
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Research paper

Inverse Hamiltonian method assisted by the complex scaling technique for
solving the Dirac-Coulomb equation: Helium isoelectronic atoms
Hiroyuki Nakashima, Hiroshi Nakatsuji
Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, Yoshida-Kawara-Machi 14, Sakyo-ku, Kyoto 606-8305, Japan

A R T I C L E I N F O

Keywords:
Free complement theory
Dirac-Coulomb equation
Inverse Hamiltonian method
Complex scaling technique

A B S T R A C T

The free complement (FC) theory, proposed for solving the Schrödinger equations of atoms and molecules, was
previously extended to solving the relativistic Dirac-Coulomb equations (DCE) [H. Nakatsuji and H. Nakashima,
Phys. Rev. Lett. 95, 050,407 (2005).]. In this letter, the inverse Hamiltonian method assisted by the complex
scaling technique is further introduced to solve two problems associated with the many-electron DCE, the un-
bound problem of the Dirac-Coulomb Hamiltonian and the continuum dissolution problem. The proposed ac-
curate FC theory is applied to the calculations of the ground and low-lying excited states of helium isoelectronic
atoms: He, Th88+, and Nh111+.

1. Introduction

The Dirac equation (DE) is essential for the studies of the relativistic
effects in one-electron atoms and molecules [1–7]. However, the many-
electron versions of the DE with the algebraic generalizations of the
classical Coulomb potential, called Dirac-Coulomb equation (DCE), are
not perfect since they do not satisfy the Lorentzian transformation
[3,4]. Two problems associated with these versions are (1) the unbound
problem of the Dirac-Coulomb (DC) Hamiltonian, the so-called varia-
tional collapse problem, and (2) the continuum dissolution problem,
the so-called Brown-Ravenhall disease [8]. They consist of the com-
putational obstacles that must be solved in the variational treatments of
the DCE for many electron atoms and molecules.

Several approximate methods were proposed to address these pro-
blems, such as the lower-order balance condition [9,10], the no-pair
approximation [4,11], etc. However, the approximate characters within
these methods seem to destroy the essential relativistic natures them-
selves [12–15]. For example, Savukov et al. [12] pointed out that the
negative energy states are important to reproduce the experimental
results of the magnetic-dipole transitions of the alkali-metal atoms.
Pestka, Watanabe, and Bylicki et al. [13–15] investigated the correla-
tion energies of the helium isoelectronic atoms with and without the
no-pair approximation. They found that, when the no-pair approxima-
tion was employed, the correlation energies were overestimated espe-
cially for the atoms of large nuclear charges. Thus, in order to correctly
solve the DCE without affecting the essential relativistic natures, a new
reliable methodology seems to be necessary.

In our previous study [16], the free complement (FC) theory,

proposed for solving the nonrelativistic Schrödinger equation (SE) of
atoms and molecules [17], was extended to solving the relativistic Dirac
equation. There, we reported two significant methodologies: the FC
balance and the inverse Hamiltonian method to resolve (1) the un-
bound problem of the DC Hamiltonian. The FC theory generates the
analytical complement functions (cf’s), using the scaling function and
the Hamiltonian applied to the initial wave functions of the system.
This feature leads to the FC balance [16,20] that the exact wave
function of the DCE must satisfy [18,19]. The inverse Hamiltonian
method was introduced by Hill and Krauthauser for the one-electron DE
to recover the Ritz variational property [21]. Similar method was also
invented by one of the present authors to overcome the Coulomb sin-
gularity problem in solving the SE [22]. This method was also used for
solving the two-electron DCE in our previous work [16]. We applied
these methodologies to several simple systems and confirmed that the
accurate solutions were stably obtained without the variational collapse
[16,20,23,24].

Then, the remaining problem is (2) the continuum dissolution
problem for the DCE. The continuum states, Brown-Ravenhall con-
tinuum, appear almost always in the energy spectra. In a two-electron
system, that occurs because

+
=

E E[1st electron: Positive continuum] [2nd electron:
Negative continuum] [Any value]. (1)

The electronic bound states are embedded in the continuum states
and they are considered as resonance states in a strict sense. Thus, we
need to solve the many-electron DCE with resonance characters al-
though this arose from the fact that the many-electron DCE is not a
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perfect relativistic equation [3,4,8]. For that purpose, the complex
scaling (CS) technique was introduced [25,26]. Pestka et al. and Al-
haidari applied the CS technique to the Hylleraas-CI calculations of
helium isoelectronic atoms with the ordinary (regular) Dirac Hamilto-
nian [27–30]. Their studies were impressive and considerably improved
the accuracies and stabilities from their previous works. However, the
unphysical solutions from the problem (1) still exist near the electronic
bound states though they may be distinguishable by the CS technique.

In order to solve both (1) the unbound problem of the DC Ha-
miltonian and (2) the continuum dissolution problem, simultaneously,
we introduce the inverse Hamiltonian method combined with the CS
technique. With this method, most of the unbound solutions are first
shifted to the negative energy region by the inverse Hamiltonian
method. Then, we just have to treat the remaining Brown-Ravenhall
continuum by the CS technique. In the present paper, we examine this
method with the higher-order FC calculations of the ground and low-
lying excited states of helium isoelectronic atoms: Helium (He (Z = 2)),
Thorium (Th88+ (Z = 90)), and Nihonium (Nh111+ (Z = 113)) [31],
where Z denotes nuclear charge. “Nihonium” is a new element named
officially in 2016: “Nihon” means “Japan” in Japanese.

Note that the purpose here is not to reproduce the experimental
data, but to develop a method for accurately solving the DCE. The
present model employs the fixed nucleus approximation with the cen-
tral field potentials around the nucleus and the classical electron-re-
pulsion Coulomb potential. The present model does not consider the
finite mass of the nucleus, size of the nucleus, nucleus recoil, Breit in-
teraction, QED corrections, etc. These effects can be included pertur-
batively if one can accurately solve the DCE of the present model.

2. Inverse Hamiltonian method assisted by the complex scaling
technique

In the inverse Hamiltonian method [16,21,22], the variational
parameters in are optimized through the inverse energy

=E H| | |w w
1 1 being variationally maximized. w is a shift

parameter and = +E E w( )w and Hw are the shifted energy and Ha-
miltonian, respectively. One should set w for the electronic bound states
to have the lowest positive energies. The Ritz variational property re-
covers with the variational principle E Ew exact

w1 ( ) 1 [21], where
= +E E w( )exact

w
exact

( ) 1 1 is the shifted exact energy of the target state.
This is rigorously valid at least for the one-electron DE. Although we do
not know an explicit form of Hw

1, Ew
1 can be alternatively evaluated

by

=E H
H

| |
| |w

w

w

1
2 (2)

with a clever trick of = Hw [16,21]. It is obvious that, if is exact,
then is also exact. The variational optimization, therefore, can be
applied to the parameters in .

The CS technique is one of the established methods to study re-
sonance states [25,26]. The regular DCE with the complex coordinate
rotation er r i is given by

=H E( ) ( ) ( ) ( ), (3)

where is a rotation angle on the complex plane. H ( ) is the rotated
Hamiltonian and ( ) and E ( ) are respectively the corresponding
wave function and energy eigenvalue. Similarly, the inverse DCE with
the complex coordinate rotation is given by

=H E( ) ( ) ( ) ( ).w w
1 1 (4)

Introducing the same trick in Eq. (2): = H( ) ( ) ( )w , the com-
plex inverse energy is given by

=E H
H H

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.w
w

w w

1
(5)

Eq. (5) is also derived from Eq. (4) capped by H ( ) ( )w from bra

side. E ( )w
1 and ( ) are calculated by solving the complex inverse

secular equation with the H ( )w and H ( )w
2 matrices. In the DCE, H ( )w

is represented by =H e H e( ) [ 1]w
i

w
i with the no-scaling Hw

and the constant diagonal matrix . Note that H ( )w of the DCE does
not contain any second order e i2 terms whereas that of the SE includes
them from the kinetic energy operator.

In the CS technique [25,26], if the basis set is complete, the exact
energies of the bound states are real and independent on . The energies
of the resonance or antiresonance states are complex but they are still
independent on . In contrast, the energies of the continuum states are
strongly dependent on , i.e. they rotate on the complex plane pro-
portional to . Thus, the physical bound and/or resonance electronic
states can be distinguished from the continuum states by the CS tech-
nique.

We want to emphasize that the inverse Hamiltonian method is still
important even in the CS technique. In a two-electron system, the
electronic bound states locate around E c2 2; both electrons have the
electronic rest energy c2, where c is the speed of light in atomic units.
By Eq. (1), the continuum states around E c2 2 emerge when one
particle has a positive energy near 3c2 and the other particle has a
negative energy near −c2. Since 3c2 is third times as the ordinary rest
energy c2, such an ultra-relativistic continuum state rarely gives ob-
stacles in the variational calculations. On the other hand, the critical
configuration that causes problems is that one particle is an ordinary
electronic state around c2 and the other particle is a positron state
around −c2. The total energy of this configuration is c2+(−c2) 0
which is far away from 2c2. In the regular Hamiltonian, however, these
roots seep into the region of the electronic bound states as increasing
the basis space. These roots may unphysically couple with the con-
tinuum states near the electronic bound states. In contrast, in the in-
verse Hamiltonian method, most of these roots around c2+(−c2) 0 are
driven into the negative energy region with a sufficiently large energy
shift. Therefore, the CS technique is only needed to address the con-
tinuum dissolution problem.

We classify the three-type energies [22,23]; II (Inverse-Inverse), IR
(Inverse-Regular), and RR (Regular-Regular) energies, denoted by EII ,
EIR, and ERR, respectively. The II and RR energies correspond to the
eigenvalues of the secular equations with the inverse and regular Ha-
miltonian, respectively. The IR energy is the energy expectation value

Fig. 1. Energy eigenvalue distributions obtained by the regular and inverse
Hamiltonian methods without complex scaling for Th88+ (Z = 90). The blue
and red points show the distributions of the RR- and II-energies, respectively, at
the FC orders: n = 2, 4, and 6. The pink vertical lines indicate the positions of
the 11S: (1s)2, 21S: (1s)(2s), and 31S: (1s)(3s) states. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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of the regular Hamiltonian using the wave function obtained
by the inverse Hamiltonian method. Note that,
if H H|Re( ( )| ( ) | ( ) )| |Im( ( )| ( ) | ( ) )|w w

† † and
H H| ( )| ( )| ( ) | ( ) ( )|w w

2 H ( ) ( )w are roughly satisfied,
then the imaginary parts of II- and IR-energies become almost same
values.

In the inverse Hamiltonian method, since the r.h.s. of Eq. (5) in-
cludes the H 2 (H-square) integrations, the complex-scaling H-square
quantity

= H H H( ) ( ) ( ) ( ) | ( ) ( ) ( ) |w w w
2 2 (6)

is simultaneously evaluated, where ( ) is assumed to be normalized.
2 is known as one of the stringent quantities to judge the exactness; 2

is always positive for approximate ( ) and zero only for the exact ( )
[32]. This is valid for the unbound DCE. This 2 can be reformed to

= E E· ,IR II IR
2 † (7)

where =E E EII IR II IR. If the solution is exact, = 02 , then
=E| | 0II IR and EII , and EIR converge to the same exact energies.

Therefore, E| |II IR is also one of the intelligible quantities to assess the
exactness.

3. Applications to He (Z = 2), Th88+ (Z = 90), and Nh111+

(Z = 113)

3.1. Free complement calculations

We applied the present method to the helium isoelectronic atoms:
He (Z = 2), Th88+ (Z = 90), and Nh111+ (Z = 113). The wave func-
tions are represented by = ( , , , )ll ls sl ss †, where l and s denote
positive-energy (large) and negative-energy (small) components. ll
means both electrons occupy positive-energy (large) components and
similar notations for ls, sl, and ss. Each component composes of a 4-
dimensional vector and is a 42 = 16 dimensional spinor.

We constructed the FC wave functions with the same manner as the
previous case [16]. We employed the g function = + + +g r r r1 1 2 12 to
eliminate the Coulomb singularity in the DC Hamiltonian. We also used
the same-form initial function 0 as the previous case [16], but here
employed the three sets of Slater functions with the exponents, (α1, α2)
= (Z, Z), (Z, Z/2), and (Z, Z/4) for electrons 1 and 2, to represent the
ground and a few low-lying excited states. The FC calculations were
performed up to order n = 6 without expanding the spin-angular parts.
The dimension M consists of Mll, Mls, and Mss for the ll, ls, and ss
components, respectively, where ls and sl are not independent:

=ls sl. Due to the symmetry of the spin-angular parts, we can cal-
culate the states corresponding to the singlet states of the nonrelativistic
case. Thus, we targeted the ground, first, and second excited states, 11S:

Table 1
Energy convergences of the FC theory for Th88+ (Z = 90) with the regular and inverse Hamiltonian methods assisted by the CS technique. RR-, II-, and IR-energies of
the ground and excited states are summarized at each order of the FC theory with w = c2 and = 0.05. |ΔEII-IR| at each order and ΔERef and ΔENonrel at n = 6 are also
given. All data represented in atomic units (a.u.).

na M (Mll, Mls, Mss)b Regular Inverse |ΔEII-IR| c

Re(ERR(θ)) Im(ERR(θ)) Re(EII(θ)) Im(EII(θ)) Re(EIR(θ)) Im(EIR(θ))

Ground state: 11S:(1s)2

1 48 (16,16,16) −9167.007 04 4.066×10−2 −9166.649 36 1.408×10−2 −9166.920 28 1.408×10−2 0.270 9
2 166 (52,57,57) −9166.964 96 2.262×10−2 −9166.738 94 −1.208×10−2 −9166.930 68 −1.208×10−2 0.191 7
3 492 (127,157,208) −9166.929 43 2.217×10−2 −9166.812 71 −8.396×10−3 −9166.929 74 −8.396×10−3 0.117 0
4 1118 (306,343,469) −9166.932 48 −1.587×10−3 −9166.846 88 −6.080×10−3 −9166.929 21 −6.080×10−3 0.082 3
5 2400 (666,684,1050) −9166.927 34 −6.992×10−4 −9166.867 62 −4.438×10−3 −9166.926 80 −4.438×10−3 0.059 2
6 4404 (1259,1209,1936) −9166.927 63 −6.551×10−4 −9166.878 92 −3.552×10−3 −9166.927 88 −3.552×10−3 0.049 0

Ref. [35]d −9166.927 2 −9166.927 2 −9166.927 2
Ref. [28]d −9166.927 29 −9166.927 29 −9166.927 29
Nonrelativistic −8043.907 56 −8043.907 56 −8043.907 56
ΔERefe −0.000 34 0.048 37 −0.000 59
ΔENonrelf −1123.020 07 −1122.971 35 −1123.020 31

First excited state: 21S:(1s)(2s)
1 48 (16,16,16) −5783.275 88 -1.043×100 −5783.146 94 6.919×10−1 −5784.457 44 6.918×10−1 1.310 5
2 166 (52,57,57) −5782.777 44 8.194×10−3 −5782.690 47 1.823×10−3 −5782.740 14 1.823×10−3 0.049 7
3 492 (127,157,208) −5782.740 40 3.364×10−3 −5782.712 68 −4.722×10−4 −5782.736 21 −4.722×10−4 0.023 5
4 1118 (306,343,469) −5782.737 57 −3.295×10−4 −5782.719 41 −3.600×10−4 −5782.736 02 −3.600×10−4 0.016 6
5 2400 (666,684,1050) −5782.735 74 −3.431×10−4 −5782.723 57 −2.456×10−4 −5782.735 85 −2.456×10−4 0.012 3
6 4404 (1259,1209,1936) −5782.735 72 −9.669×10−4 −5782.725 84 −6.551×10−5 −5782.734 33 −6.551×10−5 0.008 5

Nonrelativistic −5041.750 20 −5041.750 20 −5041.750 20
ΔENonrel.f −740.985 52 −740.975 63 −740.984 13

Second excited state: 31S:(1s)(3s)
1 48 (16,16,16) −5118.706 59 -2.555×100 −5114.305 20 3.718×100 −5120.206 34 3.717×100 5.901 1
2 166 (52,57,57) −5118.206 74 1.486×10−2 −5118.197 11 −2.449×10−2 −5118.388 16 −2.449×10−2 0.191 1
3 492 (127,157,208) −5118.226 17 1.651×10−3 −5118.217 60 −4.567×10−4 −5118.224 35 −4.567×10−4 0.006 7
4 1118 (306,343,469) −5118.224 00 1.344×10−4 −5118.219 01 −8.023×10−5 −5118.223 50 −8.023×10−5 0.004 5
5 2400 (666,684,1050) −5118.223 50 −5.303×10−5 −5118.220 14 −4.707×10−5 −5118.223 37 −4.707×10−5 0.003 2
6 4404 (1259,1209,1936) −5118.223 40 −6.649×10−5 −5118.220 71 −2.837×10−5 −5118.223 17 −2.837×10−5 0.002 5

Nonrelativistic −4490.576 16 −4490.576 16 −4490.576 16
ΔENonrel.f −627.647 25 −627.644 56 −627.647 02

a The order of the FC theory.
b M is the total dimension of the FC theory and Mll, Mls, and Mss are the dimensions of ll, ls, and ss components, respectively.
c =E E ERe( ( )) Re( ( ))II IR II IR .
d Value of parameter c is different from the present calculations.
e Energy differences (real parts) between E ( )IR of the FC theory at n = 6 and those of the Ref. [28].
f Energy differences (real parts) between E ( )IR of the FC theory at n = 6 and nonrelativistic energies calculated for this paper.
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(1s)2, 21S:(1s)(2s), and 31S:(1s)(3s), in the present work.
We used the value c = 137.035 999 679 [33]. In all the tables and

figures, the origin of the total energies is set to +c w2 2 without noti-
fication. We employed the energy shift =w c2 for all the calculations of
the inverse Hamiltonian method.

3.2. Energy distributions by the regular and inverse Hamiltonian methods
without complex scaling

We first applied the regular and inverse Hamiltonian methods
without complex scaling. Fig. 1 plots all the eigenvalues of the regular
(RR-) and inverse (II-) energies with the energy range: −18,000 to 0
a.u. for Th88+ at FC orders n = 2, 4, and 6, where c2 is 18778.865 a.u.

In the regular Hamiltonian method, the unphysical roots appeared
at n = 2 and they grew rapidly as increasing the FC orders. However,
the physical solutions surely exist in the energy spectra due to satisfying
the FC balance [16]. However, one must distinguish the physical so-
lutions embedded in the unphysical roots. This task is not generally
easy especially in higher order FC calculations.

In contrast, in the inverse Hamiltonian method, no unphysical roots
existed around the target electronic states at n = 2 and 4. However, at
n = 6, a few unphysical roots were observed among 11S:(1s)2, 21S:(1s)
(2s), and 31S:(1s)(3s) states and also below the ground state. Thus,
unphysical roots may emerge even in the inverse Hamiltonian method
especially when a small energy shift w is employed and/or a large
number of complement (basis) functions are used. This would be due to
the continuum dissolution problem rather than the unbound problem of
the DC Hamiltonian. To eliminate such unphysical roots, one way is to
employ a larger energy shift w in the inverse Hamiltonian method
without complex scaling. This way is practically important. However,
the CS technique combined the inverse Hamiltonian method is more
straightforwardly useful to address this problem.

3.3. Convergence of the FC theory with the regular and inverse Hamiltonian
methods assisted by the complex scaling technique

First, we examined the convergences of the FC calculations with the
regular and inverse Hamiltonian methods assisted by the CS technique.
Table 1 summarizes the RR-, II-, and IR-energies of the FC calculations
at n = 1 to 6 for 11S:(1s)2, 21S:(1s)(2s), and 31S:(1s)(3s) states of Th88+

with the rotation angle = 0.05. The reference ground-state energies
[28,34,35] and the nonrelativistic energies [36] were also given for
comparison.

In the regular Hamiltonian method, the real parts of the RR-energies
approached to their correct energies as increasing the FC orders for all
three states. However, they did not always approach from above, i.e.
the Ritz variational property does not always hold. The imaginary parts
were 10−4~10−5 a.u., which were quite small compared to their real
parts 103~104 a.u. However, their amplitudes cannot be ignored since
they are the same order as chemical accuracy, i.e. 1 kcal/
mol 1.6×10−3 a.u.

In the inverse Hamiltonian method, the real parts of the II-energies
always satisfied the Ritz variational property, i.e. they converged to the
exact values from above though this feature is not theoretically guar-
anteed due to the non-Hermite complex Hamiltonian. On the other
hand, the real parts of the IR-energies were not always approaching to
the exact values from above but their values were more accurate than
those of the II-energies. Those IR-energies were −9166.927 88–0.003
55 i, −5782.734 33–0.000 07 i, and −5118.223 17–0.000 03 i a.u. for
the 11S:(1s)2, 21S:(1s)(2s), and 31S:(1s)(3s) states at n = 6, respec-
tively. Similar to the RR-energies, the imaginary part of the ground
state was 10−3 order and those of the excited states were 10−5 order.

Table 1 also summarizes =E E EII IR II IR at each FC order. For
all three states, ERe( )II IR were always positive, i.e. E ERe( ) Re( )II IR ,
and EII IR monotonically converged to zero as increasing the FC or-
ders. EII IR for the excited states were better than those of the groundTa
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Fig. 2. Complex energy eigenvalue distributions obtained with the regular and inverse Hamiltonian methods assisted by the CS technique for He (Z = 2), Th88+

(Z = 90), and Nh111+ (Z = 113). The left and right figures show the distributions of the RR- and II-energies, respectively, at the FC order: n = 6 with M (Mll, Mls,
Mss) = 4404 (1259,1209,1936) with the rotation angle θ = 0.01, 0.05, 0.1, and 0.2. The horizontal and vertical axes represent the real and imaginary parts of the
complex energy, respectively. The points indicated by the pink lines show the 11S: (1s)2, 21S: (1s)(2s), and 31S: (1s)(3s) states. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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states. It implies that both II- and IR-energies approached to the exact
energies at high FC orders and the excited states were more accurately
calculated than the ground state.

3.4. FC calculations with the regular and inverse Hamiltonian methods
assisted by the complex scaling technique for He, Th88+, and Nh111+

We next applied the FC theory to He and Nh111+ in the same way as
Th88+ with the regular and inverse Hamiltonian methods assisted by
the CS technique. Table 2 summarizes the RR-, II-, and IR-energies of
the FC calculations at n = 6 for 11S:(1s)2, 21S:(1s)(2s), and 31S:(1s)(3s)
states. We employed the rotation angle = 0.05 for He and Th88+

and = 0.01 for Nh111+. For heavy elements, a small rotation angle
may be enough in the inverse Hamiltonian method with a large energy
shift since their electronic states become isolated from the unbound
roots.

The real parts of the IR-energies were −2.903 867 34, −9166.927
88, and −16206.510 6 a.u. and the energy differences from Ref. [28]
ΔERef. were −0.000 010 5, −0.000 59, and −0.001 80 a.u. for the
ground states of He, Th88+, and Nh111+, respectively. Thus, the abso-
lute total energies were slightly lower and better than those of Ref. [28]
in variational sense. EII IR were 0.000 064 0, 0.000 005 4, and 0.000
001 3 a.u. for the 11S:(1s)2, 21S:(1s)(2s), and 31S:(1s)(3s) states of He,
respectively. Those for Th88+ were 0.049 0, 0.008 5, and 0.002 5 a.u.
and those for Nh111+ were 0.582 0, 0.064 5, and 0.016 1 a.u., re-
spectively. Thus, all for three atoms, the solutions of the excited states
converged to their exact solutions more rapidly than those of the
ground states. The relativistic effects of the excited states are generally
smaller than those of the ground states. Since the Rydberg 2s, 3s, …
electrons of the excited states are far apart from the nucleus, their re-
lativistic kinetic energies are small in comparison with that of the 1s
electron. The solutions of the excited states, therefore, would be more
easily calculated than that of the ground state. The energy differences
ΔENonrel. between the relativistic and nonrelativistic energies were less
than 1 mH for the ground state of He; only 0.01% to the total energy. It
was −1123.020 31 a.u. for Th88+; 12.3% to the total energy. For
Nh111+, it reached −3507.978 1 a.u.; 21.6% to the total energy.

Fig. 2 shows the distributions of the complex energy eigenvalues of
the regular (RR-) and inverse (II-) energies at n = 6 with θ = 0.01,
0.05, 0.1, and 0.2 for He, Th88+, and Nh111+. In the regular Hamilto-
nian method, the physical solutions almost located on the real axis
independent on θ although many unphysical roots existed around the
electronic bound states. As increasing the FC orders, the number of such
unphysical roots increased and they formed spectra lines proportional
to θ. Thus, the physical solutions are distinguishable from the un-
physical roots even in the regular Hamiltonian method. However, this
task may become difficult for the calculations at higher FC order and/or
for more general complicated systems. On the other hand, since the
inverse Hamiltonian method is free from the unbound problem, the
continuum dissolution problem just remains in the complex plane. A
small rotation angle, therefore, might be enough compared to the reg-
ular case. As shown in Fig. 2, there were no or only a few unphysical
roots around the ground and low-lying excited states. Their physical
electronic states were clearly distinguishable. Their solutions were ob-
tained more accurately and stably than those of the regular Hamilto-
nian case.

Note that we did not discuss the definite values of the imaginary
parts in details since their values are artifact and physically mean-
ingless. To determine the resonance energies (especially imaginary
parts) more precisely, it would be efficient to draw the trajectories
and find stationary points. However, this process is beyond the present
purpose. Even without such a process, the energies converged to the
correct solutions as increasing the FC orders almost independent on .

4. Concluding remarks

In this paper, we introduced the complex scaling technique in the
inverse Hamiltonian method that was used in our previous paper [16]
to correctly solve the many-electron DCE with the free complement
(FC) theory. This method could resolve both (1) the unbound problem
of the DC Hamiltonian and (2) the continuum dissolution problem ex-
isted in the method of solving the DCE. The inverse Hamiltonian
method pushed the most of unbound solutions into the negative energy
region with a sufficiently large energy shift. Further, combining with
the CS technique, the physical bound solutions could be clearly dis-
tinguished in the continuum sea. The electronic bound states could be
more stably and accurately computed than the regular case due to a
weak coupling with the continuum.

We examined this method for the ground and low-lying excited
states of the helium isoelectronic atoms: He, Th88+, and Nh111+. In the
present calculations, the best real absolute energies of the 11S:(1s)2,
21S:(1s)(2s), and 31S:(1s)(3s) states were calculated, respectively, to be
−2.903 867 34, −2.146 086 10, and −2.061 380 02 a.u. for He,
−9166.927 88, −5782.734 33, and −5118.223 17 a.u. for Th88+, and
−16206.510 6, −10274.821 6, and −9038.126 01 a.u. for Nh111+.
The present new methodology would be useful for more complex many-
electron systems.
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