the origin of the constant stabilities and the high qualities of
the FC-CFT results for all the ground and excited states of the
Be atom shown in Table III.

When we apply the FC theory to the CFT wave func-
tions, the theory leads the wave functions up to the exact
level of the Schrödinger equation order by order. The order
n is zero for the CFT initial functions, and we performed the
one, two, and three orders of the FC theory. As seen from the
first drawer, the calculated absolute energies of our theory
approach the essentially exact results of Adamowicz et al.24
The energies at order 3 agree with the exact results to
within milli-hartrees. The numbers given in kcal/mol unit
in the second drawer confirm this fact: the accuracy of our
results approach surprisingly rapidly to the exact level. At
the orders two and three, the FC-CFT results are in chemi-
cal accuracy. At order 3, the first 4 states, ground and Ryd-
berg states, are constantly close to the exact energies to
less than 0.17 kcal/mol. The energy of the (2s)2 → (2p)2

excited state is a bit worse because for this state there are
no states that work to push down from the above through
Eq. (6).

Accurate variational calculations for the ground state
of the Be atom have been performed by the Hylleraas-CI
method of Sims and Hagstrom18,21 and the ECG method of
Komasa,22 Pachucki and Komasa,23 and Adamowicz et al.24
However, for the excited states, only a few accurate studies
exist, the calculations with the ECG method by Adamowicz
et al.24 and those with the variational Monte Carlo method
by Sarsa et al.25 In particular, Adamowicz et al.24 provided
highly accurate results for the ground state and the 2s → ns
(n up to 6) Rydberg excited states of the 1S symmetry, where
each state was calculated separately with a large number of
basis sets (over 10 000 functions): we do not know whether
their results strictly satisfy the orthogonality and the Hamilto-
nian orthogonality given in Eq. (6). In the present calculations,
our purpose is not to give the landmark calculations, but to

examine the possibility of the general methods of the CFT and
the FC-CFT. It is of course possible to aim the landmark cal-
culations with the present methodology, as we have done for
some systems,6,7,9,11,14 but it will be postponed to the future
studies.

Next, let us see the excitation energies from the ground
state. The NIST Atomic Spectra Database15 summarizes highly
accurate experimental excitation energies in cm−1 unit. The
third drawer shows the excitation energy in the absolute
value. The BO “exact” values by Adamowicz et al.24 were also
summarized. The present theoretical results quickly approach
the theoretical exact values and the NIST experimental val-
ues. The closeness is shown from the fourth and fifth draw-
ers in eV and cm−1 units, respectively. Our results of order
3 give the excitation energies for the Rydberg states as
accurate as to less than 0.0006 eV and 5 cm−1 from the ref-
erence exact values. This is an encouraging result, consider-
ing the easiness of our calculations. Again, the result for the
(2s)2 → (2p)2 excited state is a bit worse by the reason stated
above.

Now let us compare the present results of excitation
energies with the NIST experimental values: due to the report
of the measurements of the Be spectra by Johansson,34 the
experimental error should be less than 0.05 cm−1. Table IV
gives the summary. So far, the comparisons were done with
the theoretical BO exact energy because the experimental val-
ues include other effects like relativistic effects. In Table V, we
compared our BO FC-CFT results with the NIST experimen-
tal values and the results of the BO and extended calculations
of Adamowicz et al.24 including the non-BO effects, relativis-
tic effects, QED effects, and higher QED corrections for the
2s → ns (n = 3, 4, 5, 6) Rydberg excited states. Our results for
the 2s→ 4s, 5s states agree well with those of Adamowicz et al.
For the agreement to be more than a few cm−1 with the experi-
mental values, the inclusion of the relativistic and other effects
is necessary.

TABLE IV. Comparison of the FC-CFT BO results for the excitation energy with those of Adamowicz and of the NIST experimental values for the 1S states of the Be atom:
∆EXexpt. = EX − EXexpt. (cm−1). Noteworthy results indicated in boldface.

Theoretical exact
FC-CFT, n(order) = 3, BO Adamowicz et al.a

Experimental
Excitation energy: Excitation energy: ∆EXexpt. (cm−1) excitation energy

EXFC-CFT (cm−1) ∆EXexact (cm−1) ∆EXexpt. (cm−1) EXexact (cm−1) BO level Best valuec (NIST)b (cm−1)

2s→ 3s 54 678.44 3.76 1.18 54 674.68 −2.58 0.12 54 677.26
2s→ 4s 65 243.02 0.10 −2.31 65 242.92 −2.41 0.10 65 245.33
2s→ 5s 69 319.43 −0.50 −2.77 69 319.93 −2.27 0.15 69 322.20
2s→ 6s 71 323.58 4.65 2.43 71 318.93 −2.22 0.22 7 1 321.15
(2s)2 → (2p)2 (76 251.25)d (61.25)d 76 190

aReference 24.
bReference 15.
cThe best value includes further the finite-nuclear mass effect, relativistic effect, QED effect, and higher QED effects for 9Be.
dThis state does not have the push-down effect from the higher states in the FC-CFT calculations.
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IV. COMPARISON OF THE EFFICIENCIES WITH
AND WITHOUT THE (2S)2 → (2P)2 EXCITED STATE

In the CFT and FC-CFT calculations, we use the ground
and excited states as if they constitute the basis set for each
other through the orthogonality and Hamiltonian orthogonal-
ity relations given by Eq. (6). We showed the efficiency of this
method in Table II within the CFT calculations. In this section,
we examine this idea by performing the comparative calcula-
tions up to the FC-CFT level. We calculated the ground state
of the Be atom using the FC-CFT method to orders 1, 2, and
3 starting from the initial function φBe

0,G for the ground state
alone, from the initial functions φBe

0,G and φBe
0,2p2 for the valence

set, the ground and (2s)2 → (2p)2 excited state, and further
from the initial functions φBe

0,G, φBe
0,2p2 φ

Be
0,3s, φBe

0,4s, φBe
0,5s, and φBe

0,6s

for all the valence and Rydberg states. The last choice of the
initial functions is the one used in Sec. III. In Table V, we com-
pared the results of these three different sets of calculations,
and in Fig. 1, we depicted the convergence speeds of the three
sets of the different calculations.

FIG. 1. Plots of (a) ∆E = EFC − Eexact (kcal/mol) and (b) log10∆E against the
order n of the FC calculations for the ground state of the Be atom for the different
initial functions, (2s)2 ψ0 = φ

Be
0,G (blue), (2s)2 + (2p)2 ψ0 = φ

Be
0,G +φBe

0,2p2 (purple),

and all valence + Rydberg ψ0 = φ
Be
0,G +φBe

0,2p2 +φBe
0,3s +φBe

0,4s +φBe
0,5s +φBe

0,6s (red).
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When we compare three different sets of calculations
at the same order, the accuracy increases as we consider
the larger number of the ground and excited states at the
same time. This is particularly the case when we consider the
(2s)2 → (2p)2 excited state additionally to the ground state.
Since these two states are both valence states, they interact
strongly. On the other hand, when we add further the Ryd-
berg excited states to the above valance-state calculations, the
effects are not so remarkable. Because the Rydberg states are
diffused, the interactions with the valence states are not so
large. This is clearly seen from Fig. 1: the effect of the addi-
tion of the (2s)2 → (2p)2 excited state is large, but the effects
of adding the Rydberg excited states are small: they are seen
only in Fig. 1(b) given in the logarithmic scale.

V. CFT AND FC-CFT FOR THE LITHIUM ATOM
Next, we study the CFT and the FC-CFT for the ground

and excited states of the Li atom, which include only three
electrons, so that the subjects must be simpler than the pre-
vious Be case. Because of this simplicity, many highly accurate
quantum-chemical calculations have been performed particu-
larly for the ground state.

Pachucki et al.35,36 and Drake et al.37,38 performed highly
accurate calculations with a huge number of the Hylleraas
basis set. Sims and Hagstrom39 and Ruiz et al.40 also per-
formed accurate Hylleraas-CI calculations. They also gave the
results for the excited states of 2S symmetry. For higher angu-
lar momentum symmetries, Adamowicz et al. gave the accu-
rate results of the excited states of 2P41 and 2D42 by the
ECG method and King performed the calculations for the 2F
states with the Hylleraas basis set.43 Ruiz et al. reported the
excited states of higher angular momentums: 2S to 2I sym-
metries by the full-CI calculations and 2S to 2D symmetries
by the Hylleraas-CI method.40 Although all the above calcu-
lations need to prepare basis functions, they did not con-
struct them without very much considering target states: for
instance, they used non-linear exponents optimized with a
brute-force way.35–38,41,42 We choose their essentially exact
energies at the BO level as the exact theoretical references
to compare with our calculations. Further physical effects for
the excitation energies, finite-nuclear mass effect, relativis-
tic effect, QED effect, and higher QED effects were exam-
ined by Drake et al.44 for the 2s → 3s and 2s → 2p states, by
Adamowicz et al.45 for the 2s → 3s state, and by
Pachucki et al.36 for the 2s→ ns (n = 3 to 9) states.

In contrast to these calculations, the CFT calculations are
intuitively designed and very simple. The calculations them-
selves are also very small and easy. Then, after the CFT calcu-
lations, we use the FC theory to produce highly accurate basis
functions (called complement functions) that lead to the exact
wave functions of the system.

A. CFT for the ground and excited states
of the Li atom

Now, let us start the CFT for the Li atom. The ground state
is expressed by the cf as

φLi
0,G = A[(1s)2αβ · 2sα], (18)

which is composed of the two 1s and one 2s electrons and
belongs to the 2S symmetry. Referring to the Moore’s table
and the Atomic Spectra Database by NIST,15 all the excited
states below the ionization limit are characterized by the
2s → 2p intra-valence excitation and the Rydberg excitations
of the types, 2s → ns, np, nd, nf, . . . (n = 3, 4, 5, . . .). These
electronic states are written in our cf’s as

φLi
0,2s→nq = A[(1s)2αβ · nqα], (19)

where q represents s, p, d, f, . . . for the 2S, 2P, 2D, 2F, . . . sym-
metries, respectively. Thus, the CFT wave functions for the 2S,
2P, 2D, and 2F symmetries are given, respectively, by

2S : ψLi(2S),CFT
m = c0φ

Li
0,G +

10∑
n=3

cn−2φ
Li
0,2s→ns,

2P : ψLi(2P),CFT
m = c1φ

Li
0,2s→2p +

10∑
n=3

cn−1φ
Li
0,2s→np,

2D : ψLi(2D),CFT
m =

10∑
n=3

cn−2φ
Li
0,2s→nd,

2F : ψLi(2F),CFT
m =

10∑
n=4

cn−3φ
Li
0,2s→nf.

(20)

We consider the states within up to n = 10 as our subject of
this section.

The orbitals that accommodate electrons around the Li
nucleus in the ground and excited states may be expressed as

1s = e−α1sr,

2s = (b(2s)
0 + r)e−α2sr,

ns = b(ns)
0 e−α1sr + b(ns)

1 re−α2sr + b(ns)
2 r2e−α3sr + · · · + b(ns)

n−1r
n−1e−αnsr,

npx = x ·
(
b(np)

0 e−α2pr + b(np)
1 re−α3pr + b(np)

2 r2e−α4pr + · · ·

+ b(np)
n−2r

n−2e−αnpr
)
,

ndxy = xy ·
(
b(nd)

0 e−α3dr + b(nd)
1 re−α4dr + b(nd)

2 r2e−α5dr + · · ·

+ b(nd)
n−3r

n−3e−αndr
)
,

nfxyz = xyz ·
(
b(nf)

0 e−α4fr + b(nf)
1 re−α5fr + b(nf)

2 r2e−α6fr + · · ·

+ b(nf)
n−4r

n−4e−αnfr
)
.

(21)

These orbitals are similar to those given in Eq. (13) rather than
Eq. (12) of the previous Be case. Similarly, we dealt with all the
terms in Eq. (20) independently in actual calculations, since
it gives better accuracy with similar labors of calculations.
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TABLE VI. Optimized orbital exponents used in the present calculations of the 2S, 2P,
2D, and 2F ground, valence, and Rydberg excited states of the Li atom.

na 2S:αns 2P: αnp 2D: αnd 2F: αnf

1 2.6895
2 0.6920 0.5227
3 0.3634 0.301 1 0.3334
4 0.2510 0.2169 0.2276 0.2500
5 0.1908 0.1689 0.1751 0.1 852
6 0.1531 0.1377 0.1422 0.1 487
7 0.1272 0.1156 0.1194 0.1242
8 0.1083 0.0990 0.1024 0.1066
9 0.0938 0.0862 0.0893 0.0930
10 0.0824 0.0758 0.0788 0.0822

aPrincipal quantum numbers.

The optimized exponents of the independent Slater orbitals
included above are summarized in Table VI.

Now, let us first examine the CFT results in compari-
son with the energy expectation values of the primitive cf’s
given on the right-hand-side of Eq. (20), which are the ele-
ments of the CFT. Table VII gives a summary. The excita-
tion energies at the primitive cf level are randomly deviated
from the exact excitation energies and the NIST experimental
excitation energies shown in the two columns of the right-
hand-side of Table VII. However, at the CFT level that satisfies
Eq. (6), the excitation energies agree with the exact values
constantly and the deviations are less than 0.04 eV for all the
symmetries of the 2S, 2P, 2D, and 2F. The deviations are much
smaller than the primitive level: this is the result of applying
the variational principle to Eq. (20). We will see later that this
accuracy of the CFT theory is already satisfactory for prac-
tical use for calculating the excitation energies of atoms and
molecules.

B. FC-CFT calculations for the ground and excited
states of the Li atom

After finishing the CFT calculations, we applied the FC
theory to the CFT wave functions as the initial functions of
the FC theory. The cf’s of the FC-CFT thus obtained have the
forms like those given in Eq. (16). We applied the FC the-
ory up to the order 5 for the 2S state and to the order 4
for the 2P, 2D, and 2F states. However, for the computational
practical reason stated in Sec. III, we included the rij func-
tions only to the linear ones, though we included the r2

ij terms
since it is integratable. Then, we used the variational principle
to calculate the FC-CFT wave functions so that the present
results satisfy the orthogonality and the Hamiltonian orthog-
onality relations between the different states as expressed in
Eq. (6). The results of the FC-CFT calculations for the 2S, 2P, 2D,
and 2F symmetries of the Li atom are given in Tables VIII–XI,
respectively.

Table VIII gives the results of the CFT and the FC-CFT
calculations for the 2S states of the Li atom. For this symme-
try, we have performed up to the order 5 of the FC theory.

Table VIII has the same structure as Table III for the Be atom.
It consists of the five drawers: two upper ones give the infor-
mation on the absolute energies for the ground state and for
the 2s→ 3s ∼ 10s Rydberg states, and the three lower drawers
summarize the excitation energies from the ground state to
these Rydberg states.

The first column of Table VIII gives the results of the
CFT. We notice that the CFT results of the absolute ener-
gies differ from the exact values by almost a constant value
(∼36.1 kcal/mol) except for the ground state (36.9 kcal/mol).
For this reason, the excitation energies of the CFT differ from
the exact values again constantly by about −0.037 eV except
for the 2s → 3s excitation (−0.032 eV). These behaviors are
similar to the Be case.

The FC theory improves largely the results of the CFT.
By performing the FC calculations to the orders 1 to 5,
all the calculated results steadily approach the exact val-
ues reported by Drake et al.38 and Pachucki et al.36 As seen
from the second drawer, the absolute energies of all the ns
Rydberg states are improved systematically by an order of
magnitude as increasing the order of the FC theory. The
accuracies are almost the same at each order of the FC-
CFT starting from the CFT: independent of the excitations,
the average deviations from the exact values are 36.1, 7.86,
0.454, 0.102, and 0.028 kcal/mol at the order 0, 1, 2, 3, and
4, respectively, and finally at order 5, they differ by only
0.010 kcal/mol, by less than 0.1 milli-hartree in average from
the highly accurate results of Drake and Pachucki. This is a
satisfactory result, considering the labor of the present cal-
culations. The number of the cf’s is about 900 with order
4 (about twice at order 5) of the FC theory including all
the ground and 2s → ns Rydberg excited states (n up to
10). Although the purpose is different, the landmark calcula-
tions by Drake et al.38 used 26 520 functions for the ground
state alone. With the FC theory, we would be able to per-
form more accurate calculations than the present ones by
increasing the order of the FC theory, but it will be done
elsewhere.

When we move to the excitation energies, which are
the energy difference from the ground state, the accuracy
of our results much increases. They are given in the lower
three drawers of Table VIII. The accuracies of the present
FC-CFT results are easily seen from the last two drawers. It
is interesting to note that the deviations from the exact val-
ues are almost constants independent of the excitations: all
the excited states are calculated to almost the same accu-
racies at each order, which is an important feature of the
FC-CFT starting from the CFT. The average deviations from
the exact excitation energies of Drake et al.38 and Pachucki
et al.36 are −0.036, −0.000 17, −0.001 323, −0.000 07, 0.000 01,
and 0.000 01 (in eV), and −292.6, −1.4, −10.7, −0.6, 0.1, and 0.1
(in cm−1), at the orders 0, 1, 2, 3, 4, and 5, respectively. The
results seem to be at convergence at about order 4, and the
average value for the order 2 is not meaningful because the
difference values change sign depending on the excitations.
It is a practically useful news that we could get much less
than 1 cm−1 accuracy, when we used the higher orders of the
FC-CFT.
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TABLE VII. Energy expectation values of the primitive cf’s,
〈
φLi

0,m
����H

����φ
Li
0,m

〉
, and the energies of the CFT for 2S, 2P, 2D, and 2F states of the Li atom; absolute energy in a.u.,

difference from the exact energy ∆E (kcal/mol), excitation energy in eV, and difference from the exact excitation energy ∆EX (eV) are given. Noteworthy results indicated in
boldface. 〈

φLi
0,m

���H
���φ

Li
0,m

〉
CFT

Exact Experimental
Absolute excitation excitation
energy ∆E Excitation Absolute ∆E Excitation energya–e energy (NIST)f
(a.u.) (kcal/mol) energy (eV) ∆EX (eV) energy (a.u.) (kcal/mol) energy (eV) ∆EX (eV) (eV) (eV)

2S states
Ground −7.419 183 47 36.946 −7.419 192 07 36.940
(1s)2(2s)
2s→ 3s −7.330 326 23 14.917 2.418 −0.955 −7.296 424 76 36.191 3.341 −0.033 3.373a 3.373
2s→ 4s −7.280 906 11 23.610 3.763 −0.578 −7.260 998 12 36.102 4.305 −0.036 4.341a 4.341
2s→ 5s −7.258 782 69 28.093 4.365 −0.384 −7.246 044 69 36.086 4.712 −0.037 4.749a 4.749
2s→ 6s −7.247 109 66 30.591 4.682 −0.276 −7.238 356 34 36.084 4.921 −0.037 4.958a 4.958
2s→ 7s −7.240 205 44 32.120 4.870 −0.209 −7.233 885 49 36.086 5.042 −0.037 5.080b 5.079
2s→ 8s −7.235 797 68 33.1 1 5 4.990 −0.166 −7.231 058 18 36.089 5.119 −0.037 5.156b 5.156
2s→ 9s −7.232 819 99 33.794 5.071 −0.137 −7.229 164 26 36.088 5.171 −0.037 5.208b 5.208
2s→ 10s −7.230 710 78 (34.278)g 5.129 (−0.116)g −7.227 815 32 (36.095)g 5.208 (−0.037)g 5.244

2P states
2s→ 2p −7.350 382 61 37.509 1.872 0.024 −7.350 400 78 37.497 1.872 0.024 1.848a 1.848
2s→ 3p −7.301 861 52 22.145 3.192 −0.642 −7.279 108 55 36.423 3.812 −0.022 3.834c 3.834
2s→ 4p −7.270 147 13 26.193 4.055 −0.466 −7.254 158 49 36.226 4.491 −0.031 4.522c 4.522
2s→ 5p −7.253 577 94 29.311 4.506 −0.331 −7.242 640 43 36.174 4.804 −0.033 4.837c 4.837
2s→ 6p −7.244 161 49 31.287 4.763 −0.245 −7.236 395 68 36.160 4.974 −0.034 5.008c 5.008
2s→ 7p −7.238 353 78 32.568 4.921 −0.190 −7.232 630 60 36.160 5.077 −0.034 5.110c 5.110
2s→ 8p −7.234 540 73 33.432 5.024 −0.152 −7.230 183 91 36.166 5.143 −0.034 5.178c 5.177
2s→ 9p −7.231 9 1 1 32 34.036 5.096 −0.126 −7.228 513 25 36.168 5.189 −0.033 5.222c 5.222
2s→ 10p −7.230 023 48 34.474 5.147 −0.107 −7.227 325 31 36.167 5.221 −0.034 5.255c 5.254

2D states
2s→ 3d −7.278 212 39 35.963 3.836 −0.043 −7.278 212 39 35.963 3.836 −0.042 3.879a 3.879
2s→ 4d −7.264 745 83 29.144 4.202 −0.338 −7.253 879 08 35.963 4.498 −0.042 4.541d 4.541
2s→ 5d −7.251 874 30 30.154 4.553 −0.295 −7.242 584 70 35.983 4.806 −0.042 4.847d 4.847
2s→ 6d −7.243 594 94 31.511 4.778 −0.236 −7.236 431 67 36.006 4.973 −0.041 5.014d 5.014
2s→ 7d −7.238 219 99 32.570 4.924 −0.190 −7.232 707 75 36.029 5.075 −0.040 5.114d 5.114
2s→ 8d −7.234 580 67 (33.356)g 5.023 (−0.156)g −7.230 279 50 (36.055)g 5.141 (−0.038)g 5.179
2s→ 9d −7.232 028 27 (33.928)g 5.093 (−0.131)g −7.228 613 48 (36.071)g 5.186 (−0.038)g 5.224
2s→ 10d −7.230 17 1 01 (34.357)g 5.143 (−0.112)g −7.227 424 65 (36.080)g 5.218 (−0.037)g 5.256

2F states
2s→ 4f −7.253 902 33 35.935 4.498 −0.044 −7.253 902 33 35.935 4.498 −0.044 4.541e 4.542
2s→ 5f −7.248 637 19 32.179 4.641 −0.207 −7.242 645 02 35.939 4.804 −0.043 4.848e 4.848
2s→ 6f −7.242 411 26 4.810 −7.236 515 24 4.971
2s→ 7f −7.237 77 1 76 4.936 −7.232 805 17 5.072
2s→ 8f −7.234 457 35 5.027 −7.230 384 52 5.138
2s→ 9f −7.232 049 28 5.092 −7.228 718 90 5.183
2s→ 10f −7.230 265 21 5.141 −7.227 527 05 5.215

aReference 38.
bReference 36.
cReference 41.
dReference 42.
eReference 43.
fReference 15.
gSince the exact energies Eexact do not exist for the 2s→ 10s and 2s→ nd (n = 8, 9, and 10) states, these values were estimated from the exact ground-state
energy of Drake et al.38 and the NIST experimental excitation energies.15
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TABLE IX. FC-CFT for the 2P valence and Rydberg excited states of the Li atom; absolute energy (EFC-CFT), difference from the exact energy ∆E = EFC-CFT − Eexact, excitation
energies (EXFC-CFT), and difference from the exact excitation energy ∆EX = EXFC-CFT − EXexact (eV and cm−1 units). Noteworthy results indicated in boldface.

FC-CFT

n (order)a 0 (CFT) 1 2 3 4
M (dimension)b 9 45 144 378 855 Reference

Absolute energy (a.u.) Exact energy (a.u.)
Drake et al.c

and Adamowicz et al.d

2s→ 2p −7.350 400 78 −7.396 542 12 −7.409 201 54 −7.409 924 66 −7.410 078 68 −7.410 156 532 652 370c

2s→ 3p −7.279 108 55 −7.324 307 90 −7.336 375 05 −7.336 968 20 −7.337 095 85 −7.337 151 707 93d

2s→ 4p −7.254 158 49 −7.299 229 64 −7.311 148 87 −7.311 718 59 −7.311 839 15 −7.311 889 059 38d

2s→ 5p −7.242 640 43 −7.287 676 24 −7.299 550 39 −7.300 121 82 −7.300 240 29 −7.300 288 164 88d

2s→ 6p −7.236 395 68 −7.281 416 09 −7.293 274 76 −7.293 854 84 −7.293 972 92 −7.294 020 052 93d

2s→ 7p −7.232 630 60 −7.277 647 42 −7.289 500 81 −7.290 089 75 −7.290 208 04 −7.290 254 908 09d

2s→ 8p −7.230 183 91 −7.275 208 50 −7.287 058 44 −7.287 652 57 −7.287 771 26 −7.287 818 068 01d

2s→ 9p −7.228 513 25 −7.273 541 82 −7.285 377 20 −7.285 979 49 −7.286 102 66 −7.286 150 973 21d

2s→ 10p −7.227 325 31 −7.272 291 07 −7.284 090 31 −7.284 736 20 −7.284 896 34 −7.284 960 529 60d

∆E = EFC-CFT - Eexact (kcal/mol)
2s→ 2p 37.497 8.543 0.599 0.146 0.049
2s→ 3p 36.423 8.060 0.487 0.115 0.035
2s→ 4p 36.226 7.944 0.464 0.107 0.031
2s→ 5p 36.174 7.914 0.463 0.104 0.030
2s→ 6p 36.160 7.909 0.468 0.104 0.030
2s→ 7p 36.160 7.911 0.473 0.104 0.029
2s→ 8p 36.166 7.913 0.477 0.104 0.029
2s→ 9p 36.168 7.912 0.486 0.108 0.030
2s→ 10p 36.167 7.950 0.546 0.141 0.040

Excitation energy (cm−1) Excitation energy (cm−1)
Exact (Drake et al.c and Experiment

Adamowicz et al.d) (NIST)e

2s→ 2p 15 097.94 15 141.64 14 944.63 14 917.82 14 910.30 14 903.16c 14 903.66
2s→ 3p 30 744.78 30 995.22 30 928.20 30 929.91 30 928.18 30 925.87d 30 925.38
2s→ 4p 36 220.68 36 499.26 36 464.70 36 471.56 36 471.38 36 470.38d 36 469.55
2s→ 5p 38 748.60 39 034.94 39 010.27 39 016.76 39 017.04 39 016.48d 39 015.56
2s→ 6p 40 119.17 40 408.88 40 387.61 40 392.20 40 392.57 40 392.17d 40 390.84
2s→ 7p 40 945.51 41 236.01 41 215.90 41 218.55 41 218.86 41 218.52d 41 217.35
2s→ 8p 41 482.50 41 771.30 41 751.94 41 753.44 41 753.68 41 753.35d 41 751.63
2s→ 9p 41 849.16 42 137.09 42 120.93 42 120.64 42 119.89 42 119.23d 42 118.27
2s→ 10p 42 109.89 42 411.59 42 403.37 42 393.51 42 384.65 42 380.51d 42 379.16

∆EX = EXFC-CFT − EXexact (eV)
2s→ 2p 0.024 150 0.029 568 0.005 141 0.001 818 0.000 885
2s→ 3p −0.022 452 0.008 599 0.000 289 0.000 502 0.000 287
2s→ 4p −0.030 958 0.003 581 −0.000 704 0.000 147 0.000 125
2s→ 5p −0.033 212 0.002 289 −0.000 769 0.000 035 0.000 070
2s→ 6p −0.033 848 0.002 072 −0.000 565 0.000 004 0.000 049
2s→ 7p −0.033 850 0.002 168 −0.000 325 0.000 003 0.000 042
2s→ 8p −0.033 581 0.002 225 −0.000 175 0.000 012 0.000 040
2s→ 9p −0.033 485 0.002 214 0.000 210 0.000 174 0.000 082
2s→ 10p −0.033 553 0.003 854 0.002 835 0.001 613 0.000 514
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TABLE IX. (Continued.)

FC-CFT

n (order)a 0 (CFT) 1 2 3 4
M (dimension)b 9 45 144 378 855 Reference

∆EX = EXFC-CFT − EXexact (cm−1)
2s→ 2p 194.78 238.48 41.47 14.66 7.14
2s→ 3p −181.09 69.36 2.33 4.05 2.31
2s→ 4p −249.69 28.89 −5.68 1.19 1.01
2s→ 5p −267.87 18.46 −6.21 0.28 0.56
2s→ 6p −273.00 16.71 −4.56 0.03 0.40
2s→ 7p −273.02 17.49 −2.62 0.02 0.34
2s→ 8p −270.85 17.95 −1.41 0.09 0.33
2s→ 9p −270.07 17.85 1.69 1.41 0.66
2s→ 10p −270.62 31.09 22.86 13.01 4.14

aOrder of FC-CFT.
bNumber of complement functions.
cReference 38.
dReference 41.
eReference 15, where data of J = 1/2 were employed.

Next, we examine comparatively all the ns, np, nd, and
nf states shown in Tables VIII–XI, respectively. We note that
among these excited states, only one state, the 2s → 2p state
in Table IX is different from all other excited states in nature:
the 2s → 2p state is the valence excited state, but all others
are the Rydberg excited states. Usually, the Rydberg excited
states are more easily described by the theoretical meth-
ods than the valence excited states. One of the authors has
such experiences in his extensive studies of many valence and
Rydberg excitations of molecules with his SAC-CI (symmetry-
adapted-cluster configuration-interaction) theory.16,17,46–48
This is natural from the simplicity of the Rydberg states in
comparison with the valence states: Rydberg states are like the
hydrogenic atoms in both atomic and molecular cases. This
experience is also seen here: the differences from the exact
values are a bit larger for the 2s → 2p state than for other
Rydberg states. For example, referring to Table IX, the differ-
ence in the calculated absolute energy from the exact value is
0.049 kcal/mol at order 4 for the 2s → 2p state, but for other
Rydberg excitations, the differences are 0.029–0.035 kcal/mol
for the 2s → 3 ∼ 9p states, except for 0.040 kcal/mol for the
2s→ 10p state for which the value may be worse than the oth-
ers because of the absence of the push-down effect from the
higher states. Similar behavior is also seen in Table IX for the
results of the lower-order calculations.

So, we examine the 2s → 2p valence excited state right
here. Although the description of this valence state is more
difficult than other Rydberg states at all orders, at the order
4 of the FC theory, the accuracy of the description is already
satisfactory. For the excitation energy, the difference from the
exact value is 0.000 89 eV for the 2s → 2p valence excited
state, which is larger in comparison with 0.000 04–0.000 29 eV
for the other normal Rydberg states of 2s → 3 ∼ 9p, but
is acceptable as a predictive quantum chemistry. Thus, the
description of the present theory for the 2s → 2p valence
excited state is fine.

Now we come back to the examinations of the abso-
lute energies of the Rydberg excited states from the 2s to
the ns, np, nd, and nf states shown in the first two draw-
ers of Tables VIII–XI, respectively. We limit our discussions
only to the “normal” excited states: by “normal,” we mean
that we do not deal with the highest excited state because it
does not have the push-down effect from the higher excited
states through the variational relations given by Eq. (6). From
Tables VIII–XI, we see that the deviations of the CFT ener-
gies from the exact values are almost constant, for all the
different states: the accuracies of the CFT are quite con-
stant for any excited states of any symmetries of S, P, D,
and F. This is something quite nice for CFT. The average val-
ues and the standard deviations within the “normal” excited
states are 36.104 ± 0.036, 36.211 ± 0.089, 35.989 ± 0.025, and
35.937 ± 0.002 (in kcal/mol) for the ns, np, nd, and nf Ryd-
berg states, respectively. From the smallness of the standard
deviations, we see that the difference from the exact val-
ues is almost constant, 36 kcal/mol, not only for the differ-
ent principal n states, but also for different angular l states.
This is rather surprising, considering the level of the the-
ory of the CFT. Because of this constancy from the starting
CFT calculations, the differences of the calculated energies
at the different orders of the FC-CFT are again quite a con-
stant. At order 1, the average deviations from the exact ener-
gies are 7.857 ± 0.012, 7.938 ± 0.051, 7.832 ± 0.019, and 7.806
± 0.002, which are about 7.86, for the ns, np, nd, and nf Ryd-
berg states and the deviations from this average are small;
at order 2, they are 0.4501 ± 0.0084, 0.4740 ± 0.0090, 0.4461
± 0.0097, and 0.4335 ± 0.0005, which are about 0.45; at order
3, they are 0.1016 ± 0.0011, 0.1065 ± 0.0039, 0.1012 ± 0.0006,
and 0.1010 ± 0.0000, which are about 0.10; and at order 4,
they are 0.0287 ± 0.0003, 0.0307 ± 0.0019, 0.0287 ± 0.0001,
and 0.0294 ± 0.0000, which are about 0.029. These results
show that the stable uniform descriptions of all the Rydberg
states by the FC-CFT are steadily improved as the order of
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TABLE X. FC-CFT for the 2D Rydberg excited states of the Li atom; absolute energy (EFC-CFT), difference from the exact energy ∆E = EFC-CFT − Eexact, excitation energies
(EXFC-CFT), and difference from the exact excitation energy ∆EX = EXFC-CFT − EXexact (eV and cm−1 units). Noteworthy results indicated in boldface.

FC-CFT

n (order)a 0 (CFT) 1 2 3 4
M (dimension)b 8 40 128 336 760 Reference

Absolute energy (a.u.) Exact energy (a.u.)
Drake et al.c and Adamowicz et al.d

2s→ 3d −7.278 212 39 −7.323 076 89 −7.334 827 40 −7.335 362 75 −7.335 477 73 −7.335 523 543 524 685c

2s→ 4d −7.253 879 08 −7.298 734 96 −7.310 493 04 −7.311 029 25 −7.311 144 00 −7.311 189 578 43d

2s→ 5d −7.242 584 70 −7.287 453 02 −7.299 222 11 −7.299 766 97 −7.299 882 00 −7.299 927 555 94d

2s→ 6d −7.236 431 67 −7.281 310 96 −7.293 091 15 −7.293 649 20 −7.293 765 00 −7.293 810 713 64d

2s→ 7d −7.232 707 75 −7.277 596 21 −7.289 386 36 −7.289 959 86 −7.290 076 84 −7.290 122 856 24d

2s→ 8d −7.230 279 50 −7.275 178 38 −7.286 977 48 −7.287 564 93 −7.287 683 17 . . .e

2s→ 9d −7.228 613 48 −7.273 523 50 −7.285 327 47 −7.285 922 47 −7.286 042 01 . . .e

2s→ 10d −7.227 424 65 −7.272 319 66 −7.284 109 98 −7.284 722 39 −7.284 860 27 . . .e

∆E = EFC-CFT − Eexact (kcal/mol)
2s→ 3d 35.963 7.810 0.437 0.101 0.029
2s→ 4d 35.963 7.815 0.437 0.101 0.029
2s→ 5d 35.983 7.828 0.443 0.101 0.029
2s→ 6d 36.006 7.844 0.452 0.101 0.029
2s→ 7d 36.029 7.861 0.462 0.102 0.029
2s→ 8d (36.055)e (7.880)e (0.476)e (0.108)e (0.033)e
2s→ 9d (36.071)e (7.889)e (0.482)e (0.109)e (0.034)e
2s→ 10d (36.080)e (7.908)e (0.509)e (0.125)e (0.039)e

Excitation energy (cm−1) Excitation energy (cm−1)
Exact (Drake et al.c and Experiment

Adamowicz et al.d) (NIST)f
2s→ 3d 30 941.46 31 265.40 31 267.86 31 282.27 31 283.32 31 283.21c 31 283.08
2s→ 4d 36 282.01 36 607.83 36 608.64 36 622.86 36 623.95 36 623.90d 36 623.38
2s→ 5d 38 760.84 39 083.93 39 082.32 39 094.64 39 095.68 39 095.62d 39 094.93
2s→ 6d 40 111.27 40 431.96 40 427.91 40 437.33 40 438.20 40 438.12d 40 437.31
2s→ 7d 40 928.58 41 247.25 41 241.02 41 247.05 41 247.66 41 247.51d 41 246.5
2s→ 8d 41 461.52 41 777.90 41 769.71 41 772.68 41 773.01 41 771.3
2s→ 9d 41 827.16 42 141.11 42 131.84 42 133.16 42 133.20 42 131.3
2s→ 10d 42 088.08 42 405.32 42 399.05 42 396.54 42 392.56 42 389

∆EX = EXFC-CFT − EXexact (eV)
2s→ 3d −0.042 371 −0.002 208 −0.001 902 −0.000 116 0.000 014
2s→ 4d −0.042 389 −0.001 991 −0.001 891 −0.000 129 0.000 007
2s→ 5d −0.041 508 −0.001 450 −0.001 649 −0.000 122 0.000 006
2s→ 6d −0.040 524 −0.000 763 −0.001 265 −0.000 097 0.000 011
2s→ 7d −0.039 542 −0.000 031 −0.000 804 −0.000 056 0.000 019
2s→ 8d (−0.038 408)e (0.000 819)e (−0.000 197)e (0.000 171)e (0.000 212)e
2s→ 9d (−0.037 708)e (0.001 216)e (0.000 067)e (0.000 230)e (0.000 236)e
2s→ 10d (−0.037 309)e (0.002 024)e (0.001 246)e (0.000 935)e (0.000 442)e

∆EX = EXFC-CFT − EXexact (cm−1)
2s→ 3d −341.74 −17.81 −15.34 −0.94 0.11
2s→ 4d −341.89 −16.06 −15.26 −1.04 0.06
2s→ 5d −334.79 −11.69 −13.30 −0.98 0.05
2s→ 6d −326.84 −6.16 −10.20 −0.78 0.09
2s→ 7d −318.93 −0.25 −6.49 −0.45 0.15
2s→ 8d (−309.78)e (6.60)e (−1.59)e (1.38)e (1.71)e
2s→ 9d (−304.14)e (9.81)e (0.54)e (1.86)e (1.90)e
2s→ 10d (−300.92)e (16.32)e (10.05)e (7.54)e (3.56)e

aOrder of FC-CFT.
bNumber of complement functions.
cReference 38.
dReference 42.
eSince Eexact does not exist for the 2s→ nd (n = 8, 9, and 10) states, this value was estimated from the exact ground-state energy of Drake et al.38 and NIST
experimental excitation energy.15
fReference 15, where data of J = 3/2 were employed.
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TABLE XI. FC-CFT for the 2F Rydberg excited states of the Li atom; absolute energy (EFC-CFT), difference from the exact energy ∆E = EFC-CFT − Eexact, excitation energies
(EXFC-CFT), and difference from the exact excitation energy ∆EX = EXFC-CFT − EXexact (eV and cm−1 units). Noteworthy results indicated in boldface.

FC-CFT

n (order)a 0 (CFT) 1 2 3 4
M (dimension)b 7 35 112 294 665 Reference

Absolute energy (a.u.) Exact energy (a.u.) Kingc

2s→ 4f −7.253 902 33 −7.298 732 60 −7.310 478 70 −7.311 007 84 −7.311 121 84 −7.311 168 7
2s→ 5f −7.242 645 02 −7.287 475 82 −7.299 225 36 −7.299 756 19 −7.299 870 29 −7.299 917 1
2s→ 6f −7.236 515 24 −7.281 351 15 −7.293 106 62 −7.293 643 76 −7.293 758 27 . . .d

2s→ 7f −7.232 805 17 −7.277 646 94 −7.289 409 45 −7.289 957 38 −7.290 072 77 . . .d

2s→ 8f −7.230 384 52 −7.275 232 37 −7.287 002 13 −7.287 563 74 −7.287 680 52 . . .d

2s→ 9f −7.228 718 90 −7.273 573 12 −7.285 349 30 −7.285 922 28 −7.286 040 31 . . .d

2s→ 10f −7.227 527 05 −7.272 380 05 −7.284 154 51 −7.284 738 17 −7.284 863 92 . . .d

∆E = EFC-CFT − Eexact (kcal/mol)

2s→ 4f 35.935 7.804 0.433 0.101 0.029
2s→ 5f 35.939 7.807 0.434 0.101 0.029
2s→ 6f (35.951)e (7.816)e (0.440)e (0.103)e (0.031)e

Excitation energy (cm−1) Excitation energy (cm−1)
Exact (King)c Experiment (NIST)f

2s→ 4f 36 276.90 36 608.35 36 611.79 36 627.55 36 628.82 36 628.48 36 630.2
2s→ 5f 38 747.60 39 078.93 39 081.61 39 097.01 39 098.25 39 097.92 39 104.5
2s→ 6f 40 092.93 40 423.14 40 424.52 40 438.53 40 439.68 40 438.90g

2s→ 7f 40 907.20 41 236.12 41 235.95 41 247.60 41 248.55
2s→ 8f 41 438.47 41 766.06 41 764.30 41 772.94 41 773.59
2s→ 9f 41 804.03 42 130.22 42 127.05 42 133.20 42 133.58
2s→ 10f 42 065.61 42 392.07 42 389.28 42 393.08 42 391.76

∆EX = EXFC-CFT − EXexact (eV)

2s→ 4f −0.043 590 −0.002 496 −0.002 069 −0.000 115 0.000 042
2s→ 5f −0.043 434 −0.002 355 −0.002 022 −0.000 113 0.000 041
2s→ 6f (−0.042 895)e (−0.001 954)e (−0.001 783)e (−0.000 046)e (0.000 097)e

∆EX = EXFC-CFT − EXexact (cm−1)

2s→ 4f −351.57 −20.13 −16.69 −0.92 0.34
2s→ 5f −350.32 −18.99 −16.31 −0.91 0.33
2s→ 6f (−345.97)e (−15.76)e (−14.38)e (−0.37)e (0.78)e

aOrder of FC-CFT.
bNumber of complement functions.
cReference 43.
dEexact does not exist for the 2s→ nf (n = 6 to 10) state.
eSince Eexact does not exist for the 2s→ 6f state, this value was estimated from the exact ground-state energy of Drake et al.38 and experimental excitation
energy.51
fReference 15, where data of J = 5/2 were employed.
gReference 51.

the FC theory increases from 0 of CFT and that finally all
the results of the FC-CFT reach the essentially exact results
uniformly.

We next examine the excitation energies from 2s to Ryd-
berg ns, np, nd, and nf states shown in the last three drawers
of Tables VIII–XI, respectively. From the second lower draw-
ers, we see the differences from the exact excitation energies
for all the Rydberg excitations of all different symmetries from
order 0 to order 4 of the FC theory. From the last bottom
drawers, we see that the accuracies are in cm−1. Again, we
see that at each order, the accuracies are almost the same
among all the excitations of all the symmetries for each order

of the FC theory. The accuracies are improved dramatically
as the order of the FC theory increases. Finally, at order 4,
the accuracy of the FC-CFT excitation energies is to within a
few cm−1 for all the excitations of different principal and angu-
lar quantum numbers. This accuracy would be useful for most
quantum chemical studies.

In Table XII, we give a summary of the FC-CFT stud-
ies of the Li atom, together with the comparison of the
experimental NIST values.15 More accurate experimental
data were reported for some states by Radziemski et al.,49
Reinhardt et al.,50 Sanchez et al.,51 Lorenzen and Niemax,52
DeGraffenreid and Sansonetti,53 and Sansonetti et al.54 Some
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TABLE XII. Summary and comparison with the NIST experimental values of the FC-CFT calculations at n(order) = 5, 4, 4, and 4 for the 1S, 2P, 2D, and 2F states of the Li atom.
∆EXexpt. = EX − EXexpt. (cm−1). Noteworthy results indicated in boldface.

FC-CFT Theoretical exacta–f

Experimental excitation
Absolute Excitation Excitation
energy: energy: energy: ∆EXexpt. (cm−1) energy (cm−1)

EFC-CFT ∆Eexact EXFC-CFT ∆EXexact ∆EXexpt. EXexact
(cm−1) (kcal/mol) (cm−1) (cm−1) (cm−1) (cm−1) BO level Best valueg NISTh Otheri–l

2S states
Ground (1s)2(2s) −7.478 045 46 0.009
2s→ 3s −7.354 083 21 0.010 27 206.57 0.08 0.45 27 206.49a 0.37 −0.0002a,m,n 27 206.12 27 206.094 082i

2s→ 4s −7.318 515 58 0.010 35 012.76 0.09 0.70 35 012.67a 0.61 0.0000b,n 35 012.06 35 012.033 582j

2s→ 5s −7.303 536 28 0.010 38 300.34 0.10 0.84 38 300.24a 0.74 0.0061b,n 38 299.50 38 299.4627k

2s→ 6s −7.295 844 17 0.010 39 988.56 0.10 0.92 39 988.46a 0.82 0.0155b,n 39 987.64 39 987.586k

2s→ 7s −7.291 376 90 0.010 40 969.02 0.11 1.12 40 968.90b 1.00 0.09b 40 967.9
2s→ 8s −7.288 554 41 0.010 41 588.48 0.12 1.38 41 588.36b 1.26 0.31b 41 587.1
2s→ 9s −7.286 657 91 0.010 42 004.71 0.18 1.41 42 004.53b 1.23 0.25b 42 003.3
2s→ 10s −7.285 319 61 (0.011)o 42 298.44 0.44 42 298

2P states
2s→ 2p −7.410 078 68 0.049 14 910.30 7.14 6.64 14 903.16a −0.50 0.0004f,n 14 903.66 14 903.648 130l

2s→ 3p −7.337 095 85 0.035 30 928.18 2.31 2.80 30 925.87c 0.49 30 925.38 30 925.5530k

2s→ 4p −7.311 839 15 0.031 36 471.38 1.01 1.83 36 470.38c 0.83 36 469.55 36 469.7542k

2s→ 5p −7.300 240 29 0.030 39 017.04 0.56 1.48 39 016.48c 0.92 39 015.56 39 015.6988k

2s→ 6p −7.293 972 92 0.030 40 392.57 0.40 1.73 40 392.17c 1.33 40 390.84 40 391.283k

2s→ 7p −7.290 208 04 0.029 41 218.86 0.34 1.51 41 218.52c 1.17 41 217.35
2s→ 8p −7.287 771 26 0.029 41 753.68 0.33 2.05 41 753.35c 1.72 41 751.63
2s→ 9p −7.286 102 66 0.030 42 119.89 0.66 1.62 42 119.23c 0.96 42 118.27
2s→ 10p −7.284 896 34 0.040 42 384.65 4.14 5.49 42 380.51c 1.35 42 379.16

2D states
2s→ 3d −7.335 477 73 0.029 31 283.32 0.11 0.24 31 283.21a 0.13 31 283.08 31 283.0505k

2s→ 4d −7.311 144 00 0.029 36 623.95 0.06 0.57 36 623.90d 0.52 36 623.38 36 623.3360k

2s→ 5d −7.299 882 00 0.029 39 095.68 0.05 0.75 39 095.62d 0.69 39 094.93 39 094.861k

2s→ 6d −7.293 765 00 0.029 40 438.20 0.09 0.89 40 438.12d 0.81 40 437.31 40 437.220k

2s→ 7d −7.290 076 84 0.029 41 247.66 0.15 1.16 41 247.51d 1.01 41 246.5
2s→ 8d −7.287 683 17 (0.033)o 41 773.01 1.71 41 771.3
2s→ 9d −7.286 042 01 (0.034)o 42 133.20 1.90 42 131.3
2s→ 10d −7.284 860 27 (0.039)o 42 392.56 3.56 42 389

2F states
2s→ 4f −7.311 121 84 0.029 36 628.82 0.34 −1.38 36 628.48e −1.72 36 630.2 36 628.329k

2s→ 5f −7.299 870 29 0.029 39 098.25 0.33 −6.25 39 097.92e −6.58 39 104.5 39 097.499k

2s→ 6f −7.293 758 27 (0.031)o,p 40 439.68 0.78p 40 438.90k

2s→ 7f −7.290 072 77 41 248.55
2s→ 8f −7.287 680 52 41 773.59
2s→ 9f −7.286 040 31 42 133.58
2s→ 10f (−7.284 863 92)q (42 391.76)q

aReference 38.
bReference 36.
cReference 41.
dReference 42.
eReference 43.
fReference 44.
gThe best value includes further the finite-nuclear mass effect, relativistic effect, QED effect, and higher QED effects for 7Li.
hReference 15.
iReference 51.
jReference 53.
kReference 49.
lReference 54.
mFor other theoretical data36,45 that could not be cited, see the text.
nDifference from the best precise experimental data49–54 available.
oSince Eexact does not exist for 2s→ 10s and 2s→ nd (n = 8, 9, and 10) states, Eexact estimated using the exact ground-state energy of Drake et al.38 and NIST
experimental excitation energy.15
pExperimental excitation energy of Ref. 49 was used.
qFor the 2s→ 10f state, there are no push-down effects from the higher states as expressed by Eq. (6).
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of their data are also shown in Table XII. For the FC-CFT data,
we obtained the results of the order n of 5, 4, 4, and 4 for the
1S, 2P, 2D, and 2F states. The column under ∆Eexact gives the
accuracies of the absolute energies of the present BO FC-CFT
calculations in kcal/mol for all the different states. For the S
symmetry, the accuracy is more stable and better than other
symmetries, since it is order 5 instead of order 4 for other
symmetries. The column under ∆EXexact gives the accuracies
of the excitation energies of the present BO FC-CFT cal-
culations in cm−1, which are discussed above. The columns
under ∆EXexpt. of the FC-CFT and of “BO level” of “The-
oretical exact” give the differences from the NIST exper-
imental values for the BO FC-CFT and for the theoreti-
cal BO exact values of Drake et al.38 and Pachucki et al.,36
both in cm−1. We notice that under FC-CFT, the values of
∆EXexact are mostly smaller than the values of ∆EXexpt.. Also,
the values of BO level ∆EXexpt. of “Theoretical exact” are
close to those of FC-CFT. These behaviors seem to indi-
cate the existence of some other factors not included in the
present FC-CFT and “Theoretical exact” calculations of Drake
and Pachucki. Further finite-nuclear mass effect, relativistic
effect, QED effect, and higher QED effects were examined
by Drake et al.,44 Adamowicz et al.,45 and Pachucki et al.:36
these reference values are also given in the column under
∆EXexpt. as “Best value,” which were calculated using the best
precise experimental data available.49–54 For the 2s → 3s
excitation energy, Drake, Adamowicz, and Pachucki reported

FIG. 2. Plots of log10∆E [∆E = EFC-CFT − Eexact (kcal/mol)] against the order n of
the FC-CFT calculations for the 1S states of the Be atom.

independently the values −0.0002, −0.0016, and −0.0004 cm−1,
respectively, as the value of ∆EXexpt.. Pachucki also reported
the theoretical 2s → ns (n = 3 to 9) excitation energies that
agreed with the experimental values within 0.0155 cm−1 for
n = 3 to 6, and for n = 7 to 9, where very precise
experimental data are not available, the differences were
within 0.31 cm−1 from the old existing data, while Drake

FIG. 3. Plots of log10∆E [∆E = EFC-CFT
− Eexact (kcal/mol)] against the order n of
the FC-CFT calculations for the 2S, 2P,
2D, and 2F states of the Li atom.
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reported the 2s → 2p excitation energy within the differ-
ence of 0.004 cm−1. Thus, these highly accurate theoretical
data beyond the BO Schrödinger equation can explain their
individual physical origins and their magnitudes.

VI. CONVERGENCE SPEED OF THE FC-CFT
TO THE EXACT ENERGY

We have applied the CFT and the FC-CFT to the very small
atoms, Li and Be, three and four electron atoms. Because of
practical reasons of the integrals available for the calculations,
our theory was the Hylleraas-CI type formulation of the FC
theory: the rij-type cf’s were limited only to those including
them only linearly, though r2

ij type functions are integratable
and included. We examine here the convergence behavior of
such variational FC-CFT calculations toward the exact limit.

In Fig. 2, we give a plot of log10∆E with ∆E = EFC-CFT −

Eexact in kcal/mol against the order n of the present FC-CFT
calculations for the 1S states of the Be atom. We have given the
calculations for the ground state, Rydberg 2s → ns (n = 3–6)
excited states, and valence (2s) 2 → (2p)2 excited state. We see
that all the ground and Rydberg excited states converge to the
exact energies in the same speeds. This behavior starts from
the CFT level (n = 0). However, for the (2s) 2 → (2p)2 excited
state, the convergence speed is a bit slower than those of the
other states. The reason is clear: this state lies as high as 76
190 cm−1 (9.44 eV) so that in the variational calculations, this
state does not have the push-down effects from the higher
states as seen from Eq. (6). For this reason, we may not include
the highest-energy state in the calculational purpose or add
some dummy higher-energy state to the calculations of the
CFT.

Figure 3 shows the similar plots for all the states of the
Li atom. Again, all the states converge to the exact level at
the same speed. Although we gave the states, S, P, D, and F,
separately, all the four graphs of different symmetry in Fig. 3
overlap with each other. Thus, with the FC-CFT, all the states
within the CFT calculations are improved to the same extent
order by order, if the states are similar electronically. This
feature of the CFT and FC-CFT is a very important and use-
ful merit from a theoretical point of view because as far as
this relation is kept from the beginning (CFT) to the final,
the difference quantities must be close to the exact values.
For example, the excitation energies are the difference prop-
erty so that the excitation energies calculated from any levels
of the FC-CFT calculations must be close to the exact val-
ues and consequently to the experimental values. In other
words, to the calculated excitation energies, the FC-CFT the-
ory is approximation-independent. This was certainly so even
from the CFT level of the theory, as have been shown in
all the tables of the FC-CFT calculation results (Tables III,
IV, and VIII–XII). Furthermore, if one studies the potential
energy surfaces along the chemical reactions, this insensible
nature to the approximations used is a valuable merit of the
theory.

Let us examine the CFT and FC-CFT results more intu-
itively. Figure 4 shows the plots of the excitation energies of
the Be atom calculated by the CFT and FC-CFT against the

FIG. 4. Plots of excitation energies (eV) of the primitive function (top), CFT (middle)
and FC-CFT at n(order) = 3 (bottom) for the 1S states of the Be atom against
the theoretical exact excitation energy24 and the NIST experimental excitation
energy15 for the (2s)2 → (2p)2 state.

exact values. We first examine the energy expectation values
of the primitive cf’s that compose the CFT wave functions as
Eq. (10): the top figure shows their values against the exact
results of Adamowicz et al.24 and for the (2s)2→ (2p)2 state, the
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FIG. 5. Plots of excitation energies (eV) of the primitive function (top), CFT (mid-
dle), FC-CFT at n(order) = 5, 4, 4, and 4 (bottom) for the 2S, 2P, 2D, and 2F states
of the Li atom against the theoretical exact excitation energy36,38,41–43 and the
NIST experimental excitation energy15 for the 2s→ 10s and 2s→ nd (n = 8, 9,
and 10) states.

estimated exact value by using the NIST experimental exci-
tation energy. We see that the approximate results deviate
considerably from the 45-degree line, though the order of the

states is correctly calculated. However, when we use the CFT
result, we obtain the middle figure. The excitation energies
calculated by the CFT are all on the 45-degree line for the
Rydberg excited states. For the (2s)2 → (2p)2 doubly excited
state, the CFT energy is too high: a reason is that for this high-
est state of the CFT, there is no push down-effect from the
above. However, with the FC-CFT at order 3, all the calculated
excited states are exactly on the 45-degree line, including the
(2s)2 → (2p)2 doubly excited state.

In Fig. 5, we show the similar results for the Li atom for
the excitation energies of all the excitations studied in this
paper. With the primitive cf’s that compose the CFT wave
functions as Eq. (20), the results deviate considerably from the
45-degree line. However, when we see the middle figure, we
notice that the CFT results are all on the 45-degree line. The
CFT is simply the results that diagonalize the contributions
of the primitive cf’s. Thus, we understand how important the
relations given by Eq. (6) are: this equation adjusts the energy
of each state through the variational principle, and each state
works as if they form the basis set for each other. Of course, at
the FC-CFT level, all the calculated results are exactly on the
45-degree line.

Thus, the results of Figs. 4 and 5 show the surprisingly
nice feature of the CFT calculations of the excitation prop-
erties. From the computational point of view, the CFT is an
easy approximate theory, like MO and VB theories. It sim-
ply diagonalizes the primitive cf’s which are treated like the
basis functions of each other. To use all the real states to
describe the excitation properties is probably very important
to make balanced descriptions for all the states under consid-
eration. At the FC-CFT level, we can anyway perform the exact
descriptions of all the ground and excited states.

VII. SUMMARY
The free-complement chemical formula theory (FC-CFT)

is composed of the two steps of the theories. First, we con-
struct simple but conceptually useful wave functions with the
chemical formula theory (CFT), considering the spirits of the
chemical formulas, which chemists use daily as their working
concepts. The essence of the CFT is the from-atomic-states-
to-molecular-states (FASTMS) concept instead of the from-
atoms-to-molecules (FATM) concept of the chemical formu-
las. For an atom, the chemical formula is simply a dot, but
many atomic states are associated with this dot, as seen from
the Moore’s tables of atomic energy levels or NIST data book.15
Therefore, the aim of the CFT for atoms is to construct simple
and conceptually useful wave functions for the set of atomic
states of interest. First, we choose such n set of atomic states,
referring to the Moore’s book, for example, and from such an n
set, we construct the CFT wave functions using the variational
principle given in Eq. (6). We recommend adding one more
state for accuracy because the highest state does not have the
push-down effect from the higher states, but they do not exist
in the present calculations. We have seen that even the sim-
ple approximate set of the CFT wave functions describes well
the difference properties of the ground and excited states, like
excitation energies.
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Next stage is to apply the free-complement (FC) theory to
the simple CFT wave functions to obtain the set of the exact
solutions of the Schrödinger equation for the n states of the
atom or molecule. The FC theory is a useful theory that con-
structs the exact wave functions from any approximate wave
functions used as the initial wave functions of the FC theory:
the exact wave functions thus obtained have the mathemati-
cal structure similar to the wave functions used as the initial
functions. The FC theory produces a set of the complement
functions (cf’s) that span the exact wave function: by calcu-
lating the linear parameters with the variational principle, we
obtain the exact wave functions of the ground and excited
states that satisfy Eq. (6). However, we often have the cf’s that
are not integratable so that some inventions are necessary.
For the atoms studied here, we limited our formulation to the
Hylleraas CI type for the rij functions as explained in some
detail in the Introduction. However, except for the rij-type
functions, we produced with the FC theory the higher-order
complement functions that are integratable: the orders of the
present FC calculations are not in balance between the inte-
gratable set and the non-integratable sets of the cf’s. For the
Li and Be atoms, we could obtain the essentially exact results
with this prescription. With increasing the order of the FC
theory for the integratable functions, the accuracies of all
the states of the Li and Be atoms were improved rapidly and
consistently. This rapid and consistent convergence behavior
resulted since all the states satisfy Eq. (6) at each level of the
FC-CFT from the initial CFT level.

Through the present studies, we have shown that our
theories, CFT, FC-CFT, and FC-CFT-V, consist a unified com-
prehensive theory that covers from approximate to exact lev-
els and both ground and excited states. We have shown in
Ref. 1 that this is true also from small to giant molecules,

and for both numerical and conceptual understanding. We will
show the unified and comprehensive nature of our theories in
the succeeding papers. Although we used here only the vari-
ational method, we have also prepared the LSE method8,11,14
which is the sampling-type methodology that does not require
the integral evaluations. For applying our theory to large and
giant molecules, the knowledge of the inter-exchange the-
ory,13 which shows that the antisymmetrization requirement
for a pair of electrons decays as the distance between the two
electrons increases, is necessary.
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APPENDIX: CFT AND FC-CFT FOR BERYLLIUM ATOM
USING EQ. (12)

Table XIII shows the results of the variational calculations
of the CFT and the FC-CFT, where we used the Slater orbitals
given by Eq. (12) for the ns orbitals of the Rydberg states. In
comparison with the expressions given by Eq. (13), this expres-
sion gives a larger number of functions when we deal all the
elements independently. For this reason, the results shown in
Table XIII are better than those given in Table III. In this paper,
we have mainly adopted the expression given by Eq. (13) to
make the calculations more compact.

TABLE XIII. FC-CFT using the independent orbitals given by Eq. (13) for the ground state and the valence and Rydberg excited states of the 1S states of the Be atom; absolute
energy (EFC-CFT), difference from the exact energy ∆E = EFC-CFT − Eexact, excitation energies (EXFC-CFT), and difference from the exact excitation energy ∆EX = EXFC-CFT
− EXexact (eV and cm−1 units). Noteworthy results indicated in boldface.

FC-CFT

n (order)a 0 (CFT) 1 2
M (dimension)b 40 266 917 Reference

Absolute energy (a.u.) Exact energy (a.u.) Adamowicz et al.c

Ground (2s)2 −14.594 838 5 −14.654 573 4 −14.666 100 8 −14.667 356 486
2s→ 3s −14.340 354 5 −14.404 120 6 −14.416 708 5 −14.418 240 328
2s→ 4s −14.297 271 7 −14.356 652 4 −14.368 773 7 −14.370 087 876
2s→ 5s −14.280 108 4 −14.338 258 0 −14.350 284 8 −14.351 511 654
2s→ 6s −14.271 546 1 −14.329 219 3 −14.341 211 6 −14.342 403 552
(2s)2 → (2p)2 −14.188 139 0 −14.297 507 3 −14.315 161 8 . . .d

∆E = EFC-CFT − Eexact (kcal/mol)

Ground (2s)2 45.506 8.021 0.788
2s→ 3s 48.874 8.860 0.961
2s→ 4s 45.693 8.431 0.825
2s→ 5s 44.806 8.317 0.770
2s→ 6s 44.464 8.273 0.748
(2s)2 → (2p)2 (82.875)d (14.246)d (3.167)d
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TABLE XIII. (Continued.)

FC-CFT

n (order)a 0 (CFT) 1 2
M (dimension)b 40 266 917 Reference

Excitation energy (cm−1) Excitation energy (cm−1)
Exact (Adamowicz et al.)c Experiment (NIST)e

2s→ 3s 55 852.79 54 968.03 54 735.28 54 674.68 54 677.26
2s→ 4s 65 308.37 65 386.11 65 255.76 65 242.92 65 245.33
2s→ 5s 69 075.27 69 423.20 69 313.60 69 319.93 69 322.20
2s→ 6s 70 954.48 71 406.97 71 304.94 71 318.93 71 321.15
(2s)2 → (2p)2 89 260.22 78 366.94 77 022.20 76 190

∆EX = EXFC-CFT − EXexact (eV)

2s→ 3s 0.146 067 0.036 371 0.007 514
2s→ 4s 0.008 115 0.017 754 0.001 592
2s→ 5s −0.030 333 0.012 804 −0.000 784
2s→ 6s −0.045 185 0.010 916 −0.001 734
(2s)2 → (2p)2 (1.620 501)d (0.269 906)d (0.103 179)d

∆EX = EXFC-CFT − EXexact (cm−1)

2s→ 3s 1178.11 293.35 60.60
2s→ 4s 65.45 143.19 12.84
2s→ 5s −244.66 103.27 −6.32
2s→ 6s −364.44 88.04 −13.99
(2s)2 → (2p)2 (13 070.22)d (2176.94)d (832.20)d

aOrder of FC-CFT.
bNumber of complement functions.
cReference 24.
dSince Eexact does not exist for the (2s)2 → (2p)2 state, these values were estimated from the exact ground-state energy of Adamowicz et al.24 and the NIST
experimental excitation energy.15
eReference 15.
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