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ABSTRACT
The scaling function g of the scaled Schrödinger equation (SSE) is generalized to obtain accurate solutions of the Schrödinger equation (SE)
with the free complement (FC) theory. The electron–nuclear and electron–electron scaling functions, giA and gij, respectively, are generalized.
From the relations between SE and SSE at the inter-particle distances being zero and infinity, the scaling function must satisfy the collisional
(or coalescent) condition and the asymptotic condition, respectively. Based on these conditions, general scaling functions are classified into
“correct” (satisfying both conditions), “reasonable” (satisfying only collisional condition), and “approximate but still useful” (not satisfying
collisional condition) classes. Several analytical scaling functions are listed for each class. Popular functions riA and rij belong to the reasonable
class. The qualities of many electron–electron scaling functions are examined variationally for the helium atom using the FC theory. Although
the complement functions of FC theory are produced generally from both the potential and kinetic operators in the Hamiltonian, those
produced from the kinetic operator were shown to be less important than those produced from the potential operator. Hence, we used only
the complement functions produced from the potential operator and showed that the correct-class gij functions gave most accurate results
and the reasonable-class functions were less accurate. Among the examined correct and reasonable functions, the conventional function rij
was worst in accuracy, although it was still very accurate. Thus, we have many potentially accurate “correct” scaling functions for use in FC
theory to solve the SEs of atoms and molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077495

I. INTRODUCTION
Quantum mechanics describes the central principles that gov-

ern chemistry.1 In particular, the non-relativistic Schrödinger equa-
tion (SE) and the relativistic Dirac equation (DE) represent the gov-
erning principle of chemistry. Therefore, to find a general method of
solving these equations is a central problem in theoretical chemistry.
SE for atoms and molecules is given by

(H − E)ψ = 0, (1)

where the Hamiltonian H is written as

H = −∑i
1
2
Δi −∑A

1
2
ΔA −∑i,A

ZA

riA
+∑i<j

1
rij

+∑A<B
ZAZB

RAB
. (2)

The first two terms represent the kinetic operators of electrons
and nuclei, respectively, and the next three terms represent the

Coulombic potentials among the electrons and nuclei. The indices
i, j, and A, B represent electrons and nuclei, respectively. riA, rij,
and RAB denote the electron–nucleus (e–n), electron–electron (e–e),
and nucleus–nucleus distances, respectively. ZA denotes the nuclear
charge of nucleus A. These Coulombic potentials are singular at r0
where the two particles collide with each other.

The variational principle given by

⟨δψ∣H − E∣ψ⟩ = 0 (3)

is believed to be equivalent with SE, as understood from Eq. (1). This
is true in general. However, when we want to solve SE using the
variational principle, we encounter a difficulty. We explain this as
follows: When we try to solve SE using the variational principle, the
trial wave function must have the exact structure:2,3 namely, it must
include the exact wave function within its variational space. Because
the exact wave function should be a functional of the Hamiltonian,
as understood from SE given by Eq. (1), the trial function having the
exact structure2,3 is written, in general, as ψ(H). We expand ψ(H)
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formally with Taylor expansion, ψ(H) = [c0 + c1H + c2H2 + ⋅ ⋅ ⋅]ϕ0,
where {ci} are expansion coefficients and ϕ0 is some arbitrary initial
function. When we insert this expression into Eq. (3), we have an
integral expressed like ⟨ϕ0∣Hm∣ϕ0⟩ m ≥ 3, which diverges to infinity
for the existence of the Coulombic potentials in the Hamiltonian.3,4

Thus, the variational equation breaks down and the equivalence
between SE and variational principle breaks down.

To overcome this divergence difficulty, one of the authors
introduced3 in 2004 the scaled Schrödinger equation (SSE) given by

g(H − E)ψ = 0, (4)

where g is a scaling function that eliminate the divergence
difficulty.3,4 g must be positive and must satisfy

lim
r→r0

gV = a, (5)

with r0 being the collisional point and a being a non-zero finite con-
stant, to assure that SE and SSE have the same set of solutions. We
have used many different g functions that are appropriate to the dif-
ferent systems. They are dependent on the coordinate system used
and affect the efficiency of the calculations. A simple general choice
was

g =∑
i,A

riA +∑
i<j

rij, (6)

which is natural, considering the forms of the Coulombic potentials
given by Eq. (2), because the g function works to cancel the diverging
Coulombic potential at the collisional point r0. An important conse-
quence of introducing SSE is that the variational principle associated
with SSE given by

⟨δψ∣g(H − E)∣ψ⟩ = 0 (7)

does not meet the divergence difficulty. Thus, SSE and the varia-
tional principle given by Eq. (7) become a useful combination of the
principles for calculating the exact solutions of SE or SSE of atoms
and molecules. As a result, we have proposed the free complement
(FC) theory (first called free ICI theory) for solving SE for atoms and
molecules.3,4

FC theory has been applied in two different ways. One is to use
the variational principle when integral evaluations are possible. The
FC variational theory straightforwardly gave the essentially exact
solutions of SE. For example, we have applied it to (i) one electron H
and H2

+ in Born–Oppenheimer (BO), non-BO, non-relativistic, and
relativistic equations and in different situations,5,6 (ii) to the helium
atom using different g functions,7 and (iii) to hydrogen molecule,8
Li, Be,9 and C(sp3),10 obtaining the super-accurate results for all.
However, integral evaluations were possible only for small atoms
and molecules. When integral evaluations are not possible, we pro-
posed to use the local SE (LSE) itself as a deterministic equation, in
combination with the sampling-type methodology. We referred to
this method as the FC-LSE method.11 Because FC theory is a poten-
tially exact theory, the constancy of the local energy is expected at
high orders of FC theory.12 Furthermore, since chemistry is local,
we can utilize the inter-exchange theory13 that helps to reduce the
labors of antisymmetrizations that become heavy tasks in the calcu-
lations of large systems. Accurate results of the FC-LSE theory have
been reported to the size of the molecules like formaldehyde.4,13,14 In
such calculations, we have utilized many established methods in the
sampling-type methodologies.15–18

Recently, we proposed the FC sij theory based on the choice,19

gij = sij, sij = r2
ij, (8)

which makes variational calculations possible for general atoms and
molecules, because the relation

sij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2

= r2
i + r2

j − 2xixj − 2yiyj − 2zizj (9)

guarantees that the wave functions of FC sij theory are written
entirely with the products of one-electron functions alone. They are
separable into one-electron terms when we integrate with the coor-
dinates of electrons i and j. Then, the calculations of the FC sij theory
can be performed using only one- and two-electron integrals like
in most conventional quantum chemistry codes. We are testing its
potentiality.

In this paper, we will propose general scaling functions g that
are different from those we have utilized so far. From the compari-
son between SE and SSE, the general scaling functions must satisfy
not only the condition given by Eq. (5) but also the condition given
in Sec. II. The general scaling functions are classified according to
whether they satisfy these two conditions. Test applications will be
done for the helium atom using the variational principle for fix-
ing the parameters included in the individual g functions. Accurate
scaling functions introduced in this paper have high potentiality of
giving more accurate wave functions than before, resulting in a faster
convergence of FC theory to the exact solutions of SE. This is partic-
ularly important in the FC-LSE approach. Partial summaries of the
present studies were given in the annual reports of the Computer
Center of the Institute of Molecular Science, Okazaki.20

II. GENERAL SCALING FUNCTIONS AND LIMITING
CONDITIONS

The scaling function g of SSE plays a central role for eliminating
the divergence difficulty of the original variational equation (3) by
giving a new variational formula given by Eq. (7).3 It also describes
the local interactions of the two colliding particles and, therefore, is
related to the inter-particle distances and the natures of the particles
like charges and spins. To give a wider freedom to the g function
than the one given by Eq. (6), we generalize it as

g =∑
i,A

giA(riA) +∑
i<j

gij(rij) (10)

and consider its general behaviors and properties. In Eq. (10), giA
represents the e–n interaction and gij represents the e–e interaction.
In FC theory, the scaling functions must work not only to prevent
the divergence difficulty but also to describe the quantum physics of
the inter-particle interactions. As a result, they accelerate the con-
vergence rate of FC theory to the exact wave function. Thus, the
functions giA and gij have, in some sense, the roles of complementing
the concepts of the orbitals and geminals, respectively, considered
for the e–n and e–e pair interactions. Therefore, by examining the
scaling functions from a general point of view, we may be able
to advance the accuracy of the theory. This is a motivation of the
present study.

Let us consider the limiting conditions that the general scaling
functions must satisfy. First, we consider the necessary condition at
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the collisional region of the charged particles. Kato considered the
physics in detail for the first time, as summarized in his famous study
on the cusp conditions.21 Kato’s cusp conditions and the higher-
order conditions studied by Rassolov and Chipman22 and others23,24

represent some of the few known exact explicit formulas that the
exact wave function must satisfy. Kato’s cusp condition is most
important and describes the correct first derivatives of the wave
function with respect to the inter-particle distances riA and rij in the
collisional regions.

FC theory produces the exact wave function from approximate
ones. Therefore, when we apply FC theory to some approximate
function that does not satisfy the cusp condition, we obtain the wave
function that satisfies the cusp condition. To obtain such a correct
wave function, the dependences of the giA and gij functions at the
collisional point r0 must be proportional to riA and rij, respectively.
In particular,

giA = riA +O(r2
iA), gij = rij +O(r2

ij), (11)

where O(r2) represents the higher order dependence on r. We refer
to this condition as the collisional or coalescent condition. The g func-
tion that satisfies Eq. (5) also satisfies this condition. If the g function
used in FC theory satisfies this condition, the resultant wave function
is guaranteed to satisfy the e–n and e–e cusp conditions, indepen-
dent of the quality of the initial function. For example, this is true
even when the initial function is written using only Gaussian func-
tions. The g function given by Eq. (6) satisfies this condition for the
e–n and e–e collisional regions. However, the sij function given by
Eq. (8) does not satisfy this condition at the e–e collisional region;
hence, this function is approximate. Note that the FC wave function
satisfies not only the Kato’s cusp condition but also the higher-order
ones24 because it includes higher-order complement functions that
include higher-order terms of giA and gij.

Next, we consider the necessary condition when the inter-
particle distance becomes large enough and so the collision would
never occur. In such a situation, the g function becomes unnecessary
and SSE should reduce to the original SE, namely,

lim
riA→∞

giA(riA) = c, lim
rij→∞

gij(rij) = c, (12)

where c is a positive finite constant like unity. We refer to this con-
dition as the asymptotic condition. This condition has not received
much attention before but is important as will be shown below.

Now, we refer to the g functions that satisfy both collisional and
asymptotic conditions as “correct” functions. Between the collisional
and asymptotic conditions, the former is more important energeti-
cally than the latter. Therefore, we refer to the g functions that satisfy
only the collisional condition as “reasonable” g functions. When the
g function is composed of the functions like the sij function given by
Eq. (8), it does not satisfy the collisional condition. Therefore, when
the initial wave function of FC theory is non-correlated, the resultant
wave function does not satisfy the Kato’s e–e cusp condition. There-
fore, we refer to such functions as “approximate” g functions. Many
examples of the g functions belonging to each class will be shown in
Sec. III.

Here, we note that the distinction between the “correct” and
“reasonable” functions is based on the introduction of SSE, which
gives a clear reasoning for the asymptotic condition. Furthermore, it

is remarkable that the popular function rij given by Eq. (6) belongs
to the “reasonable” class, not to the “correct” class. Thus, the present
theory suggests the existence of the gij functions that are more accu-
rate than the popular function rij in the correct class of the functions.
These points will be demonstrated in Sec. IV.

III. FUNCTIONAL FORMS OF THE SCALING FUNCTIONS
Here, we list many examples of correct, reasonable, and approx-

imate scaling functions. For brevity, we collectively refer to the giA
and gij functions as gpq functions.

A. Correct scaling function
The following five functions are studied in this paper as cor-

rect scaling functions that satisfy both collisional and asymptotic
conditions:

gpq = 1 − exp(−γrpq), (13a)

gpq = rpq/(rpq + a), (13b)

gpq = Ei(−γ1rpq − γ2) − Ei(−γ2), (13c)

gpq = arctan(γrpq), (13d)

gpq = tanh(γrpq). (13e)

These functions were listed from the mathematical handbooks from
the knowledge of the two limiting conditions given by Eqs. (11) and
(12). The Ei function of Eq. (13c) is given by Ei(x) = −∫ ∞−x e−t/t dt.
The parameters γ, a, and b are normally positive and depend on
the nuclear charge for the e–n case and on the singlet and triplet
couplings for the e–e case. Furthermore, in the case of giA, the
parameter γ of Eq. (13a), for example, may become negative to some
extent when it works to reduce the orbital exponent to improve
the wave function. Figure 1 illustrate the plots of some of these

FIG. 1. Schematic plots of some of the functions used in this paper as the scaling
functions of the scaled Schrödinger equation.
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functions against r. All the above functions are proportional to r
near r = 0 [Eq. (11), collisional condition] and approach unity or
some constants as r increases [Eq. (12), asymptotic condition].

The functions of Eqs. (13a), (13b), and (13d) were used by
Nooijen and Bartlett in the study of the transformed Hamiltonian.25

The function (13b) was previously considered by one of the authors3

as a candidate of the gij function. The Ei function was examined
by Davis and Maslen26 for the accurate calculations of atoms. In
addition, it was used efficiently by us in the highly accurate FC calcu-
lations of the helium atom.7 Hirata and others demonstrated some
of these functions to be very useful in the study of the explicitly
correlated second-order many-body perturbation theory.27,28 They
efficiently calculated the integrals including these geminals using the
Monte Carlo method29 with the Metropolis algorithm.15,16 A Slater-
type geminal, exp(−γrij), was studied by Ten-no30–33 in the scope
of the R12, F12 theory34–38 instead of the Gaussian-type geminal
exp(−γr2

ij) introduced by Boys39 and Singer.40 Some of the functions
listed above, particularly those like Eq. (13b), have been used as Jas-
trow factors41 in quantum and variational Monte Carlo studies,13,14

giving accurate results.42–44 Bouabca, Braïda, and Caffarel45 intro-
duced the multi-Jastrow functions to efficiently describe the local
correlations of different physics. Braïda et al.46 proposed a quan-
tum Monte Carlo method with the Jastrow-valence bond functions
and applied it successfully to the V state of ethylene.47 However,
many of these wave functions could not become exact because, as
shown by Fillippi and Umrigar,43 the wave function constructed
using a nonsymmetrical Jastrow factor yields a wave function that
is not an eigenstate of the spin-squared operator S2; alternatively,
the use of a symmetric Jastrow factor violates the e–e cusp con-
ditions for either parallel or antiparallel spins. This is different
from the potentially exact wave functions produced by the present
FC theory.

It would be interesting to discuss the connection and distinc-
tion between the scaling function g of the present paper and the
correlation factors reported in the past as cited above. The scaling
function of this paper was defined when SSE was introduced in 2004.
It has a clear origin of eliminating the divergence difficulty of the
variational equation originating from SE. Its physics is closely related
to the inter-particle collisions among electrons and nuclei in atoms
and molecules. On the other hand, the correlation factors reported in
the past were defined like the variational functions related to rij and
their physics were different case by case. For example, in the R12
and/or F12 theories, they were related to describing well the cusp
condition and so may have a similar origin. However, the FC the-
ory based on SSE has been formulated along the potentially exact
formalism to reach the exact solutions at a limit.

It is interesting to compare these functions in the power series
expansion forms as

1 − exp(−r) = r − 1
2

r2 + 1
6

r3 − 1
24

r4 + 1
120

r5 +O(r6), (14a)

r
r + 1

= r − r2 + r3 − r4 + r5 +O(r6), (14b)

Ei(−er − 1) − Ei(−1) = r − er2 + 5
6

e2r3 − 2
3

e3r4 + 13
24

e4r5 +O(r6),
(14c)

arctan(r) = r − 1
3

r3 + 1
5

r5 +O(r6), (14d)

tanh(r) = r − 1
3

r3 + 2
15

r5 +O(r6), (14e)

where e in Eq. (14c) is Napier’s constant (e = 2.718 281 828). The first
three functions include all powers of r, whereas the latter two include
only the odd powers of r.

Because atoms and molecules are complex many-particle sys-
tems, g functions of different curvatures may be necessary to
describe real systems. Therefore, the scaling function composed of
multiple g functions would be useful to describe many-electron sys-
tems. In this paper, we consider the following multiple functions:

gpq =∑
k

ck[1 − exp(−γkrpq)], (15a)

gpq = c1 ⋅ [1 − exp(−γ1rpq)] + c2 ⋅ arctan(−γ2rpq), (15b)

gpq = c1rpq/(rpq + a) + c2[1 − exp(−γrpq)], (15c)

gpq = c1rpq/(rpq + a) + c2 arctan(γrpq), (15d)

gpq = c1rpq/(rpq + a1) + c2rpq/(rpq + a2), (15e)

gpq = c1[Ei(−γ1rpq − γ2) − Ei(−γ2)] + c2rpq/(rpq + a). (15f)

Here, we combined these different functions for not increasing the
size of the calculations: single gpq functions were replaced with linear
combinations of multiple gpq functions to describe complicated rpq
dependences. Although using these multiple gpq functions indepen-
dently will increase the accuracy of the results, it will also increase
the sizes of the calculations. Such calculations will be reported
separately.

B. Reasonable scaling function
We examine here the following reasonable scaling functions

that satisfy the collisional condition but do not satisfy the asymptotic
condition:

gpq = rpq, (16a)

gpq = rpq exp(−γrpq), (16b)

gpq = rpq exp(−γspq), (16c)

gpq = sin(γrpq). (16d)

In our earlier papers,3 the two-electron function rij, which is shown
in Fig. 1 in black, was used. However, this function approaches
plus infinity as rij increases without satisfying the asymptotic condi-
tion. Other gpq functions of Eq. (16) do not approach infinity as rpq
increases. The second and third functions reach some maxima and
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then converge to zero as rpq increases (see the light-blue and purple-
red curves in Fig. 1). We also try to use the sine function, assuming
that the important region is covered within the region 0 < γr < π/2
(see the light green curve in Fig. 1).

These reasonable functions are written in power series expan-
sions as

r exp(−r) = r − r2 + 1
2

r3 − 1
3!

r4 + 1
4!

r5 +O(r6), (17a)

r exp(−s) = r − r3 + 1
2

r5 +O(r6), (17b)

sin(r) = r − 1
3!

r3 + 1
5!

r5 +O(r6). (17c)

The leading term is r as in Eq. (14) for the correct functions. Since
these functions satisfy the collisional condition, they can lead to the
wave functions that satisfy the e–n and e–e cusp conditions. This is
clearly seen by comparing Eq. (17) to Eq. (11).

The multiple functions composed of different-class scaling
functions would be effective to describe complicated behaviors of
the wave functions of the many-electron system. As a trial, we will
use the g function within the reasonable functions,

gpq = c1 ⋅ rpq + c2 ⋅ sin(γrpq), (18a)

and the g functions of the correct and reasonable classes like

gpq = c1 ⋅ [1 − exp(−γ1rpq)] + c2 ⋅ sin(γ2rpq), (18b)

gpq = c1 ⋅ arctan(−γ1rpq) + c2 sin(γ2rpq). (18c)

We will test the quality of these multiple functions in Sec. IV.

C. Approximate but useful scaling functions
Here, we introduce some gij functions that are “approximate”

but useful. They are defined by using the function spq (=r2
pq) in

place of rpq. For the one-electron case, this corresponds to using the
Gaussian function instead of the Slater function. The main reason
is the easier integrability of the Gaussian function than the Slater
function.39,40,48 This is particularly so for the case of spq = sij. The
approximate functions examined in this paper are

gpq = spq, (19a)

gpq = spq exp(−γspq), (19b)

gpq = sin(−γspq), (19c)

gpq = 1 − exp(−γspq), (19d)

gpq = spq/(spq + a), (19e)

gpq = arctan(−γspq). (19f)

Although the functions given by Eqs. (19a)–(19c) do not satisfy both
the collisional and asymptotic conditions, the other functions below
satisfy the asymptotic condition. We will see that this feature of
the functions given by Eqs. (19d)–(19f) causes them to be accurate
in the actual applications to the helium atom. The function given
by Eq. (19d) is close to the Gaussian function exp(−γsij), whose
integrability was noted by Boys39 and Singer.40

We have examined the following multiple combinations of the
approximate functions:

gpq =∑
k

ck[1 − exp(−γkspq)], (20a)

gpq = c1[1 − exp(−γ1spq)] + cat arctan(−γ2spq), (20b)

gpq =∑3
k=1ckspq exp(−γkspq), (20c)

gpq =∑3
k=1ckspq

k exp(−γspq), (20d)

gpq = c1spq + c2 sin(γspq). (20e)

For the e–e gij functions, although they do not satisfy the e–e cusp
condition, the variational usage of these functions may give encour-
aging results, even in comparison with the original function rij,
when they satisfy the asymptotic condition. In addition, some of the
approximate gij functions have practical merits in the integrability
like the function sij used in the FC- sij theory.19

IV. APPLICATION TO HELIUM ATOM
USING VARIATIONAL PRINCIPLE

Helium, a two-electron atom, is a special system lying between
one- and many- (more-than-three) electron systems. This is the
atom for which Hylleraas49 performed historical calculations,
including the function r12 explicitly in the wave function. We exam-
ine here the general e–e scaling functions listed in Sec. III, fixing
the e–n scaling function to the simplest reasonable function riA.
For helium, all the analytical integrals involving the general scaling
functions are calculated analytically using the mathematical soft-
ware MAPLE.50 In contrast to the simple scaling function rij given
by Eq. (6), the general scaling functions listed above include the
parameters such as γ and a, which were energetically optimized
using the variational principle at each order (their values are given
in the footnotes of Table II). The results obtained here will be useful
in the studies of larger atoms and molecules, since these parame-
ters should be transferable depending only on the nuclear charge,
spin-multiplicity, etc., that are intrinsic to the colliding two particles.

A. Formation of the complement functions
of FC theory

FC calculations were performed using a simple initial function
ψ0 = (1s)2αβwith 1s = N exp(−αriA). Starting from this initial func-
tion, we performed the simplest ICI (SICI) recursion calculations
based on SSE to some order n as given by

ψn = [1 + Cng(H − En−1)]ψn−1, (21)
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where the Hamiltonian with the fixed nucleus is written as

H = − 1
2

∂2

∂r12 −
1
r1

∂

∂r1
− 1

2
∂2

∂r22 −
1
r2

∂

∂r2
− ∂2

∂r122 −
2

r12

∂

∂r12

− 1
2
(r1

2 + r12
2 − r2

2)
r1r12

∂2

∂r1∂r12
− 1

2
(r2

2 + r12
2 − r1

2)
r2r12

∂2

∂r2∂r12

− Z
r1
− Z

r2
+ 1

r12
. (22)

The first two lines give the kinetic operator and the last line is the
potential operator with the nuclear charge Z being 2. Then, we
expand all the functions of ψn into independent analytical func-
tions and remove all the diverging functions. Then, all the remaining
analytical functions {ϕI}, which are referred to as the complement
functions (cfns), are given independent coefficients {cI}, and the SICI
formula is finally rewritten as

ψn =
M

∑
I=0

cIϕI . (23)

This algorithm is easily formulated with the mathematical software
MAPLE.50 The FC wave function is a sum of the independent ana-
lytical functions given by the SICI formula. At large n, the function
ψn is potentially exact; thus, when we determine the coefficients {cI}
using the variational principle or some other principle, such as the
LSE method, which is equivalent to SE, we can obtain essentially
exact solutions of SE.

For the initial function composed of the Slater functions alone,
the cfns arising from the scaling functions riA and rij given by Eq. (6)
come only from the potential operators of the Hamiltonian: those
arising from the kinetic operator are the same as those arising from
the potential operator. (Note that with the Gaussian functions, we
obtain different results.) However, when we use the general scal-
ing functions given in Sec. III, the cfns are produced also from the

kinetic operator from n = 2. Therefore, we examine here the follow-
ing two ways of calculations: one is to use the cfns produced from
the potential functions alone, and the other is to use the cfns pro-
duced from both kinetic and potential operators. We refer to these
two methods as the p-alone method and p + k method, respectively.

With the p-alone method, we use only the potential operator of
the Hamiltonian, and therefore, the cfns are expressed, in general, in
a simple form as

ϕI = (1 + P12)[r1
aI r2

bI g12
cI e−αr1 e−αr2], (24)

where aI , bI , cI are non-negative integer, since if negative, it is a
diverging function. It is important to note again that this result is the
same as using the g function of the form g = r1 + r2 + r12 and replac-
ing r12 with g12 when the initial function is composed of the Slater
functions alone. On the other hand, with the p + k method, we con-
sider further the cfns that are produced through the kinetic operator
in the Hamiltonian. Since we handle many different g12 functions,
we do not initially use their explicit forms in the formulation so that
the cfns are written in the form

ϕI = (1 + P12)r1
aI r2

bI r12
cI g12

d(0)
I [∂g12/∂r12]d

(1)
I

× [∂2g12/∂r12
2]d

(2)
I . . . e−αr1 e−αr2 , (25)

where the dots indicate higher derivatives of the g12 function. These
derivative terms arise from the expressions of the kinetic opera-
tor in Eq. (22). Again, aI , bI , cI are non-negative integers from the
same reason as above. When the explicit from of the g12 function
is given, we put it in Eq. (25) and eliminate if the cfn is diverging.
Furthermore, we eliminate the redundant functions, where we keep
the functions arising from the p-alone method and arising from the
lower-order derivatives of the g12 function.

Table I shows the results of the FC calculations using the
p-alone and p + k methods for the four correct gij functions

TABLE I. Free-complement variational calculations of the helium atom using the p-alone and p + k methods with some correct and reasonable e–e scaling functions g12. n and
M are the order and dimension, respectively, and ΔE is the energy in kcal/mol relative to the exact energy −2.903 724 377 a.u. The nonlinear parameters in ψ0 and in the e–e
scaling functions were optimized for the p-alone method and are given in the footnotes of Table II. Values of ΔE smaller than 1 kcal/mol are shown in boldface.

Method of cf
n = 1 n = 2 n = 3 n = 4

g12 generation M ΔE (kcal/mol) M ΔE (kcal/mol) M ΔE (kcal/mol) M ΔE (kcal/mol)

Correct

G1 Ei(−γ(1)12 r12 − γ(2)12 ) − Ei(−γ(2)12 )
p-alone 3 7.7073 7 0.1199 13 0.017 4 22 0.001 31

p + k 4 7.7073 17 0.1117 70 0.003 04

G2 r12/(r12 + a12) p-alone 3 7.7106 7 0.1278 13 0.022 1 22 0.001 99
p + k 3 7.7106 10 0.1135 25 0.003 27

G3 arctan(γ12r12) p-alone 3 7.7806 7 0.1741 13 0.025 2 22 0.003 78
p + k 4 7.7743 19 0.1111 97 0.002 56

G4 1 − exp(−γ12r12) p-alone 3 7.7180 7 0.1361 13 0.026 0 22 0.002 88
p + k 4 7.7179 13 0.1127 34 0.003 19

Reasonable

G6 r12 exp(−γ12r12) p-alone 3 7.7221 7 0.1403 13 0.028 4 22 0.003 34
p + k 4 7.7221 13 0.1128 33 0.003 39

G8 sin(γ12r12) p-alone 3 7.7989 7 0.1802 13 0.037 8 22 0.005 47
p + k 4 7.7903 15 0.1123 47 0.003 68

G9 r12 p-alone, p + k 3 7.8388 7 0.1873 13 0.052 7
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and for the three reasonable gij functions. (The designation num-
bers G1, G2, etc., are the ones borrowed from Table II used later.) M
is the number of the cfns for the different order and method, and
ΔE is the difference in kcal/mol unit between the calculated energy
and the known exact energy7—2.903 724 377 a.u. The parameters in
the scaling functions were optimized for the p-alone method and
the same values were used for the p + k method. At n = 1, the two
methods give almost the same results, but from n ≥ 2, the results
are different. When we compare the results at the same order, the
p + k method always gives better results than the p-alone method
because the latter includes the cfns not only from the potential oper-
ator but also from the kinetic one. However, when we compare the
n = 2 result of the p + k method to the n = 3 result of the p-alone
method, the latter is always better even when the dimension M of
n = 3 of the p-alone method is smaller than that of n = 2 of the p
+ k method. This trend is also seen when we compare the n = 3
result of the p + k method to the n = 4 result of the p-alone
method, except for the cases of the g12 functions of arctan(γ12r12)
and sin(γ12r12): in the latter two cases, the numbers of the cfns M
at n = 3 of the p + k method are much larger (97 and 47, respec-
tively) than those (22 for both) of the p-alone method. This result
implies that when we compare the efficiencies of the p-alone method
and the p + k method from the number of the cfns used, the p-
alone method is more efficient than the p + k method. This result
agrees with our experiences that the cfns produced from the kinetic
operators are generally less efficient than those generated from the
potential operator. In other words, this suggests that rather than
using the cfns produced from the kinetic operator, it is better to
go higher orders using those produced from the potential operator.
These facts might be attributed to the origin of the scaling g function
in the SSE. In particular, it was introduced to eliminate the singu-
larity difficulty caused by the Coulombic potential operators in the
Hamiltonian.

Figure 2 shows more clearly the efficiency difference between
the p-alone method and the p + k method against the number M
of the cfns, which represents the actual labors of the calculations.
The vertical axis represents the accuracy of the results in the form
of log10(ΔE), and the horizontal axis shows the number of the cfns.
The straight line in this figure corresponds to the p-alone method
and the dotted line corresponds to the p + k method. First, we
note that in all the panels of Fig. 2, the straight line is more verti-
cal than the dotted line, showing that the p-alone method is more
efficient than the p + k method for all the scaling functions exam-
ined here. This comes from the fact that the cfns produced by the
potential operator of the Hamiltonian are more efficient than those
produced from the kinetic operator. When we compare in Table I
the n = 4 results of the p-alone method due to 22 cfns to the n = 3
results of the p + k method, the ΔE values are all 0.001–0.006
kcal/mol, but the p + k method uses from 25 to 97 cfns that are larger
than 22.

Thus, from the efficiency point of view on energy, the p-alone
method is recommended. Furthermore, when we use the p-alone
method, the number of the cfns at order n is the same for any scaling
functions so that we can compare the qualities of different scaling
functions from only the ΔE values on the basis of the same number
of the cfns. This is not possible with the p + k method. Hence, in
the calculations below, we use the p-alone method and examine the
qualities of different scaling functions in more detail. We note, how-

ever, that for other properties different from energy, the efficiency
difference between the p + k and p-alone methods is not known yet.
This subject will be investigated for general scaling functions.

B. Examination of the e–e scaling functions listed
in Sec. III

We examine here the accuracy of many e–e scaling functions
g12 listed in Sec. III. We performed extensive FC variational calcu-
lations of the He atom using many e–e scaling functions listed in
Sec. III with the p-alone method, and the results are summarized in
Table II. The left half of Table II deals with the single g12 functions,
while the right half deals with the multiple g12 functions. In the first
two columns, the designation number and the explicit formula of
each g12 function are given for the groups of the correct (G1 to G5
and G16 to G21), reasonable (G6 to G9 and G22 to G24), and approxi-
mate (G10 to G15 and G25 to G29) functions. The calculated energy is
then given by the energy difference ΔE in kcal/mol from the exact
energy7—2.903 724 377 au for the calculations of different orders
(n = 1, 2, 3, and 4) with the dimensions (the number of cfns) of
M = 3, 7, 13, and 22, respectively. We note that the dimensions M are
very small, demonstrating the efficiency of FC theory. The optimized
values of the variational parameters, such as α and γ, are summa-
rized in the footnotes of Table II. It is very important to note that the
ordering of the g12 functions within each class in Table II is based
on the accuracy of the calculated result obtained at the third-order
calculations (n = 3).

First, let us see the ordinary function, G9, r12, given by Eq. (6).
This function was listed last of the “reasonable” functions. Among
the correct and reasonable functions, the function r12 gave the worst
result at all orders n of the FC calculations. This is attributed to
the incorrect asymptotic behavior (i.e., it approaches infinity as r12
increases). However, we must note that the result of the r12 func-
tion is still very accurate. Rather, the present result implies that even
more accurate scaling functions exist in the correct and reasonable
classes of functions.

The scaling functions G1 to G5 belong to the “correct” class. The
average values of ΔE are given at the bottom of each class. At n = 1,
the ΔE values were ∼7.7 kcal/mol for all the functions. At n = 2, 3,
and 4, the ΔE values are rapidly improved as 0.147, 0.0244, and 0.002
96 kcal/mol, respectively. An order-of-magnitude improvement was
achieved by increasing the order n by unity. The chemical accuracy
was obtained from order 2. These results of FC theory are satisfac-
tory, considering the very small dimensions of M, 7, 13, and 22.
The best result at order 3 was obtained with the Ei function (G1).
(We note again that the ordering G1, G2, etc., of g12 functions is
due to the accuracy at order 3.) Then, the order of the functions
at n = 3 was r12/(r12 + a), arctan(γr12), the well-known function,
1 − exp(−γr12), and tanh(γr12). The functions arctan(γr12) and
tanh(γr12) worked very similarly at lower orders but differently at
higher orders, as expected from the small difference in their power
series expansion forms given by Eqs. (14d) and (14e), respectively.
The rather poor behaviors of these trigonometric functions as the
correct function are attributed to the absence of the quadratic term,
−r2

12, in Eqs. (14d) and (14e), which is the origin of their poor ability
of describing higher-order cusp conditions as discussed by Klopper
et al.32 and Grüneis et al.28 and as shown by Rassolov and Chipman22

and Kurokawa et al.24

J. Chem. Phys. 156, 014113 (2022); doi: 10.1063/5.0077495 156, 014113-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Plots of ΔE in kcal/mol against
the number M of the complement func-
tions in the p-alone (normal lines)
and p + k (dot lines) method of the
free-complement variational calculations
using the scaling functions given in
Table I.

The functions G6 to G9 belong to the “reasonable” class of
scaling functions. Unlike the correct functions, these functions do
not satisfy the asymptotic condition. Although the reasonable g12
functions are less effective than the correct ones, as seen from
the average values, they are still very accurate. The function G6,
r12 exp(−γr12), certainly works better than some of the correct
functions. These reasonable g12 functions also show an order-of-
magnitude improvement inΔE upon increasing the order n by unity.
This indicates that satisfying the collisional condition is more impor-
tant energetically than satisfying the asymptotic condition. While
the collisional region is small, it is important energetically because
both the e–n attractive and e–e repulsive energies are very large

and balanced with the kinetic energy. The constancy of the local
energy is a result of a balanced cancellation of the two large energetic
components.

The functions G10 to G15 belong to the “approximate but still
useful” class of scaling functions that are composed of the function
s12. These functions are approximate, since they do not satisfy the
e–e cusp condition. The original single s12 function (G15) gave the
ΔE values at n = 2– 4 from 4.5 to 1.5 kcal/mol, much worse than
the functions of the above two classes. It does not satisfy both the
collisional condition and the asymptotic condition. However, when
we use the scaling functions G10 s12/(s12 + a), G11 arctan(γs12), and
G12 1 − exp(−γs12), we could obtain the chemical accuracy at orders
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TABLE II. Free-complement variational energies of the helium atom using different e–e scaling functions g12 (G1 to G29) of the scaled Schrödinger equation. The energy is shown
as the difference ΔE in kcal/mol from the exact energy, −2.903 724 377 a.u. Values of ΔE smaller than 1 kcal/mol are shown in boldface. n is the order of the free-complement
calculations, and M is the dimension of the complement functions. The optimized values of the parameters are given in the footnotes.

ΔE (kcal/mol) ΔE (kcal/mol)

g12

n = 1
M = 3

n = 2
M = 7

n = 3
M = 13

n = 4
M = 22 g12

n = 1
M = 3

n = 2
M = 7

n = 3
M = 13

n = 4
M = 22

Single function Multiple function
Correct Correct

G1
Ei(−γ1r12 − γ2) 7.7073 0.1199 0.0174 0.001 31 G16

c1[1 − exp(−γ1r12)]b 7.6751 0.1139 0.0125 0.001 82−Ei(−γ2)
a +c2 arctan(γ2r12)

G2 r12/(r12 + a)c 7.7106 0.1278 0.0221 0.001 99 G17 ∑3
k=1ck[1 − exp(−γkr12)]d 7.6907 0.1141 0.0137 0.001 43

G3 arctan(γr12)
e 7.7806 0.1741 0.0252 0.003 78 G18 c1r12/(r12 + a) + c2[1 − exp(−γr12)]f 7.6624 0.1143 0.0139 0.001 48

G4 1 − exp(−γr12)
g 7.7180 0.1361 0.0260 0.002 88 G19 c1r12/(r12 + a) + c2 arctan(γr12)

h 7.6622 0.1146 0.0139 0.001 50
G5 tanh(γr12)

i 7.7888 0.1775 0.0314 0.004 83 G20 c1r12/(r12 + a1) + c2r12/(r12 + a2)j 7.7106 0.1140 0.0140 0.001 34

Average 7.7411 0.1471 0.0244 0.002 96 G21
c1[Ei(−γ1r12 − γ2) − Ei(−γ2)]k 7.6629 0.1137 0.0149 0.001 31+c2r12/(r12 + a)

Average 7.6773 0.1141 0.0138 0.001 48
Reasonable Reasonable

G6 r12 exp(−γr12)
l 7.7221 0.1403 0.0284 0.003 34 G22 c1 arctan(γ1r12) + c2 sin(γ2r12)m 7.6841 0.1270 0.0146 0.002 32

G7 r12 exp(−γs12)
n 7.7970 0.1798 0.0368 0.005 38 G23 c1[1 − exp(−γ1r12)] + c2 sin(γ2r12)o 7.6673 0.1147 0.0202 0.002 35

G8 sin(γr12)
p 7.7989 0.1802 0.0378 0.005 47 G24 c1r12 + c2 sin(γr12)

q 7.7110 0.1264 0.0266 0.003 57
G9 r12

r 7.8388 0.1873 0.0527 0.006 55 Average 7.6875 0.1227 0.0205 0.002 75
Average 7.7892 0.1719 0.0389 0.005 19

Approximate Approximate
G10 s12/(s12 + a)s 9.6750 1.1592 0.2140 0.173 4 G25 ∑3

k=1ck[1 − exp(−γks12)]t 7.7865 0.1613 0.0416 0.023 7
G11 arctan(γs12)

u 11.2776 2.1144 0.4298 0.381 3 G26 c1[1 − exp(−γ1s12)] + c2 arctan(γ2s12)v 8.0484 0.3606 0.0905 0.069 3
G12 1 − exp(−γs12)

w 10.8264 1.8828 0.6285 0.469 9 G27 ∑3
k=1cks12 exp(−γks12)x 7.8972 0.3090 0.1281 0.059 5

G13 s12 exp(−γs12)
y 11.7389 2.4179 1.0657 0.712 0 G28 ∑3

k=1cks12
k exp(−γs12)z 9.3570 1.0429 0.4778 0.308 6

G14 sin(γs12)
aa 13.3194 3.9403 1.8866 1.221 9 G29 c1s12 + c2 sin(γs12)

bb 12.1132 3.0655 1.5984 1.163 0
G15 s12

cc 13.4830 4.5232 2.0568 1.488 1
a(α, γ1 , γ2) = (1.747, 0.0227, 0.138), (1.795, 0.001 89, 0.003 01), (1.816, 0.001 21, 0.000 238), (1.820, 0.0154, 0.002 00) for n = 1–4.
b(α, γ1 , γ2 , c1 , c2) = (1.748, 0.298, 0.485, 1.0000, −0.3524), (1.808, 0.143, 0.245, 1.0000, −0.3678), (1.818, 0.109, 1.533, 1.0000, 0.4598), (1.851, 0.320, 0.316, 1.0000, −0.5819) for n = 1–4.
c(α, a) = (1.749, 11.675), (1.794, 5.331), (1.816, 2.509), (1.852, 2.313) for n = 1–4.
d(α, γ1 , γ2 , γ3 , c1 , c2 , c3) = (1.747, 0.633, 0.0499, 0.0503, 1.0000, 17.5631, 8.2031), (1.806, 1.469, 0.0776, 0.0349, 1.0000, 15.1368, 41.2079), (1.830, 2.365, 0.713, 0.009 36, 1.0000, 1.2337,
26.3945), (1.850, 2.626, 0.631, 0.001 80, 1.0000, 2.5577, 133.9256) for n = 1–4.
e(α, γ) = (1.765, 0.212), (1.800, 0.237), (1.798, 0.482), (1.897, 0.418) for n = 1–4.
f(α, a, γ, c1 , c2) = (1.753, 0.872, 0.0223, 1.0000, 70.7467), (1.805, 1.509, 0.0332, 1.0000, 21.570), (1.832, 0.658, 0.004 40, 1.0000, 17.0786), (1.898, 0.720, 0.0152, 1.0000, 15.0171) for n
= 1–4.
g(α, γ) = (1.752, 0.146), (1.795, 0.238), (1.823, 0.378), (1.912, 0.332) for n = 1–4.
h(α, a, γ, c1 , c2) = (1.753, 0.970, 0.0530, 1.0000, 24.5197), (1.805, 1.311, 0.0720, 1.0000, 11.723), (1.832, 0.663, 0.0129, 1.0000, 5.7236), (1.845, 1.033, 0.008 51, 1.0000, 3.7178) for n
= 1–4.
i(α, γ) = (1.772, 0.188), (1.804, 0.183), (1.823, 0.307), (1.965, 0.230) for n = 1–4.
j(α, a1 , a2 , c1 , c2) = (1.749, 11.675, 11.675, 1.0000, 1.0000), (1.806, 175.343, 1.689, 1.0000, 0.010 26), (1.831, 71.787, 0.627, 1.0000, 0.1673), (1.805, 6.234, 0.525, 1.0000, 1.0915) for n
= 1–4, where a(1) and a(2) were optimized with the same value for n = 1.
k(α, γ1 , γ2 , a, c1 , c2) = (1.754, 0.0393, 0.226, 9.664, 1.0000, −1.3101), (1.808, 0.0395, 0.227, 9.668, 1.0000, −1.3089), (1.838, 0.0317, 0.0610, 5.346, 1.0000, −2.0701), (1.821, 0.0136, 0.001
72, 1.157, 1.0000, 0.002 731) for n = 1–4.
l(α, γ) = (1.753, 0.0671), (1.796, 0.0961), (1.831, 0.135), (1.940, 0.112) for n = 1–4.
m(α, γ1 , γ2 , c1 , c2) = (1.755, 0.523, 0.880, 1.0000, −0.1717), (1.813, 0.392, 0.557, 1.0000, −0.3642), (1.820, 0.810, 0.824, 1.0000, −0.074 76), (1.856, 0.711, 0.845, 1.0000, −0.042 12) for n
= 1–4.
n(α, γ) = (1.779, 0.008 92), (1.806, 0.007 52), (1.847, 0.0152), (1.995, 0.008 40) for n = 1–4.
o(α, γ1 , γ2 , c1 , c2) = (1.755, 0.249, 0.595, 1.0000, −0.096 74), (1.811, 0.141, 0.324, 1.0000, −0.2361), (1.842, 0.283, 0.282, 1.0000, −0.4078), (1.933, 0.332, 0.307, 1.0000, −0.2104) for n
= 1–4.
p(α, γ) = (1.781, 0.223), (1.807, 0.203), (1.851, 0.282), (1.999, 0.210) for n = 1–4.
q(α, γ, c1 , c2) = (1.768, 1.462, 0.085 20), (1.812, 1.821, 0.058 14), (1.847, 0.850, 0.5134), (2.002, 0.910, 0.2272) for n = 1–4.
rα = 1.814, 1.815, 1.905, 2.038 for n = 1–4.
s(α, a) = (1.725, 2.507), (1.753, 1.338), (1.598, 0.923), (1.556, 0.850) for n = 1–4.
t(α, γ1 , γ2 , γ3 , c1 , c2 , c3) = (1.751, 6.700, 0.827, 0.0734, 1.0000, 1.8478, 10.0675), (1.804, 16.250, 1.784, 0.108, 1.0000, 2.4567, 14.8452), (1.766, 5.584, 1.117, 0.125, 1.0000, 0.6630, 0.9127),
(1.982, 38.028, 4.442, 0.151, 1.0000, 2.4104, 40.2206) for n = 1–4.
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TABLE II. (Continued.)

u(α, γ) = (1.732, 0.517), (1.764, 0.812), (1.569, 1.115), (1.716, 1.038) for n = 1–4.
v(α, γ1 , γ2 , c1 , c2) = (1.759, 0.148, 4.182, 1.0000, 0.1447), (1.795, 0.176, 5.252, 1.0000, 0.1278), (1.735, 0.178, 3.633, 1.0000, 1.4969), (1.876, 0.170, 3.593, 1.0000, 0.7651) for n = 1–4.
w(α, γ) = (1.772, 0.361), (1.781, 0.492), (1.735, 0.513), (2.070, 0.412) for n = 1–4.
x(α, γ1 , γ2 , γ3 , c1 , c2 , c3) = (1.764, 3.291, 0.605, 0.0488, 1.0000, 0.5907, 0.3479), (1.808, 4.829, 0.965, 0.0580, 1.0000, 0.9551, 0.5580), (1.845, 6.977, 1.370, 0.0538, 1.0000, 0.7185, 0.5168),
(2.089, 9.397, 1.771, 0.0455, 1.0000, 0.6738, 0.5001) for n = 1–4.
y(α, γ) = (1.880, 0.0858), (1.806, 0.119), (2.007, 0.102), (2.205, 0.0908) for n = 1–4.
z(α, γ, c1 , c2 , c3) = (1.799, 0.240, 1.0000, −0.1266, 0.030 78), (1.804, 0.257, 1.0000, −0.1649, 0.044 23), (1.915, 0.210, 1.0000, −0.09720, 0.014 842), (2.093, 0.222, 1.0000, −0.1169,
0.021 53) for n = 1–4.
aa(α, γ) = (2.018, 0.0807), (1.938, 0.117), (2.310, 0.0913), (2.310, 0.125) for n = 1–4.
bb(α, γ, c1 , c2) = (1.974, 0.596, 1.0000, 0.6008), (1.946, 0.784, 1.0000, 0.5972), (2.341, 1.302, 1.0000, 0.2143), (2.386, 0.393, 1.0000, 1.6695) for n = 1–4.
ccα = 2.041, 1.994, 2.422, 2.496 for n = 1–4.

3 and 4. Note that these functions satisfy the asymptotic condition,
even though s12 itself does not satisfy it. If the integrals of these func-
tions are available, we can use them for general atoms and molecules
using the variational principle.

Next, we examine the results obtained by using the multiple g12
functions shown in the right half of Table II. The dimensions M of
their cfns are the same as those of the single g12 functions because the
multiple functions were expressed by a linear combination of some
single g12 functions, as expressed in Eqs. (15), (18), and (20).

The scaling functions G16 to G21 are composed of only the
correct functions. It is very important to note that at each order,
the ΔE values obtained from the multiple scaling functions are all
very similar within a given order n. In other words, the result of
the multiple function is very close to the average value of each
order, in contrast to the single function case given in the left half of
Table II. This value would be the most accurate value, i.e., the limit-
ing value at each order with the p-alone method. This demonstrates
the converging effect that occurred with the use of the multiple g12
functions.

Next, we examine the result obtained from each multiple func-
tion. The function G16 is a sum of the correct functions G4 and G3.
The energy result is certainly better than that obtained with G4 or
with G3 alone, demonstrating the collaborative effect of these two
functions. Similar collaborative effects are seen in general; that is,
when we use multiple correct functions, the accuracy is improved
in comparison to the single-function case. However, an interesting
exception can be seen for the Ei function at n = 4. The single-
function result of G1 in the left half of Table II was ΔE = 0.001 31
kcal/mol, while the corresponding multiple-function results, G21 of
right-half of Table II, were again 0.001 31 kcal/mol, the same as
above, indicating a lack of the collaborative effect. Furthermore,
ΔE = 0.001 31 kcal/mol is the best result among all the present
results. This may suggest that the Ei function is suitable for the accu-
rate descriptions of the wave functions at higher order. This was the
reason why we used the Ei function to obtain the most highly accu-
rate results of the He atom published in 2008.7 We anticipate that
the evaluation of the integrals over this function for general atoms
and molecules will become possible in the near future.

The functions G22 to G24 are the multiple functions of the rea-
sonable function sin(γ12r12) with the correct functions or with the
reasonable function r12. Again, we note the stability of the results
within the same order. The multiple functions gave much better
results than the independent functions. The last multiple function
(G24) was the worst of the three, as expected.

Finally, we examine the multiple g12 functions G25 to G29,
which belong to the “approximate” functions composed of the
s12 functions alone. Let us first emphasize that even with the s12
functions alone, we could obtain many ΔE results of chemical accu-
racy (indicated by boldface in Table II) starting from order 2.
In particular, the results of the functions G25, G26, and G27 were
ΔE = 0.16–0.36 kcal/mol at order 2, 0.128–0.0416 kcal/mol at
order 3, and 0.0237–0.0595 kcal/mol at order 4, which are useful
accurate results. Remarkably, some results are one order of mag-
nitude better than the chemical accuracy for n = 3 and 4. These
results are much improved in comparison with the results obtained
from the single approximate functions (G10 to G15), demonstrat-
ing that the multiple combinations of the scaled s12 functions can
lead to the highly accurate g12 functions. Thus, developing a useful
method for evaluating the integrals over these multiple functions will
lead to accurate variational methods for solving SEs of atoms and
molecules.

C. Cusp values and mean r 1A and r 12 separations
We examine here the e–n and e–e cusp values of the helium

atom summarized in Table III, where the way of presentation is
the same as that in Table II. The cusp values were calculated using
the expression ⟨ψ∣δ(rpq) ⋅ ∂/∂rpq∣ψ⟩/⟨ψ∣δ(rpq)∣ψ⟩ given by Pachucki
and Komasa.51 The present calculations were performed chang-
ing the e–e g12 functions while fixing the e–n giA function to
riA. Therefore, we examine first the e–e cusp values, whose exact
value is 0.5.

With the single correct functions, G1 ∼ G5, the e–e cusp value
is improved, as seen from the average value, as the order n of
FC theory increases, like roughly 0.39 (n = 1), 0.43 (n = 2), 0.49
(n = 3), and 0.49 (n = 4). However, within the same order, the e–e
cusp values are strongly dependent on the g12 function. We next
compare the e–e cusp values between the correct and reasonable G6
∼ G9 g12 functions using the average values. The average values of
the correct functions are certainly better than those of the reason-
able functions, 0.39 vs 0.37 (n = 1), 0.43 vs 0.40 (n = 2), 0.49 vs 0.46
(n = 3), and 0.49 vs 0.47 (n = 4). With the approximate g12 functions,
the e–e cusp values are all zero.

With the multiple functions, the result of the correct functions
becomes better at lower orders (n = 1 and 2) but overshoots the cor-
rect value, 0.5, at higher orders (n = 3 and 4). With the reasonable
functions, the e–e cusp values are smaller than the correct case and
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the variations against orders are similar. We will not try to explain
more details.

Next, we examine the e–n cusp values. Because the e–n giA
functions are riA for all calculations, we are examining the indirect
effects of the e–e g12 functions on the e–n cusp values, which should
be smaller than the direct effects discussed above. Compared to the
exact value of −2.0, the calculated values are all very close except for
the n = 1 case. Generally, this value becomes close to −2.0 as the
order increases for all cases of correct, reasonable, and approximate.

Finally, we examine the average e–n distance, r1A (=r2A) and
the average e–e distance, r12 of the two electrons of the helium atom.
Table IV summarizes the expectation values of these quantities. In
footnote a of Table II, we gave the calculated values of ⟨r1A⟩ and ⟨r12⟩
for the initial function ψ0 of the present FC calculations, which is
Hartree–Fock with the single-zeta Slater-type orbital52 of α = 1.6875.
We have also given these values calculated from the Hartree–Fock
wave function with the McLean and Yoshimine’s extended Slater
basis set.53 Starting from the Hartree–Fock results, we see that both
⟨r1A⟩ and ⟨r12⟩ increase as the quality of the wave function increases
by increasing the order n of the FC theory. However, from order
2, the change is very small: a saturation occurs. Furthermore, the
effect of changing the e–e scaling function on the distances, ⟨r1A⟩ and
⟨r12⟩, are quite small: only the order of the FC theory affects these
quantities. This is true even when we change the single g function
to multiple one. Interestingly, the improving effects of the approxi-
mate functions are also similar to those of the correct and reasonable
functions, although with the approximate functions, the ⟨r12⟩ value
is more slowly improved than the ⟨r1A⟩ value.

V. CONCLUDING REMARKS
In atoms and molecules, the electrons and nuclei interact

through Coulombic potentials that are singular at the collisional
regions. For such systems, the variational formula of the potentially
exact wave function of the original SE suffers from the divergence
difficulty. However, by virtue of SSE, the variational formula does
not encounter such a difficulty, allowing the exact solution of SE to
be obtained with FC theory.3,4

In this paper, we have generalized the scaling function g of SSE
and investigated its general behaviors. From the behavior in the col-
lisional region, which is related to the cusp condition, the coalescent
condition given by Eq. (11) was formulated. From the relationship
between SSE and the original SE in the non-collisional region, the
asymptotic condition given by Eq. (12) was formulated. For the g
functions to be “correct,” they must satisfy both of these two limiting
conditions. The “reasonable” g functions satisfy only the coalescent
condition. The distinction of the correct functions from the reason-
able functions based on the asymptotic condition was introduced
for the first time in the present study. We studied many analytical
functions that belong to the correct and reasonable classes. We have
shown that the correct gij functions are almost always more accu-
rate than the reasonable gij functions. The popular e–e function rij
belongs to the less-accurate “reasonable” class, and its performance
was less accurate than those of the correct functions. We also stud-
ied the functions belonging to the “approximate” class, which do not
satisfy the coalescent condition but are still practically useful. Typ-
ical approximate functions include the Gaussian-type functions39,40

and the sij (=r2
ij) function19 reported previously.

The qualities of many different e–e scaling functions were
examined using the robust variational principle for the helium atom
for which all the necessary integrals were easily evaluated without
any mathematical problems. The e–n scaling function was fixed
as giA = riA. The correct functions were generally most accurate,
followed by the reasonable functions. Among them, the popular
function rij showed the worst performance, although it was still
very accurate. This result recommends a use of the correct class of
gij functions for their high accuracy. When we constructed multi-
ple functions composed of the correct functions, the results were
consistently very accurate and stable. These results are valuable for
increasing the accuracy of FC theory. The present study may also be
considered as a generalization of the so-called geminal functions26–40

and Jastrow functions.41–47 The results of this study, for exam-
ple, the merit of using the multiple gij functions, may be useful
beyond just SSE because they can easily find applications in QMC
as well.

The “approximate” gij functions defined with sij were less accu-
rate than the correct and reasonable functions. However, when sij
was used in the framework of the correct function, a better accu-
racy was obtained. The simple primitive sij function has a remarkable
merit that it can be transformed into solely one-electron functions as
given by Eq. (9). This leads to the variational FC sij theory, which can
be performed using only one- and two-electron integrals as reported
previously.19

Now, let us consider the transferability of the scaling functions.
The popular g functions riA and rij [Eq. (6)] have no parameters
in them and are thus transferable. However, for the correct scaling
functions gpq, their parameters such as γpq should reflect the intrinsic
nature of the local interactions between particles p and q, like orbital
exponents and spin-dependent parameters; they should depend on
the cusp values intrinsic to the e–n pair (the nuclear charge) and
the e–e pair (singlet or triplet pairing),21 whereas they should not
depend strongly on other environmental factors.

In FC theory, the e–n giA function works to improve the local
electronic structure near the nucleus A; thus, the orbital exponent of
the atomic orbital of A to which the electron i belongs is improved
by the giA function, and thereby, the e–n cusp values are improved
at the same time. Therefore, the e–n giA function is not expected to
be transferable, particularly when we start from the Slater orbitals
for the initial function ψ0. However, for the e–e function gij, the ini-
tial function ψ0 of FC theory does not usually include the explicit
e–e dependence. Therefore, the gij function creates the e–e gemi-
nal function that is essentially transferable. They depend only on the
e–e singlet or triplet paring. This explains why the general functional
forms were important for the gij functions and the uses of the cor-
rect functions were important to obtain highly accurate and stable
results.

Finally, let us consider how to take advantage of the high
accuracy of the correct gij functions in applications of FC theory
to general atoms and molecules. The development of integral-
evaluation methods over the correct gij functions of general atoms
and molecules would allow straightforward variational calculations
leading to accurate predictive quantum-chemistry. However, even if
the variational approach is difficult, we already have an integral-free
general method, the LSE method,11 that uses SEs themselves at the
selected local sampling points as the deterministic equations. This
method has been successfully used in several applications.13,14 In the
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LSE method, the functional complexity of the e–e gij functions does
not matter because the values of the functions at given sampling
points are always easily calculated. FC theory usually deals with the
wave functions that are close to the exact limit; thus, the fluctuations
of the local energy ε(r) are expected to be small12 except near the
local collisional regions where the roles of the correct gij functions
are expected to be important.
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