Potential curves of the lower nine states of Li_{2} molecule: Accurate calculations with the free complement theory and the comparisons with the SAC/SAC-CI results

Cite as: J. Chem. Phys. 157, 094109 (2022); https://doi.org/10.1063/5.0101315
Submitted: 31 May 2022 • Accepted: 05 August 2022 • Accepted Manuscript Online: 05 August 2022 • Published Online: 02 September 2022
(D) Hiroshi Nakatsuji and Hiroyuki Nakashima

View Online
Export Citation

ARTICLES YOU MAY BE INTERESTED IN

Accurate Property Prediction by Second Order Perturbation Theory: The REMP and OOREMP Hybrids
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0105628
Temperature-controlled focusing of Brownian particles in a channel
The Journal of Chemical Physics 157, 084102 (2022); https://doi.org/10.1063/5.0101169
Extension of natural reaction orbital approach to multiconfigurational wavefunctions
The Journal of Chemical Physics 157, 084118 (2022); https://doi.org/10.1063/5.0098230

Meet the Lock-in Amplifiers that measure microwaves.

Find out more

Potential curves of the lower nine states of Li_{2} molecule: Accurate calculations with the free complement theory and the comparisons with the SAC/SAC-CI results

Cite as: J. Chem. Phys. 157, 094109 (2022); doi: 10.1063/5.0101315
Submitted: 31 May 2022 • Accepted: 5 August 2022•
Published Online: 2 September 2022

Export Citation

Hiroshi Nakatsujia) (D) and Hiroyuki Nakashima ${ }^{\text {b) }}$ (D)

AFFILIATIONS
Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyo-ku, Kyoto 606-8305, Japan
${ }^{\text {a) }}$ Author to whom correspondence should be addressed: h.nakatsuji@qcri.or.jp
${ }^{\text {b) }}$ Electronic mail: h.nakashima@qcri.or.jp

Abstract

The free-complement (FC) theory proposed for solving the Schrödinger equation of atoms and molecules highly accurately was applied to the calculations of the potential curves of the lower nine states of the Li_{2} molecule. The results were compared with the accurate experimental Rydberg-Klein-Rees potential curves available. They overlap completely with each other without any shift everywhere for all the states of Li_{2}. At all the calculated points on the seven potential curves ranging between -14.83 and -15.00 hartree, the average difference was only $0.0583 \mathrm{kcal} / \mathrm{mol}$ and the maximum difference was only $+0.165 \mathrm{kcal} / \mathrm{mol}$. For the vertical excitation energies from the ground state curve to the seven excited states, the differences between theory and experiment were 0.000645 eV in average and their maximum difference was -0.00720 eV . The potential properties calculated with the FC theory also agreed well with the experimental values. These results show a high potentiality of the FC theory as a highly predictive quantum chemistry theory. For comparison, as an example of the Hartree-Fock based theory popular in modern quantum chemistry, we adopted the symmetry-adapted-cluster (SAC)-configuration-interaction (CI) theory using a highly flexible basis set. While the FC theory gave the absolute agreements with experiments, the SAC-CI potential curves compare reasonably well with experiments only after shifting-down of the SAC-CI curves by $5.727 \mathrm{kcal} / \mathrm{mol}$. The differences in the excitation energies between SAC-CI and experiments were 0.00428 eV on average, and the maximum difference was +0.10967 eV . The SAC-CI results reported in 1985 were less accurate but still reasonable.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101315

I. INTRODUCTION

Li_{2} molecule is a simple homopolar diatomic molecule whose simplicity is next to the hydrogen molecule. The equilibrium distance of H_{2} molecule is 1.4011 a.u. ($0.74144 \AA$), while that of Li_{2} is 5.051 a.u. $(2.673 \AA) .{ }^{1}$ This shows how large is the repulsive interaction between the inner 1 s -shell electrons. The Li atom has the $(1 s)^{2}(2 s)^{1}$ structure and the $(1 s)^{1}(2 p)^{1}$ state is a very low excited state and mix strongly in the $\mathrm{Li}-\mathrm{Li}$ bond so that the lower states of the Li_{2} molecule have mixed bonding natures of $2 \mathrm{~s}-2 \mathrm{~s}$, $2 s-2 p$, and $2 \mathrm{p}-2 \mathrm{p}$. In 1985 , we reported a study of the potential curves of the lower nine states of Li_{2} molecule. ${ }^{2}$ We used the symmetry-adapted-cluster (SAC) configuration-interaction (CI)
theory, SAC/SAC-CI theory. ${ }^{3,4}$ From the next year of its publication, many accurate results of the Rydberg-Klein-Rees (RKR) ${ }^{5}$ potential curves of ${ }^{7} \mathrm{Li}_{2}$ were reported. First, in 1986, Barakat et al. ${ }^{8}$ reported extensive analyses of the potential curve of the $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$ground state by the laser-induced fluorescence Fouriertransform spectrometry. They observed the vibrational levels of up to $v=40$, which allowed them to study the potential curve to $R=12.6 \AA$, only $2 \mathrm{~cm}^{-1}$ below the dissociation limit. They gave a precise dissociation energy, $D_{e}=8516.78(54) \mathrm{cm}^{-1}$. Linton et al. ${ }^{9}$ reported a similar spectroscopy of the $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}-\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$ states transition and by combining the results by Martin et al. ${ }^{10}$ determined the RKR potential curves and the dissociation energies of these states. For the $1^{1} \Pi_{g}$ state, Miller et al. ${ }^{11}$ obtained
the RKR potential by a pulsed optical-optical double resonance spectroscopy and determined accurate properties associated with the potential curve. For the second $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state, the RKR potential curve was reported by He, Gold, and Bernheim ${ }^{7}$ by the near infrared two-photon laser spectroscopy. The excitation energy T_{e} from the ground state was obtained as $20102.237 \mathrm{~cm}^{-1}$. The $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$ state has been studied by Urbanski et al. ${ }^{13}$ using all optical triple resonance spectroscopy. The Born-Oppenheimer breakdown was observed in a combined-isotopomer analysis of the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}-\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$ system of $\mathrm{Li}_{2} .{ }^{14}$ The high-lying vibrational levels and dissociation energy of the $a^{3} \Sigma_{\mathrm{u}}{ }^{+}$state were additionally reported by Linton et al. ${ }^{15}$ A full description of the potential curve of the higher bound state $B^{1} \Pi_{u}$ was given in 2001 by Bouloufa et al. ${ }^{16}$ mainly by analyzing high resolution sub-Doppler $\mathrm{B}^{1} \Pi_{\mathrm{u}} \leftarrow \mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$excitation spectra. Accurate analytic potentials for the $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$and $A^{1} \Sigma_{u}{ }^{+}$states of L_{i} were reported from accurate experimental data. ${ }^{17}$ Accurate potential curves of higher Rydberg states were also reported, ${ }^{18,19}$ but we restrict ourselves in this study to only the lower 9 states of Li_{2}.

Theoretical studies on the potential curves of Li_{2} molecule were done by Konowalow and Fish ${ }^{20}$ and by Schmidt-Mink et al. ${ }^{21}$ They dealt with this system by using the effective core-potential (ECP) for the 1 s core electrons of the Li atom and therefore like H_{2} molecule. Similar method was applied extensively to many excited states of Li_{2} by Jasik and Sienkiewicz. ${ }^{22}$ On the other hand, Hirao and one of the authors published in 1978 the symmetry-adapted coupled-cluster (SAC) theory for studying ground states ${ }^{3}$ and the SAC-CI theory for studying excited states, ionized states, and electron-attached states ${ }^{4}$ of molecules. These two theories have a beautiful Brillouin theoretic framework in common. ${ }^{4,23,24}$ This SAC/SAC-CI theory was applied in 1985 to the study of the potential curves of the lower 9 states of the Li_{2} molecule. ${ }^{2}$ Kaldor studied the ground and many excited states of Li_{2} by the open-shell coupled cluster theory. ${ }^{25}$ Shi, Ma, Sun, Zhu, Yu, Yang, and Liu used the SAC-CI theory for studying the potential curves of the excited states of Li_{2} molecule and reported highly accurate results for many different states. ${ }^{26-30}$ Musiał and Kucharski reported extensive studies of the potential curves of the Li dimer ${ }^{31}$ using the multireference Fock space coupled cluster method. ${ }^{32}$ They could describe many states of different natures to high accuracy. Their theory has some similarity to the SAC-CI theoretical framework.

In this paper, we apply our free-complement (FC) theory ${ }^{33-35}$ that was proposed for solving the Schrödinger equation highly accurately to the calculations of the potential curves of the lower nine states of the Li_{2} molecule. This theory is highly accurate ${ }^{35}$ and could give almost exact solutions of the Schrödinger equation for small systems so far. ${ }^{35}$ Some more recent applications are seen for the first-row atoms, small molecules, ${ }^{36}$ and clusters. ${ }^{37}$ Recently, we have generalized the scaling functions of the scaled Schrödinger equation ${ }^{34}$ such that they obey the correct conditions at particle coalescence and asymptotic regions. ${ }^{38}$ We use in the present study the correct $g_{i j}$ function reported there. ${ }^{38}$

II. METHOD

The FC theory leads to the exact solution of the Schrödinger equation from any initial wave function of the subject molecule that
has overlap with the exact wave function. It produces a potentially exact wave function in the form ${ }^{34,35}$

$$
\begin{equation*}
\psi=\sum_{I=0} c_{I} \phi_{I}, \tag{1}
\end{equation*}
$$

where the functions $\left\{\phi_{I}\right\}$ are referred to as complement functions (cf's). Here, we produced the cf's to order 3 from the initial wave functions. They can describe the lower nine states of the Li_{2} molecule in all ranges of the inter-nuclear distances. We used the initial functions that consist of the covalent and ionic bonds between the two Li atoms in the 2 s and 2 p natures. For ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$symmetry, the covalent ones are consisted of the three functions as

$$
\begin{align*}
2 \mathrm{~s}-2 \mathrm{~s}: \psi_{0}^{(1)}= & \left(1 s_{\text {in, }, A} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in, }, B} 1 s_{\text {out }, B}\right) \\
& \times(\alpha \beta-\beta \alpha) \cdot\left(2 s_{A} 2 s_{B}\right)(\alpha \beta-\beta \alpha), \\
2 \mathrm{~s}-2 \mathrm{p}: \psi_{0}^{(2)}= & \left(1 s_{\left.i_{n, A} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in }, B} 1 s_{\text {out }, B}\right)}\right. \tag{2}\\
\times & (\alpha \beta-\beta \alpha) \cdot\left(2 s_{A} 2 p_{B}\right)(\alpha \beta-\beta \alpha)+(A \leftrightarrow B), \\
2 \mathrm{p}-2 \mathrm{p}: \psi_{0}^{(3)}= & \left(1 s_{\text {in,A },} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in }, B} 1 s_{\text {out }, B}\right) \\
& \times(\alpha \beta-\beta \alpha) \cdot\left(2 p_{A} 2 p_{B}\right)(\alpha \beta-\beta \alpha),
\end{align*}
$$

where 2 p is $2 \mathrm{p}_{\mathrm{x}}$-sigma orbital. The ionic functions are consisted of the functions given by

$$
\begin{align*}
&(2 \mathrm{~s})^{2}: \psi_{0}^{(4)}=\left(1 s_{\text {in, } A} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in }, B} 1 s_{\text {out }, B}\right) \\
& \times(\alpha \beta-\beta \alpha) \cdot\left(2 s_{A}\right)^{2}(\alpha \beta)+(A \leftrightarrow B), \\
& 2 s 2 p: \psi_{0}^{(5)}=\left(1 s_{\text {in,A }} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in,B }} 1 s_{\text {out }, B}\right) \tag{3}\\
& \times(\alpha \beta-\beta \alpha) \cdot\left(2 s_{A} 2 p_{A}\right)(\alpha \beta-\beta \alpha)+(A \leftrightarrow B), \\
&(2 p)^{2}: \psi_{0}^{(6)}=\left(1 s_{\text {in,A }} 1 s_{\text {out }, A}\right)(\alpha \beta-\beta \alpha) \cdot\left(1 s_{\text {in,B}} 1 s_{\text {out }, B}\right) \\
& \times(\alpha \beta-\beta \alpha) \cdot\left(2 p_{A}\right)^{2}(\alpha \beta)+(A \leftrightarrow B),
\end{align*}
$$

where the antisymmetrization operator was abbreviated. The orbitals are the Slater type as given by

$$
\begin{gather*}
1 s_{\text {in, } A}=\exp \left(-\alpha_{1 s, \text { in }} r_{A}\right), \quad 1 s_{\text {out }, A}=\exp \left(-\alpha_{1 s, \text { out }} r_{A}\right), \\
2 s_{A}=r_{A} \exp \left(-\alpha_{2 s}^{(r)} r_{A}\right)+d_{2 s}^{(0)} \exp \left(-\alpha_{2 s}^{(0)} r_{A}\right), \tag{4}\\
2 p_{A}=x_{A} \exp \left(-\alpha_{2 p} r_{A}\right) .
\end{gather*}
$$

We considered the in-out correlation for the 1 s electrons. The exponent parameters in Eq. (4) were optimized at the zeroth order, and the values are $\alpha_{1 s, \text { in }}=3.3029, \alpha_{1 s, \text { out }}=2.0674, \alpha_{2 s}^{(r)}=0.6785$, $\alpha_{2 s}^{(0)}=1.1832, d_{2 s}^{(0)}=-0.096777$, and $\alpha_{2 p}=0.7979$. Based on the principle of the chemical formula theory that takes the Brillouin theorem into account, ${ }^{36}$ the diffuse 3 p functions of the exponent 0.55 that is slightly larger than that of the typical 3 p function of around 0.3 were added in addition to the 2 p orbital. The initial functions for other symmetries were adjusted based on the formulas given by Eqs. (2) and (3) for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$symmetry.

The FC wave functions were produced from the above initial functions by using the scaling functions $g_{i A}$ and $g_{i j}$ to order 3 of the FC theory. For the electron nuclear term $g_{i A}$, we used the conventional form, $g_{i A}=r_{i A}$, but for the electron-electron term $g_{i j}$, we used
the "correct" scaling function introduced in the recent paper, ${ }^{38}$ since it is more accurate than the conventional function $r_{i j}$ that are not "correct" but only "reasonable." ${ }^{38}$ As such correct function, we used here a single Ei function given by

$$
\begin{equation*}
g_{i j}=\operatorname{Ei}\left(-\gamma_{1} r_{i j}-\gamma_{2}\right)-\operatorname{Ei}\left(-\gamma_{2}\right), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Ei}(-x)=\int_{-\infty}^{-x} \frac{\exp (t)}{t} d t \tag{6}
\end{equation*}
$$

The values of the parameters γ_{1} and γ_{2} were assumed to be transferable: we used the values, 0.00121 and 0.000238 , respectively, that were optimized for the He atom at order $3 .{ }^{38}$ The Ei function was used before ${ }^{39}$ for the He atom for obtaining the world-best variational energy that was correct to over 43 digits by using the FC theory.

After generating the FC wave function, ${ }^{36,38}$ we optimized the linear parameters in the wave function by using the local Schrödinger equation (LSE) method. ${ }^{40,41}$ There, we used the HS method whose dimension is the number of the cf's considered and the energies are obtained as eigenvalues after the diagonalization. The sampling points used there were produced by the inverse transformation method or the direct method ${ }^{42,43}$ applied to the initial functions given by Eqs. (2) and (3). This method belongs to the local sampling method reported before ${ }^{36}$ and gives directly the distributions of the sampling points proportional to the probability distributions of the wave function considered, though we limited ourselves from the integrability to use only the initial function set. This method is theoretically natural, and further, we can avoid the use of the Metropolis sampling method, ${ }^{44}$ which assumes classical statistics and requires time-consuming iterative processes in producing the sampling points. ${ }^{36}$ The direct or inverse transformation method ${ }^{42}$ gives the set of the sampling points directly from the appropriate wave functions and does not include the iterative processes like in the Metropolis method, and therefore, we can save the computer times. Details of the method will be published soon. The number of the sampling points used here was 3×10^{6}.

For comparison with the popular methodology that starts from the Hartree-Fock theory, we also used the SAC/SAC-CI theory to obtain the potential curves of the nine lower states of Li_{2}. Since our earlier calculations ${ }^{2}$ published in 1985 are old, we have performed the recalculations using extended flexible basis sets, which are the uncontracted jorge-6ZP basis, ${ }^{45}$ using the SAC/SAC-CI program in the GAUSSIAN set of programs. ${ }^{46}$ In the SAC-CI calculations, we performed straightforward calculations without using the selection procedures, though we used them slightly in the old calculations. ${ }^{2}$ In modern quantum chemistry calculations, the Hartree-Fock theory and the Hartree-Fock based correlation theories are popularly used. As a typical such theory, we have chosen the SAC/SAC-CI theory for comparison with the exact FC theory.

III. NUMERICAL RESULTS

A. Results of the FC theory

We summarize in Tables I and II the results of the present FC calculations of the ground (in Table I) and eight excited singlet and

TABLE I. Energies of the ground $\mathbf{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state of Li_{2} calculated by the FC theory at several inter-nuclear distances R^{a}. ΔE represents the energy difference in $\mathrm{kcal} / \mathrm{mol}$ from the experimental RKR potential energy and bold face denotes less than $1 \mathrm{kcal} / \mathrm{mol}$, i.e. satisfying chemical accuracy. ${ }^{\text {b }}$

R (a.u.)	FC theory		RKR potential energy (a.u.)	ΔE (FC) ($\mathrm{kcal} / \mathrm{mol}$)
	H -square error	Energy (a.u.)		
4.0	0.018109	-14.981 162	-14.981 401	0.150
4.5	0.016033	-14.991 652	-14.991846	0.122
4.8	0.014234	-14.994 208	-14.994355	0.0922
5.051	0.013885	-14.994 840	$-14.994926^{\text {c }}$	0.0540
5.2	0.013568	-14.994 663	-14.994757	0.0585
5.5	0.011969	-14.993 448	-14.993 533	0.0535
6.0	0.010922	-14.989 667	-14.989 740	0.0457
6.5	0.010331	-14.984759	-14.984839	0.0501
8.0	0.008047	-14.970 338	-14.970 393	0.0344
9.0	0.007277	-14.963 854	-14.963 893	0.0243
10.0	0.007220	-14.960 077	-14.960 078	0.000320
12.0	0.007237	-14.957 138	-14.957 147	0.00593
Average ${ }^{\text {d }}$				0.0576
Max.dif. ${ }^{\text {e }}$				0.150

${ }^{\text {a }}$ The FC theory at the order 3. The dimensions of the complement functions were 11098 for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$symmetry.
${ }^{\mathrm{b}}$ RKR potentials are fitted by the spline interpolation from the reference experimental data. ${ }^{8-17}$
${ }^{\mathrm{c}}$ Exact total energy of $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state of Li_{2} at $R_{e q}=5.051$ a.u. For details, see text.
${ }^{\mathrm{d}}$ Average value of ΔE.
${ }^{\mathrm{e}}$ Signed maximum value of ΔE (largest difference from RKR), which was at $R=4.0$ a.u.
triplet states (in Table II) of Li_{2} at various internuclear distances, R. We also summarized the absolute values obtained from the experimental RKR potentials reported for the ground and various excited states of $\mathrm{Li}_{2} .{ }^{8-17}$ These values were obtained from the ground state RKR potential reported by Barakat et al. ${ }^{8}$ and the estimated exact energy of Li_{2} at the equilibrium length. ${ }^{47}$ This value of the absolute energy of Li_{2} at the equilibrium distance $R_{\text {eq }}=5.051$ a.u. was re-estimated as -14.994926 a.u. as a refined value. Here, the estimation method is the same as the one used by Filippi and Umrigar, ${ }^{47}$ but the experimental values used therein were updated: namely, we used the nonrelativistic exact energy of the ground state of Li atom reported by Drake et al. ${ }^{48}$ and the experimental dissociation energy D_{e} by Barakat et al. ${ }^{8}$ Then, the absolute values of the RKR potential for the ground $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state are obtained from the experimental RKR potential reported by Barakat et al. ${ }^{8}$ The values of the absolute RKR potentials of the excited states were obtained similarly by adding the experimental adiabatic excitation energies. ${ }^{8-17}$ The continuous curves were obtained by local spline fitting methods.

The first columns of Tables I and II show the Li-Li internuclear distances. Although we listed only 12 points between 4 and 12 a.u. first adopted in Ref. 2, we performed here the FC calculations at the 36 points to get smooth potential curves in the analyses. The next two columns show the results of the FC calculations: first is the H -square error defined by $\langle\psi|(H-E)^{2}|\psi\rangle$ and next is the absolute energy of the FC theory, E_{FC} both in a.u. About the H -square error, if this value is zero for any set of sampling points, the results are strictly
TABLE II. Energies and vertical excitation energies of the excited states of L_{i} calculated by the FC theory at several inter-nuclear distances R. ΔE represents the energy difference in $\mathrm{kcal} / \mathrm{mol}$ face denotes their absolute values less than 0.01 eV .

R (a.u.)	$\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state							$2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state						
	FC theory		RKR potential energy (a.u.)	ΔE ($\mathrm{kcal} / \mathrm{mol}$)	Vertical excitation energy (eV)			FC theory		RKR potential energy (a.u.)	ΔE ($\mathrm{kcal} / \mathrm{mol}$)	Vertical excitation energy (eV)		
	H-square error	Energy (a.u.)			FC	RKR	$\Delta E X$	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$
4.0	0.009964	-14.900341	-14.900 315	-0.0159	2.19925	2.20645	-0.00720	0.020412	-14.867382					
4.5	0.009784	-14.917388	-14.917380	-0.005 60	2.02081	2.02634	-0.005 53	0.018335	-14.884 341					
4.8	0.009099	-14.923 534	-14.923 512	-0.013 9	1.92314	1.92774	-0.004 60	0.017915	-14.891 037	$(-14.891484)^{\text {c }}$	(0.280)	2.80742	(2.799 27)	(0.008 14)
5.051	0.009127	-14.926896	-14.926 917	0.0133	1.84886	1.85062	-0.001 76	0.014377	-14.894 865	-14.895128	0.165	2.72045	2.71564	0.00481
5.2	0.009097	-14.928311	-14.928 341	0.0193	1.80555	1.80725	-0.00170	0.014029	-14.896685	-14.896928	0.153	2.66613	2.66205	0.00408
5.5	0.008947	-14.930100	-14.930 135	0.0216	1.72379	1.72517	-0.001 38	0.012414	-14.899 373	-14.899 610	0.149	2.55992	2.55578	0.00414
6.0	0.008813	-14.930709	-14.930 762	0.0336	1.60435	1.60487	-0.000 524	0.012194	-14.901930	-14.902 116	0.116	2.38746	2.38439	0.00306
6.5	0.008980	-14.929357	-14.929 437	0.0504	1.50758	1.50757	0.0000137	0.012460	-14.902988	-14.903 139	0.0949	2.22512	2.22318	0.00194
8.0	0.008503	-14.920291	-14.920 366	0.0470	1.36186	1.36131	0.000549	0.011878	-14.902036	-14.902 201	0.103	1.85860	1.85560	0.00299
9.0	0.008272	-14.913253	-14.913 338	0.0536	1.37694	1.37567	0.00127	0.011572	-14.899248	-14.899 445	0.123	1.75802	1.75372	0.00429
10.0	0.008010	-14.906872	-14.906 946	0.0463	1.44778	1.44578	0.00199	0.011306	-14.895432	-14.895 596	0.103	1.75909	1.75463	0.00446
12.0	0.006449	-14.897684	-14.897 796	0.0698	1.61780	1.61504	0.00277	0.008307	-14.888631			1.86417		
Average ${ }^{\text {d }}$				0.0266			-0.001 34				0.126			0.00372
Max.dif. ${ }^{\text {e }}$				0.0698			-0.00720				0.165			0.00481

R (a.u.)	$B^{1} \Pi_{u}$ state							$1^{1} \Pi_{g}$ state						
	FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)			FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		
	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$
4.0	0.012813	-14.879 804	$(-14.880217)^{f}$	(0.259)	2.75808	(2.753 35)	(0.00473)	0.009594	-14.854880			3.43631		
4.5	0.011774	-14.893 462	-14.893 637	0.110	2.67189	2.67243	-0.000 538	0.009488	-14.871 314			3.27458		
4.8	0.011401	-14.897961	-14.898 124	0.102	2.61901	2.61858	0.000426	0.009129	-14.878 039			3.16112		
5.051	0.010790	-14.900190	-14.900 340	0.0946	2.57557	2.57381	0.00176	0.009028	-14.882427			3.05892		
5.2	0.010683	-14.900 983	-14.901 132	0.0937	2.54918	2.54766	0.00152	0.008892	-14.884488			2.99801		
5.5	0.010110	-14.901654	-14.901799	0.0912	2.49784	2.49621	0.00164	0.008747	-14.887768			2.87571		
6.0	0.009961	-14.900 827	-14.900 983	0.0982	2.41748	2.41521	0.00227	0.008252	-14.891353	-14.891 605	0.158	2.67527	2.67040	0.00486
6.5	0.009516	-14.898 697	-14.898 801	0.0649	2.34187	2.34123	0.000640	0.008476	-14.893 349	-14.893 466	0.0732	2.48741	2.48641	0.00100
8.0	0.008286	-14.890 955	-14.891 027	0.0452	2.16013	2.15966	0.000472	0.006964	-14.894 566	-14.894646	0.0500	2.06186	2.06119	0.000677
9.0	0.007741	-14.887810	-14.887802	-0.004 99	2.06926	2.07053	-0.001 268	0.007337	-14.894080	-14.894 030	-0.0314	1.89864	1.90106	-0.002 41
10.0	0.007292	-14.886 403	-14.886 348	-0.0343	2.00479	2.00629	-0.00150	0.006306	-14.893173	-14.893164	-0.005 49	1.82056	1.82081	-0.000 252
12.0	0.006872	-14.886086	-14.886024	-0.0386	1.93342	1.93535	-0.001 93	0.006070	-14.891512	-14.891513	0.000958	1.78578	1.78599	-0.000 215
Average ${ }^{\text {d }}$				0.0565			0.000317				0.0409			0.000610
Max.dif. ${ }^{\text {e }}$				0.110			0.00227				0.158			0.00486

TABLE II. (Continued.)

R (a.u.)	$\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$state							$1^{3} \Pi_{u}$ state						
	FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)			FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		
	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$
4.0	0.007293	-14.919577			1.67580			0.006725	-14.934994			1.25628		
4.5	0.006903	-14.936325			1.50551			0.006561	-14.942 298			1.34300		
4.8	0.006710	-14.942888			1.39650			0.006485	-14.943658			1.37552		
5.051	0.006482	-14.946947			1.30323			0.006396	-14.943563			1.39532		
5.2	0.006381	-14.948879			1.24587			0.006395	-14.943 081			1.40363		
5.5	0.006322	-14.951872			1.13134			0.006346	-14.941366			1.41722		
6.0	0.006006	-14.954 950			0.94472			0.006342	-14.936980			1.43369		
6.5	0.005946	-14.956544	-14.956527	-0.0108	0.76778	0.77042	-0.002 64	0.006299	-14.931552			1.44784		
8.0	0.005828	-14.957593	-14.957638	0.0282	0.34681	0.34708	-0.000 269	0.006443	-14.914527			1.51870		
9.0	0.005708	-14.957423	-14.957423	0.000210	0.17500	0.17605	-0.001 04	0.006457	-14.905 404			1.59051		
10.0	0.005637	-14.957 134	-14.957 111	-0.0148	0.08009	0.08074	-0.000 655	0.006292	-14.899 008			1.66178		
12.0	0.005502	-14.956630	-14.956612	-0.0114	0.01382	0.01457	-0.000 752	0.005447	-14.892723			1.75281		
Average ${ }^{\text {d }}$				-0.001 72			-0.001 07							
Max.dif. ${ }^{\text {e }}$				0.0282			-0.002 64							
	$\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$state							$1^{3} \Pi_{\mathrm{g}}$ state						
	FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)			FC theory		RKR potential energy (a.u.)	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		
R (a.u.)	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$	H -square error	Energy (a.u.)			FC	RKR	$\Delta E X$
4.0	0.015887	-14.891080			2.45124			0.017147	-14.841977			3.78740		
4.5	0.015832	-14.908198			2.27089			0.017460	-14.860781			3.56117		
4.8	0.015677	-14.914071	-14.914277	0.129	2.18063	2.17904	0.00159	0.016274	-14.867908			3.43681		
5.051	0.015467	-14.917 144	-14.917380	0.148	2.11420	2.11014	0.00406	0.019281	-14.872440			3.33068		
5.2	0.015193	-14.918425	-14.918627	0.126	2.07454	2.07160	0.00294	0.023430	-14.874720			3.26382		
5.5	0.014873	-14.919 953	-14.920 112	0.00994	1.99990	1.99791	0.00199	0.022268	-14.877 747			3.14840		
6.0	0.013837	-14.920 204	-14.920 378	0.110	1.89020	1.88743	0.00277	0.018115	-14.880326			2.97532		
6.5	0.012763	-14.918769	-14.918 927	0.0997	1.79570	1.79355	0.00215	0.014782	-14.881137			2.81970		
8.0	0.010967	-14.911065			1.61289			0.009591	-14.881938			2.40550		
9.0	0.009034	-14.905 853			1.57829			0.007241	-14.882 985			2.20056		
10.0	0.007678	-14.901512			1.59364			0.006127	-14.883 991			2.07043		
12.0	0.006421	-14.895792			1.66929			0.005842	-14.885553			1.94793		
Average ${ }^{\text {d }}$				0.103			0.00258							
Max.dif. ${ }^{\text {e }}$				0.148			0.00406							

${ }^{\text {a }}$ The FC theory at the order 3 . The dimensions of the complement functions were $11098,9536,10688,10688,8446,10688,6884$, and 10688 for ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+},{ }^{1} \Sigma_{\mathrm{u}}{ }^{+},{ }^{1} \Pi_{\mathrm{u}},{ }^{1} \Pi_{\mathrm{g}},{ }^{3} \Sigma_{\mathrm{u}}{ }^{+},{ }^{3} \Pi_{\mathrm{u}},{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$, and ${ }^{3} \Pi_{\mathrm{g}}$ symmetries, respectively.
${ }^{\mathrm{b}}$ RKR potentials are fitted by the spline interpolation from the reference experimental data. ${ }^{8}$.
${ }^{\text {c }}$ The shape of the RKR potential looks slightly unreasonable here.
Average values of ΔE and $\Delta E X$ of the same states. The total averages of ΔE and $\Delta E X$ for all the calculated states in this table were $0.0583 \mathrm{kcal} / \mathrm{mol}$ and 0.000645 eV , respectively.
${ }^{\mathrm{e}}$ Signed maximum values of ΔE and $\Delta E X$ of the same states. Their signed max values of ΔE and $\Delta E X$ over all the states were $0.165 \mathrm{kcal} / \mathrm{mol}$ of the $2^{1} \Sigma_{\mathrm{g}}^{+}$state at $R=5.051 \mathrm{a} . \mathrm{u}$. and -0.00720 eV of the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state at
$R=4.0$ a.u., respectively.
${ }^{\mathrm{f}}$ The RKR value might be not accurate enough here since the vibrational levels around this R are beyond the bound region
exact as the solutions of the Schrödinger equation. Then, the fourth column shows the absolute values of the experimental RKR potential interpolated by spline fitting, and the fifth column shows the difference between the FC energy and the RKR potential, $E_{\mathrm{FC}}-E_{\mathrm{RKR}}$, in $\mathrm{kcal} / \mathrm{mol}$. If E_{FC} is higher than $E_{\mathrm{RKR},}, \Delta E(\mathrm{FC})$ is positive. We see from Table I that the absolute energy differs only slightly between theory and experiment: the FC energy was only $0.0576 \mathrm{kcal} / \mathrm{mol}$ in average higher than the absolute experimental energy (We note that the LSE method ${ }^{40,41}$ is not variational). The largest difference from the RKR value was $+0.150 \mathrm{kcal} / \mathrm{mol}$ at $R=4.0$ a.u.

Table II gives the results for the eight excited states: four singlet and four triplet states in increasing order of energy. For the $1^{3} \Pi_{u}$ and $1^{3} \Pi_{g}$ states, we could not find the experimental values. For the other seven states, the differences ΔE 's between theory and experiment were as small as $0.0266,0.126,0.0565,0.0409,-0.00172$, and $0.103 \mathrm{kcal} / \mathrm{mol}$ in average of the different lengths R for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}, 2^{1} \Sigma_{\mathrm{g}}{ }^{+}, \mathrm{B}^{1} \Pi_{\mathrm{u}}, 1^{1} \Pi_{\mathrm{g}}, \mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$, and $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$states, respectively. All values were much less than $1 \mathrm{kcal} / \mathrm{mol}$. The total average value of the ΔE values was $0.0583 \mathrm{kcal} / \mathrm{mol}$ (see footnote e of Table II), and the largest ΔE value for all the calculated points in Tables I and II was only $+0.165 \mathrm{kcal} / \mathrm{mol}$ for the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state at $R=5.051$ a.u. Thus, the FC theory of order 3 has reproduced the exact absolute potential curves of the seven different states of Li_{2} highly accurately.

In addition to the data of the absolute potential curves, we gave in Table II (from 6th to 8th columns for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state, for example) the vertical excitation energies of the seven excited states from the ground $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state at each inter-nuclear distance R in eV for the FC theory and for the experimental RKR method and their differences are shown as $\Delta E X$ in eV unit. For the states for which the RKR values are known, the $\Delta E X$ values in eV unit were as small as $-0.00134,0.00372,0.000317,0.000610,-0.00107$, and 0.00258 eV in average for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}, 2^{1} \Sigma_{\mathrm{g}}{ }^{+}, \mathrm{B}^{1} \Pi_{\mathrm{u}}, 1^{1} \Pi_{\mathrm{g}}, \mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$, and $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$states, respectively. The total average value of the $\Delta E X$ values was 0.000645 eV and its largest value was -0.00720 eV for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state at $R=4.0$ a.u. Thus, the FC theory was highly accurate for both the ground and excited states of any symmetry.

In conclusion, we feel it surprising that the completely different independent data from experiments and theory, the experimental spectroscopic RKR potential and the calculated energies of the FC theory for solving the Schrödinger equation agree well with each other in so wide ranges of the potential curves of so many different states of the Li_{2} molecule. This certainly shows that the Schrödinger equation or more explicitly the variational formula [Eq. (8) of Ref. 34] of the scaled Schrödinger equation, from which the FC theory was derived, governs quantitatively the chemistry of the Li_{2} molecule. Note that the corresponding variational formula of the Schrödinger equation itself diverges. ${ }^{34}$

Finally, we briefly summarize the costs of the present FC calculations. We used the super-parallel computers consisted of the 3000 cores at the Institute of Molecular Sciences (IMS), Okazaki. For the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$states that include the ground $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$and excited $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$states, the number of the cf's (namely, the dimension) at order 3 of the FC theory was 11098 and the computational time for one distance was 83.6 min , consisted of 8.0 min for generating the FC wave function, 53.2 min for generating sampling points, and 22.4 min for evaluating H, S matrices of the LSE theory and diagonalization. For the excited
$A^{1} \Sigma_{u}{ }^{+}$state, the dimension of the order 3 was 9536 and the computational time for one distance was 73.2 min , where 7.2 min for generating the FC wave function, 47.3 min for generating sampling points, and 18.7 min for the H, S step. For other excited states, the costs were like those for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state.

B. Comparative calculations with the SAC/SAC-CI theory

At present, many quantum chemistry theories are based on the Hartree-Fock theory. For studying closed-shell ground state, the coupled cluster theory gives a reliable tool. The SAC (SymmetryAdapted Cluster) theory ${ }^{3}$ by Hirao and one of the authors is a spin-symmetry adapted coupled cluster theory, which was necessary for handling open-shell molecules because the coupled cluster theory is a non-linear expansion theory. The SAC-CI theory ${ }^{4}$ was a new reliable theory for constructing excited states, ionized states, and electron attached states using the subspace produced by the SAC theory: this subspace was found to satisfy the Brillouin-theorem conditions, namely, the orthogonality and Hamiltonian orthogonality conditions, with the SAC ground state. ${ }^{23}$ Thus, the SAC/SAC-CI theory is a systematic theory for studying the ground, excited, ionized, and electron-attached states of molecules with a good reliability and useful performances even at that time. ${ }^{3,4,24}$ Using this SAC/SACCI theory, we could study many different chemistries of various excited states. ${ }^{23,24}$ Remarkable ones were the studies ${ }^{49-51}$ of the electronic spectra, electron-transfer routes, and their mechanisms of the photosynthetic reaction center of rhodopseudomonas viridis, a photosynthetic bacterium. ${ }^{52}$ More recently, we have studied the helical structure of DNA and RNA using the circular dichroism (CD) spectroscopic studies based on the SAC-CI theory. ${ }^{53}$ We note here that the so-called EOM-CC was very similar or even identical to the SAC-CI, ${ }^{54}$ though it was published more than a decade later than the original SAC-CI theory. For details, see Secs. I-E of the SAC-CI Guide. ${ }^{54}$ Priority is important in our world of science.

This SAC/SAC-CI theory was applied to the study of the potential curves of nine lower states of Li_{2} in $1985 .{ }^{2}$ The published results of the potential curves were reasonably good, in comparison with the experimental RKR potentials published later, ${ }^{8-17}$ as will be shown below. But nowadays, the computational situations are much different from then, and so, we decided to do the recalculations, for comparison, using a modern extended basis set: we used the uncontracted primitive set of jorge-6ZP ${ }^{45}$ and performed the SAC/SAC-CI calculations using the GAUSSIAN code ${ }^{46}$ with no selections and no cut-off of the active space. We refer to this new results as SAC$\mathrm{CI}(2022)$ and the old ones as $\mathrm{SAC}-\mathrm{CI}(1985)$. The computational time for all 9 states at a single distance (for instance, $R=5.051$ a.u.) was 4.7 h using a single node (40 cores) computer at the IMS computer center.

In Table III, we compare the $\mathrm{SAC}-\mathrm{CI}(2022)$ data with the experimental RKR potential. The table format is essentially the same as that of Tables I and II, except that we did not cite the RKR potential because they were already given in Tables I and II First, let us watch the absolute energy values and the ΔE values in $\mathrm{kcal} / \mathrm{mol}$ for the ground state, $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$. The calculated SAC-CI energy was higher than the experimental RKR value by $\Delta E=5.617 \mathrm{kcal} / \mathrm{mol}$ in average, which was very large in comparison with the results of the
TABLE III. Energies and the vertical excitation energies of Li_{2} calculated by the $\mathrm{SAC/SAC}-\mathrm{Cl}$ theory using the jorge-6ZP(uncontract) basis at several inter-nuclear distances R. ΔE represents the
energy difference in kcal/mol from the RKR potential energy. $\Delta E X$ represents the difference in eV from the RKR excitation energy.

R (a.u.)	$\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state		$\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$state				$2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state			
	SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		$\frac{\text { SAC-CI }}{\text { Energy (a.u.) }}$	$\Delta E$$(\mathrm{kcal} / \mathrm{mol})$	Vertical excitation energy (eV)	
	Energy (a.u.)		Energy (a.u.)		SAC-CI	$\Delta E X$			SAC-CI	$\Delta E X$
4.0	-14.972 780	5.410	-14.890 997	5.847	2.22543	0.01898	-14.858 002		3.12327	
4.5	-14.983 459	5.263	-14.908 308	5.692	2.04496	0.01862	-14.875 276		2.94381	
4.8	-14.986055	5.208	-14.914536	5.632	1.94613	0.01839	-14.881904	(6.011)	2.83409	(0.03482)
5.051	-14.986681	5.174	-14.918014	5.587	1.86852	0.01790	-14.885 877	5.805	2.74302	0.02738
5.2	-14.986535	5.159	-14.919 479	5.561	1.82469	0.01744	-14.887695	5.794	2.68957	0.02752
5.5	-14.985 345	5.138	-14.921340	5.519	1.74166	0.01650	-14.890 386	5.788	2.58397	0.02818
6.0	-14.981 556	5.136	-14.922035	5.477	1.61965	0.01478	-14.892 773	5.863	2.41591	0.03152
6.5	-14.976584	5.180	-14.920 746	5.454	1.51943	0.01186	-14.893 481	6.061	2.26135	0.03817
8.0	-14.961 452	5.610	-14.911617	5.490	1.35608	-0.005 23	-14.890 464	7.365	1.93168	0.07608
9.0	-14.954 147	6.116	-14.904 441	5.583	1.35257	-0.023 10	-14.885879	8.513	1.85767	0.10395
10.0	-14.949 504	6.635	-14.897840	5.714	1.40585	-0.039 94	-14.880 992	9.164	1.86431	0.10967
12.0	-14.945 399	7.372	-14.888222	6.008	1.55587	-0.059 17	-14.875721		1.89603	
Average ${ }^{\text {a }}$		5.617		5.630		0.000586		6.794		0.05531
Max.dif. ${ }^{\text {b }}$		7.372		6.008		-0.059 17		9.164		0.10967

R (a.u.)	$B^{1} \Pi_{u}$ state				$1^{1} \Pi_{\mathrm{g}}$ state				$\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$state			
	SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)		SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)	
	Energy (a.u.)		SAC-CI	$\triangle E X$	Energy (a.u.)		SAC-CI	$\Delta E X$	Energy (a.u.)		SAC-CI	$\Delta E X$
4.0	-14.870 727	(5.955)	2.77700	(0.02365)	-14.844 579		3.48853		-14.911 244		1.67448	
4.5	-14.884556	5.698	2.69129	0.01886	-14.861 740		3.31214		-14.928 087		1.50675	
4.8	-14.889 161	5.624	2.63662	0.01804	-14.868742		3.19225		-14.934744		1.39624	
5.051	-14.891 460	5.572	2.59110	0.01729	-14.873 159		3.08909		-14.938873		1.30092	
5.2	-14.892293	5.547	2.56446	0.01680	-14.875 275		3.02754		-14.940 829		1.24372	
5.5	-14.893 028	5.504	2.51207	0.01586	-14.878616		2.90424		-14.943881		1.12829	
6.0	-14.892272	5.466	2.42954	0.01433	-14.882 150	5.933	2.70497	0.03457	-14.947 049		0.93898	
6.5	-14.890 095	5.463	2.35349	0.01226	-14.884018	5.928	2.51885	0.03244	-14.948700	4.911	0.75876	-0.01166
8.0	-14.882067	5.622	2.16018	0.000520	-14.885057	6.017	2.07881	0.01763	-14.949 856	4.883	0.31554	-0.03154
9.0	-14.878557	5.802	2.05691	-0.01362	-14.884358	6.070	1.89906	-0.002 00	-14.949 649	4.879	0.12240	-0.05365
10.0	-14.876857	5.956	1.97683	-0.029 46	-14.883 422	6.113	1.79818	-0.022 63	-14.949 334	4.880	0.00463	-0.07612
12.0	-14.876256	6.130	1.88148	-0.053 87	-14.881705	6.155	1.73320	-0.052 79	-14.948826	4.886	-0.093 25	-0.10782
Average ${ }^{\text {a }}$		5.671		0.00155		6.036		0.00120		4.888		-0.05616
Max.dif. ${ }^{\text {b }}$		6.130		-0.053 87		6.155		-0.052 79		4.911		-0.10782

TABLE III. (Continued.)

R (a.u.)	$1^{3} \Pi_{u}$ state				$\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$state				$1^{3} \Pi_{\mathrm{g}}$ state			
	SAC-CI	$\Delta E$$(\mathrm{kcal} / \mathrm{mol})$	Vertical excitation energy (eV)		SAC-CI	$\Delta E$$(\mathrm{kcal} / \mathrm{mol})$	Vertical excitation energy (eV)		SAC-CI	$\begin{gathered} \Delta E \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Vertical excitation energy (eV)	
	Energy (a.u.)		SAC-CI	$\Delta E X$	Energy (a.u.)		SAC-CI	$\Delta E X$	Energy (a.u.)		SAC-CI	$\Delta E X$
4.0	-14.926 932		1.24759		-14.882879		2.44633		-14.833 336		3.79446	
4.5	-14.934265		1.33864		-14.900 044		2.26984		-14.852 322		3.56842	
4.8	-14.935 649		1.37162		-14.905 900	5.257	2.18113	0.00209	-14.859 619		3.44050	
5.051	-14.935 565		1.39094		-14.909 033	5.238	2.11291	0.00277	-14.864 015		3.33791	
5.2	-14.935 095		1.39975		-14.910 299	5.226	2.07449	0.00288	-14.866 036		3.27894	
5.5	-14.933 406		1.41333		-14.911806	5.212	2.00110	0.00319	-14.869 052		3.16449	
6.0	-14.929 053		1.42868		-14.912103	5.193	1.88991	0.00248	-14.871807		2.98642	
6.5	-14.923 620		1.44122		-14.910 705	5.160	1.79266	-0.000 896	-14.872 832		2.82324	
8.0	-14.906 429		1.49725		-14.902869		1.59412		-14.872965		2.40785	
9.0	-14.897040		1.55396		-14.897506		1.54128		-14.873 419		2.19672	
10.0	-14.890 296		1.61113		-14.892994		1.53772		-14.874 190		2.04940	
12.0	-14.883 399		1.68711		-14.886798		1.59461		-14.875 576		1.89998	
Average ${ }^{\text {a }}$						5.214		0.00209				
Max.dif. ${ }^{\text {b }}$						5.257		0.00319				

[^0]FC theory, $0.0576 \mathrm{kcal} / \mathrm{mol}$. Thus, the SAC-CI(2022) data do not satisfy the chemical accuracy for the absolute energy. At the equilibrium distance of the $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state, ΔE was $5.174 \mathrm{kcal} / \mathrm{mol}$, which was slightly smaller than the value $5.803 \mathrm{kcal} / \mathrm{mol}$ that Musiał and Kucharski reported with the Fock space-coupled cluster singles and doubles (FS-CCSD) method. ${ }^{31}$ When R becomes 8 a.u., ΔE becomes $5.610 \mathrm{kcal} / \mathrm{mol}$ and as R increases to 9,10 , and 12 a.u., the ΔE increases as $6.116,6.632$, and $7.372 \mathrm{kcal} / \mathrm{mol}$. This is due to the well-known deficiency of the Hartree-Fock method in the bondbreaking region. Since the SAC-CI includes all singles and doubles in its active space, it is almost correct when the Hartree-Fock configuration is dominant, but at the distance larger than 9 a.u., the Hartree-Fock configuration is not dominant, so that this deficiency emerges. The same is true for the second state, $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$: already from $R=8$ a.u., ΔE increases to $7.365 \mathrm{kcal} / \mathrm{mol}$, and then to 8.513 and $9.164 \mathrm{kcal} / \mathrm{mol}$ at $R=9$ and 10 a.u., respectively. However, for other symmetries like $A^{1} \Sigma_{\mathrm{u}}{ }^{+}$state, the Hartree-Fock configuration does not mix, and therefore such deficiency does not occur. For example, for the $A^{1} \Sigma_{\mathrm{u}}{ }^{+}$state, the ΔE values at different distances are all about the average value, $5.630 \mathrm{kcal} / \mathrm{mol}$. This is true for all the other states that does not mix with the Hartree Fock configuration. The average values of ΔE for other states are in $\mathrm{kcal} / \mathrm{mol} 5.671,6.036,4.888$, and 5.214 , respectively, for the $B^{1} \Pi_{u}$, $1^{1} \Pi_{\mathrm{g}}, \mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$, and $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$states. The change in these average values is over chemical accuracy. The average of these average values was $5.727 \mathrm{kcal} / \mathrm{mol}$.

For the excited states, the vertical excitation energy from the ground state at each inter-nuclear distance R is summarized for the SAC-CI(2022) data in Table III and the differences from the experimental values were compared with the exact experimental values under the column of $\Delta E X$ in eV unit. They were $0.000586,0.055$ $31,0.00155,0.00120$, and 0.00209 eV for the $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}, 2^{1} \Sigma_{\mathrm{g}}{ }^{+}, \mathrm{B}^{1} \Pi_{\mathrm{u}}$, $1^{1} \Pi_{\mathrm{g}}, \mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$, and $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$states, respectively. The average of these
values was $0.00428(0.01184) \mathrm{eV}$, which is reasonable, but much worse by an order of magnitude than the value, 0.000645 eV of the FC theory. The largest difference was +0.10967 eV in the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state at $R=10.0$ a.u. In contrast, that of the FC theory was -0.00720 eV . The FC theory is universally exact for any electronic states and at any R, but the Hartree-Fock based SAC/SAC-CI theory has a weakness for the Hartree-Fock dominant states near the bond-breaking region.

For comparison, we also summarized briefly the old SAC$\mathrm{CI}(1985)$ data 2 in the supplementary material. Table S 1 shows the results like Table III.
Li_{2} is a simple chemical system. Therefore, both the FC theory and the SAC/SAC-CI theory give reliable results and the theoretical calculations are also easy for both. We are performing similar examinations for more complex systems, whose results will be published soon.

IV. POTENTIAL CURVES

For the Li_{2} molecule, highly accurate potential curves are known experimentally for many states. This helps us to examine the accuracy of the theory in detail. We could show that the FC theory can give the potential curves as accurately as the experiments. For some states, the experimental observations of the potential curves were limited. For example, because the RKR method is based on the accurate observations of many vibrational states, it is difficult to apply this method to the repulsive states because for such states, stable vibrational states do not exist. For such cases, the FC theory can provide the data that are reliable like the experimental data.

In this section, we compare the figures of the potential curves of Li_{2} between theory and experiments. In Fig. 1, we show in the

FIG. 1. Left is the experimentally determined RKR potential curves and right is the potential curves calculated by the free-complement (FC) theory, both for Li i_{2}.
left-hand side the experimentally determined potential curves of Li_{2}. For the $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+, 8} \mathrm{~A}^{1} \Sigma_{\mathrm{u}}{ }^{+},{ }^{13,14}$ and $\mathrm{B}^{1} \Pi_{\mathrm{u}}{ }^{16}$ states, the potential curves are almost fully known, and for the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state, ${ }^{12}$ the main parts were observed, but for the $1^{1} \Pi_{\mathrm{g}},{ }^{11} \mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+9,10,15}$ and $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+10}$ states, the potential curves were obtained only partially. The $\mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$state is also referred to as the $1^{3} \Sigma_{g}{ }^{+}$state. ${ }^{10}$ For the $1^{3} \Pi_{u}$ and $1^{3} \Pi_{g}$ states, we could not find the experimental potential curves in the literature.

The right-hand side of Fig. 1 shows the theoretical potential curves of the lower nine states of Li_{2} calculated by the FC theory. As we already seen from Tables I and II, the energies obtained from the FC theory agree almost absolutely with the experimental values and the average difference was as small as only $0.0583 \mathrm{kcal} / \mathrm{mol}$ at all the distances of all the seven states. Then, to compare these two figures more closely, we simply move the FC curves to the left until the vertical axes of the two figures overlap to each other. Then, we obtained Fig. 2.

In Fig. 2, the diamond shape shows the experimental value and the cross shows the FC value. At $R=5.051$ a.u., the FC energy differs from the experimental RKR values by only $0.0540 \mathrm{kcal} / \mathrm{mol}$. Actually, we could not see any meaningful difference between the experiment and the theory for all the seven states in this scale of the figure. This is the result we already expected from Tables I and II. Completely different approaches, the fine experiments using many fine apparatus and the calculated results using the FC theory gave such a fine agreement to each other. This shows that the Schrödinger equation describes completely the chemistry and physics of Li_{2}. Furthermore, the FC theory could fill the empty space of the experimental figure, like the potential curves of the $1^{3} \Pi_{u}$ and $1^{3} \Pi_{g}$ states. Note that in the experimental curve of the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state, there is a small tilt on the last experimental diamonds near 4.7 a.u., but with the FC theoretical curve, we could not find such a small tilt. Finally, we note again that differently from the SAC-CI case we explain below, we simply moved the left theoretical figure to the right, without any vertical shift: we have compared the theory and the experiment simply with their total absolute energies.

We next compare the results of SAC-CI(2022) obtained by using the jorge-6ZP basis shown in the right-hand side of Fig. 3

FIG. 2. Experimental RKR and FC theoretical potential curves of Li_{2} on the common axes of the energy (vertical) and the Li-Li distance (horizontal).
with the experiments shown again in the left-hand side of Fig. 3. Differently from Fig. 1, the SAC/SAC-CI figure lies higher by $5.727 \mathrm{kcal} / \mathrm{mol}$ than the experimental figure in average, as shown in the footnote a of Table III. Therefore, to compare the two figures, we must shift down the SAC/SAC-CI figure by $5.727 \mathrm{kcal} / \mathrm{mol}$ and then moved it to the left to make overlap the two vertical lines. Then, we obtained Fig. 4, where the SAC/SAC-CI values are shown by the triangles. The SAC results for the ground state $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$shown in blue lie slightly lower than the experimental values shown by diamonds near the equilibrium length, but at larger separations around $9-12$ a.u., the SAC results become higher and deviate much than

FIG. 3. Left is the experimentally determined RKR potential curves and right is the potential curves calculated by the SAC/SAC-CI theory using the jorge-6ZP basis, both for Li_{2}.
the experimental values. For the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state, the SAC-CI results given by purple triangle deviate much from the experimental curve at the length larger than 7 a.u. This is quantitatively confirmed from Table III from the ΔE values shown for the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state. These two large deviations at large R for the two ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$states are due to the well know poor description of the homopolar covalent bond of the restricted Hartree-Fock method near the dissociation limit. For the other states for which the symmetry is different from ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$, the deviations are moderate. Relatively large deviations are seen for the $\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$state shown in red: the SAC-CI curve lies lower than the experimental curve.

Finally, let us see the SAC/SAC-CI results reported in 1985. The detailed numerical results were summarized in the supplementary material. In Fig. 5, we compare the experimental potential curve (left) with the $\mathrm{SAC}-\mathrm{CI}(1985)$ curve (right) that lies by 56.953 $\mathrm{kcal} / \mathrm{mol}$ higher (reference d of Table S1 of the supplementary material). Then, we shift down the SAC-CI(1985) curve by 56.953 $\mathrm{kcal} / \mathrm{mol}$ and then move it to the left until the vertical axes of the two figures overlap to each other, and we obtain Fig. 6. Considering the quality of the basis set and the large overall shift, $56.953 \mathrm{kcal} / \mathrm{mol}$, the general agreement is relatively good, except for the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$curve in the region larger than 8 a.u. The SAC-CI(1985) points given by purple triangle lies much higher than the experimental curve given by purple diamond.

In Table IV, we summarize some spectroscopic data associated with the potential curves, such as the equilibrium distance R_{e}, the vertical excitation energy T_{e} from the ground state at R_{e}, and the dissociation energy D_{e} calculated for the ground and many excited states of the Li_{2} molecule from the data of the potential curves given in Tables I-III for the FC theory and the SAC/SAC$\mathrm{CI}(2022)$ calculations using Jorge-6ZP basis. Here, we also cited the data obtained by Musiał and Kucharski with their FS-CCSD theory 31 as a representative result from the current quantum chemistry calculations.

FIG. 4. Overlapped experimental RKR and present SAC/SAC-CI theoretical potential curves of Li_{2} after shifting down the SAC/SAC-CI curves by 5.727 $\mathrm{kcal} / \mathrm{mol}$.

The FC theory is the theory that can solve the Schrödinger equation highly accurately and, therefore, gives the results that agree well with the experimental values for all the eight lower states of Li_{2}. This theory has an absolute and comprehensive reliability among the theories presented here. The FS-CCSD theory also gives highly accurate results for all the states, though their absolute energy values

FIG. 6. Overlapped experimental RKR and SAC/SAC-CI (1985) ${ }^{2}$ theoretical potential curves of Li_{2} after shifting down the SAC/SAC-Cl curves by 56.953 kcal/mol.
were still higher by about $5.803 \mathrm{kcal} / \mathrm{mol}$ at the equilibrium distance of $\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$than the exact value like the present $\mathrm{SAC} / \mathrm{SAC}-\mathrm{CI}(2022)$ results shown in Fig. 3. The SAC/SAC-CI results are acceptable for the equilibrium distance and the vertical excitation energies, but not so for the dissociation energy, which is common for the theories based on the Hartree-Fock wave function.

Finally, we would like to discuss about the physics not included in the Schrödinger equation, but included in the experimental observations. With the FC theory, we have solved the Schrödinger equation of the Li_{2} molecule, which is the non-relativistic equation, within the Born-Oppenheimer approximation. For comparisons with experiments, we must examine the relativistic effect and the nuclear quantum effect. For the H_{2} molecule, Kołos and Roothaan reported the accurate non-relativistic wave functions. ${ }^{55}$ Then, Kołos and Wolniewicz performed the detailed examinations on the relativistic and adiabatic effects. ${ }^{56-58}$ At the equilibrium distance, their contributions to the binding energy were -0.526 and $4.947 \mathrm{~cm}^{-1}\left(1 \mathrm{~cm}^{-1}=0.0028572 \mathrm{kcal} / \mathrm{mol}\right)$, respectively. ${ }^{57}$ Their dependences on the internuclear distance were also investigated. For the Li_{2} molecule, Lesiuk et al. ${ }^{59}$ studied the potential curve of the $\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}$state and reported the leading-order relativistic and adiabatic corrections to be -0.243 and $0.6803 \mathrm{~cm}^{-1}$, respectively, near the equilibrium distance, 7.75 a.u. The adiabatic correction to the energy depends on κ^{4} with $\kappa=(m / \mu)^{1 / 4}$ where m is the mass of the electron and μ is the reduced mass of the nuclei. ${ }^{60}$ Therefore, this correction to the ${ }^{7} \mathrm{Li}_{2}$ molecule would be roughly seven times smaller than that of H_{2}, as seen here from the result of H_{2} and ${ }^{7} \mathrm{Li}_{2}$. Furthermore, these values were dependent on the $\mathrm{Li}-\mathrm{Li}$ distance ${ }^{59}$ and when it is 6.50 a.u., these values were -0.284 and $-0.04866 \mathrm{~cm}^{-1}$, respectively, and when it is 12.5 a.u., these values were -0.04 and

TABLE IV. Some spectroscopic data associated with the potential curves of the ground and excited states of Li_{2}.

State	Method	Equilibrium distance $R_{e}(\AA)$	Excitation energy $T_{e}(\mathrm{eV})$	$\begin{gathered} \text { Dissociation } \\ \text { energy } \\ D_{e}(\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
$\mathbf{X}^{\mathbf{1}} \sum_{\mathrm{g}}{ }^{+}$	FC	2.676		24.323
	Expt. ${ }^{\text {a }}$	2.673		24.351
	FS-CCSD ${ }^{\text {b }}$	2.677		24.206
	SAC-CI ${ }^{\text {c }}$	2.679		24.041
$\mathbf{A}^{\mathbf{1}} \sum_{\mathbf{u}}{ }^{+}$	FC	3.106	1.743	26.729
	Expt. ${ }^{\text {b,d }}$	3.108	1.744	26.742
	FS-CCSD ${ }^{\text {b }}$	3.112	1.739	26.750
	SAC-CI ${ }^{\text {c }}$	3.116	1.758	27.141
$2^{1} \sum_{\mathrm{g}}{ }^{+}$	FC	3.660	2.493	9.438
	Expt. ${ }^{\text {e }}$	3.651	2.492	9.489
	FS-CCSD ${ }^{\text {b }}$	3.655	2.491	9.404
	SAC-CI ${ }^{\text {c }}$	3.472	2.536	9.193
$\mathbf{B}^{1} \Pi_{\mathrm{u}}$	FC	2.937	2.535	8.456
	Expt. ${ }^{\text {b,f }}$	2.936	2.534	8.532
	FS-CCSD ${ }^{\text {b }}$	2.942	2.536	8.377
	SAC-CI ${ }^{\text {c }}$	2.945	2.548	8.919
$1^{1} \Pi_{\mathrm{g}}$	FC	4.067	2.727	4.043
	Expt. ${ }^{\text {g }}$	4.058	2.726	4.069
	FS-CCSD ${ }^{\text {b }}$	4.061	2.722	4.077
	$\mathrm{SAC}-\mathrm{CI}^{\text {c }}$	4.008	2.763	3.960
$\mathbf{a}^{3} \sum_{\mathbf{u}}{ }^{+}$	FC	4.171	1.013	0.959
	Expt. ${ }^{\text {h }}$	4.171	1.014	0.952
	FS-CCSD ${ }^{\text {b }}$	4.169	1.008	0.955
	SAC-CI ${ }^{\text {c }}$	4.187	1.002	0.933
$1^{3} \Pi_{u}$	FC	2.591	1.390	34.861
	Expt. ${ }^{\text {i }}$	2.591		34.724
	FS-CCSD ${ }^{\text {b }}$	2.592	1.390	34.784
	$\mathrm{SAC}-\mathrm{CI}^{\text {c }}$	2.594	1.386	35.704
$\mathbf{b}^{3} \sum_{\mathbf{g}}{ }^{+}$	FC	3.065	2.026	20.190
	Expt. ${ }^{\text {h }}$	3.068	2.024	20.276
	FS-CCSD ${ }^{\text {b }}$	3.071	2.021	20.243
	SAC-CI ${ }^{\text {c }}$	3.073	2.025	20.966
$1^{3} \Pi_{\mathrm{g}}$		Repulsive		
${ }^{\text {a }}$ Reference 8 .				
${ }^{\mathrm{b}}$ Reference 31.				
${ }^{\text {c }}$ De was calculated by considering $R=20.0$ a.u. as a dissociation limit.				
${ }^{\text {d }}$ Reference 62.				
${ }^{\mathrm{e}}$ Reference 12.				
${ }^{\text {f }}$ Reerence 16.				
${ }^{\mathrm{g}}$ Reference 11.				
${ }^{\text {h }}$ Reference 9.				
${ }^{\mathrm{i}}$ Reference 63.				

$0.2148 \mathrm{~cm}^{-1}$, respectively. So far, we could not find the examinations of these effects done for the potential curves of the other electronic states.

At present, we do not investigate the relativistic and adiabatic corrections on our FC-LSE results of the potential curves of the Li_{2} molecule yet. From the study of Lesiuk et al., if the orders of the magnitudes of these effects are similar for all the nine states of the Li_{2} molecule, we might be able to ignore them for the present chemical-accuracy calculations with the FC-LSE theory. However, when we aim the spectroscopic accuracy, we must examine these contributions carefully. Such studies are possible by using the higher-order FC theory because the FC theory is exact. As an example of the highly accurate calculations with the FC theory, we may refer to the calculations performed for the He atom. ${ }^{39,61}$

V. CONCLUSIONS

We applied the free complement (FC) theory that was developed for solving the Schrödinger equation highly accurately to the calculations of potential curves of the lower nine states of Li_{2} molecule. For this molecule, accurate experimental Rydberg-Klein-Rees (RKR) potential curves are available for the ground and many excited states so that we could examine the accuracy of the theory in detail. The theoretical FC potential curves and the experimental RKR curves agreed very accurately in their absolute values in all regions of the $\mathrm{Li}-\mathrm{Li}$ distances of all the states for which the experimental RKR potentials were reported. The differences between the absolute energies of the FC theory and the experiments were $0.0583 \mathrm{kcal} / \mathrm{mol}$ in average and the maximum difference was only $+0.165 \mathrm{kcal} / \mathrm{mol}$ for all the calculated lengths, $3-13$ a.u., of all the states in the range of -14.82 ~-15.00 hartree (1 hartree $=627.5096 \mathrm{kcal} / \mathrm{mol}$) directly compared. The potential properties calculated by the FC theory agreed well with the experimental results for all the ground and excited states.

We note that the experimental RKR potentials were determined through the careful experimental spectroscopy ${ }^{8-19}$ of the Li_{2} molecule using the RKR method. ${ }^{5-7}$ The present theoretical potential curves of the Li_{2} molecule were obtained from the free complement (FC) theory developed for solving the Schrödinger equation highly accurately. ${ }^{34,35}$ It was shown here that these completely independent experimental and theoretical data on the potential curves of the seven states of Li_{2} molecule agreed almost completely with each other in wide range of the $\mathrm{Li}-\mathrm{Li}$ distance and the energy. This may be considered as a proof of the statement that the Schrödinger equation governs the chemistry of the Li_{2} molecule. More explicitly, we have solved the Schrödinger equation of the Li_{2} molecule by using the free complement theory that was formulated from the variational formula of the scaled Schrödinger equation, since the variational formula of the Schrödinger equation itself diverges. ${ }^{34}$

Furthermore, in Fig. 1, we notice that the experimental figure on the left-hand side has many empty spaces like no information for the $1^{3} \Pi_{u}$ and $1^{3} \Pi_{g}$ states and the incomplete information for the $\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}, \mathrm{b}^{3} \Sigma_{\mathrm{g}}{ }^{+}$, and $1^{1} \Pi_{\mathrm{g}}$ states. These empty spaces may be an obstacle for predicting chemistry. On the other hand, the theoretical
figure by the FC theory given on the right-hand side is full of information, and if we need the potential curves shorter than 3.4 a.u. and longer than 12 a.u., we can obtain highly reliable data only with computers. The same is true for the states lying higher than the given 9 states. With the FC theory, all that necessary is the computer time. Thus, the observations given in this paper certainly give the bases for the future development of the quantitatively predictive quantum chemistry. Truly reliable data can nurture the imagination that may lead to a big future. It is important to develop the FC theory to be applicable to a wide field of chemistry, including the structural and reaction chemistries and other related fields in physics and biology.

For comparison with the conventional Hartree-Fock based quantum chemistry, we performed the SAC/SAC-CI calculations using the flexible basis set and compared the results with the accurate experimental potential curves as we did for the results of the FC theory. Although the SAC/SAC-CI theory did not have the chemical accuracy (predictive power to within $\mathrm{kcal} / \mathrm{mol}$), the agreement between theory and experiment was reasonable for all the states except for the regions showing the deficiencies of the Hartree-Fock theory near the dissociation limit of a homopolar bond.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed comparisons of the old SAC/SAC-CI data published in 1985 with the experimental RKR potential data published thereafter.

ACKNOWLEDGMENTS

We thank the Research Center for Computational Science, Institute for Molecular Science, Okazaki, for allowing us to use their super-parallel computers and for encouraging our research project (Project No. 22-IMS-C012). We also used the computational resources of supercomputer Fugaku provided by the RIKEN Center for Computational Science, Japan, and the supercomputer system at the Information Initiative Center, Hokkaido University, Sapporo, Japan, through the HPCI System Research Project (Project ID: hp220091). This research was funded by the JSPS KAKENHI (Grant Nos. 22H02045, 20K21182, 20K20295, and 17H06233).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Hiroshi Nakatsuji: Conceptualization (equal); Methodology (equal); Writing - original draft (equal). Hiroyuki Nakashima: Investigation (equal); Software (equal).

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material.

REFERENCES

${ }^{1}$ K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold Co., New York, 1979).
${ }^{2}$ H. Nakatsuji, J. Ushio, and T. Yonezawa, Can. J. Chem. 63, 1857 (1985).
${ }^{3}$ H. Nakatsuji and K. Hirao, J. Chem. Phys. 68, 2053 (1978).
${ }^{4}$ H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978); 67, 329 (1979); 67, 334 (1979).
${ }^{5}$ R. Rydberg, Z. Phys. 73, 376 (1932).
${ }^{6}$ O. Klein, Z. Phys. 76, 226 (1932).
${ }^{7}$ A. L. G. Rees, Proc. Phys. Soc. 59, 998 (1947).
${ }^{8}$ B. Barakat, R. Bacis, F. Carrot, S. Churassy, P. Crozet, F. Martin, and J. Verges, Chem. Phys. 102, 215 (1986).
${ }^{9}$ C. Linton, T. L. Murphy, F. Martin, R. Bacis, and J. Verges, J. Chem. Phys. 91, 6036 (1989).
${ }^{10}$ F. Martin, R. Bacis, J. Verges, C. Linton, G. Bujin, C. H. Cheng, and E. Stad, Spectrochim. Acta, Part A 44, 1369 (1988).
${ }^{11}$ D. A. Miller, L. P. Gold, P. D. Tripodi, and R. A. Bernheim, J. Chem. Phys. 92, 5822 (1990).
${ }^{12}$ C. He, L. P. Gold, and R. A. Bernheim, J. Chem. Phys. 95, 7947 (1991); See also, B. Barakat, R. Bacis, S. Churassy, R. W. Field, J. Ho, C. Linton, S. Mc Donald, F. Martin, and J. Verc, J. Mol. Spectrosc. 116, 271 (1986).
${ }^{13}$ K. Urbanski, S. Antonova, A. Yiannopoulou, A. M. Lyyra, L. Li, and W. C. Stwalley, J. Chem. Phys. 104, 2813 (1996); Erratum 116, 10559 (2002).
${ }^{14}$ X. Wang, J. Magnes, A. M. Lyyra, A. J. Ross, F. Martin, P. M. Dove, and R. J. Le Roy, J. Chem. Phys. 117, 9339 (2002); Erratum 120, 3520 (2004).
${ }^{15}$ C. Linton, F. Martin, A. J. Ross, I. Russier, P. Crozet, A. Yiannopoulou, L. Li, and A. M. Lyyra, J. Mol. Spectrosc. 196, 20 (1999).
${ }^{16}$ N. Bouloufa, P. Cacciani, R. Vetter, A. Yiannopoulou, F. Martin, and A. J. Ross, J. Chem. Phys. 114, 8445 (2001).
${ }^{17}$ R. J. Le Roy, N. S. Dattani, J. A. Coxon, A. J. Ross, P. Crozet, and C. Linton, J. Chem. Phys. 131, 204309 (2009); See also, M. M. Hessel and C. R. Vidal, J. Chem. Phys. 70, 4439 (1979).
${ }^{18}$ A. Pashov, W. Jastrzẹbski, and P. Kowalczyk, J. Chem. Phys. 113, 6624 (2000).
${ }^{19}$ W. Jastrzebski, A. Pashov, and P. Kowalczyk, J. Chem. Phys. 114, 10725 (2001).
${ }^{20}$ D. D. Konowalow and J. L. Fish, Chem. Phys. 77, 435 (1983); 84, 463 (1984).
${ }^{21}$ I. Schmidt-Mink, W. Müller, and W. Meyer, Chem. Phys. 92, 263 (1985).
${ }^{22}$ P. Jasik and J. E. Sienkiewicz, Chem. Phys. 323, 563 (2006).
${ }^{23}$ H. Nakatsuji, Acta Chimica Hungarica - Models in Chemistry. 129, 719 (1992).
${ }^{24}$ H. Nakatsuji, Computational Chemistry, Reviews of Current Trends (World Scientific Publishing, 1997), Vol. 2, pp. 1-63.
${ }^{25}$ U. Kaldor, Chem. Phys. 140, 1-6, (1990).
${ }^{26}$ D.-H. Shi, H. Ma, J.-F. Sun, and Z.-L. Zhu, Commun. Theor. Phys. 48, 1081-1087 (2007).
${ }^{27}$ D.-H. Shi, J.-F. Sun, Z.-L. Zhu, and Y.-F. Liu, Chin. Phys. 16, 2701-2708 (2007).
${ }^{28}$ D.-H. Shi, H. Ma, J.-F. Sun, Z.-L. Zhu, Y.-F. Liu, and B.-H. Yu, J. Mol. Struct. THEOCHEM 824, 71-75 (2007).
${ }^{29}$ B.-H. Yu, D.-H. Shi, J.-F. Sun, Z.-L. Zhu, Y.-F. Liu, and X.-D. Yang, Chin. Phys. 16, 2371-2377 (2007).
${ }^{30}$ Y.-F. Liu, J.-F. Sun, H. Ma, and Z.-L. Zhu, Chin. Phys. 16, 680-685 (2007).
${ }^{31}$ M. Musiał and S. A. Kucharski, J. Chem. Theory Comput. 10, 1200 (2014).
${ }^{32}$ M. Musiał, J. Chem. Phys. 136, 134111 (2012); M. Musiał, K. Kowalska-Szojda, D. I. Lyakh, and R. Bartlett, ibid. 138, 194103 (2013).
${ }^{33}$ H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000); H. Nakatsuji and E. R. Davidson, ibid. 115, 2000 (2001); H. Nakatsuji, ibid. 115, 2465 (2001).
${ }^{34}$ H. Nakatsuji, Phys Rev. Lett. 93, 030403 (2004); Phys. Rev. A 72, 062110 (2005).
${ }^{35}$ H. Nakatsuji, Acc. Chem. Res. 45, 1480 (2012).
${ }^{36}$ H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa, J. Chem. Phys. 149, 114105 (2018); 149, 114106 (2018).
${ }^{37}$ H. Nakatsuji and H. Nakashima, J. Chem. Phys. 142, 194101 (2015).
${ }^{38}$ H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa, J. Chem. Phys. 149, 114105 (2018).
${ }^{39}$ Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Chem. Chem. Phys. 10, 4486 (2008).
${ }^{40}$ H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa, Phys. Rev. Lett. 99, 240402 (2007).
${ }^{41}$ H. Nakatsuji and H. Nakashima, J. Chem. Phys. 142, 084117 (2015).
${ }^{42}$ T. Tsuda, Monte Carlo Methods and Simulations (Baifukan Co. Ltd., 1969) (in Japanese).
${ }^{43}$ L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag, New York, 1986).
${ }^{44}$ N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
${ }^{45}$ C. T. Campos, G. A. Ceolin, A. Canal Neto, F. E. Jorge, and F. N. N. Pansini, Chem. Phys. Lett. 516, 125 (2011).
${ }^{46}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, GAUSSIAN 16, Revision C. 02, Gaussian, Inc., Wallingford CT, 2019.
${ }^{47}$ C. Filippi and C. J. Umrigar, J. Chem. Phys. 105, 213 (1996).
${ }^{48}$ L. M. Wang, Z.-C. Yan, H. X. Qiao, and G. W. F. Drake, Phys. Rev. A 85, 052513 (2012).
${ }^{49}$ H. Nakatsuji, J. Hasegawa, and K. Ohkawa, Chem. Phys. Lett. 296, 499 (1998); J. Phys. Chem. B 102, 10410 (1998); J. Hasegawa and H. Nakatsuji, ibid. 102, 10420 (1998).
${ }^{50}$ H. Ito and H. Nakatsuji, J. Comput. Chem. 22, 265 (2001); Y. Ohtsuka, K. Ohkawa, and H. Nakatsuji, ibid. 22, 521 (2001); K. Ohkawa, M. Hada, and H. Nakatsuji, J. Porphyrins Phthalocyanines 5, 256 (2001).
${ }^{51}$ J. Hasegawa, M. Ishida, H. Nakatsuji, Z. Lu, H. Liu, and W. Yang, J. Phys. Chem. B 107, 838 (2003).
${ }^{52}$ J. Deisenhofer and H. Michel, EMBO J. 8, 2149 (1989).
${ }^{53}$ T. Miyahara, H. Nakatsuji, and H. Sugiyama, J. Phys. Chem. A 117, 42 (2013); 120, 9008 (2016); T. Miyahara and H. Nakatsuji, ibid. 122, 100 (2018).
${ }^{54}$ The equivalence of EOM-CC and SAC-CI was clearly shown in Section I-E. Equivalence of EOM-CC and CC-LRT to SAC-CI on page 31-32 of the SAC-CI GUIDE given at http://www.qcri.or.jp/sacci/SAC-CI-GUIDE_121215.pdf.
${ }^{55}$ W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
${ }^{56}$ W. Kołos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).
${ }^{57}$ W. Kołos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).
${ }^{58}$ L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).
${ }^{59}$ M. Lesiuk, M. Musiał, and R. Moszynski, Phys. Rev. A 102, 062806 (2020) and Supplemental Material.
${ }^{60}$ M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).
${ }^{61}$ H. Nakashima and H. Nakatsuji, J. Chem. Phys. 127, 224104 (2007).
${ }^{62}$ P. Kusch and M. M. Hessel, J. Chem. Phys. 67, 586 (1977).
${ }^{63}$ F. Engelke and H. Hage, Chem. Phys. Lett. 103, 98 (1983).

[^0]: ${ }^{\text {a }}$ Average values of ΔE and $\Delta E X$ from this SAC-CI calculations. Their total averages of ΔE and $\Delta E X$ for all the calculated points in this table were $5.727 \mathrm{kcal} / \mathrm{mol}$ and 0.00428 eV , respectively.
 ${ }^{\mathrm{b}}$ Signed maximum values of ΔE and $\Delta E X$ of the same states. The signed maximum values of ΔE and $\Delta E X$ over all the states were $9.164 \mathrm{kcal} / \mathrm{mol}$ of the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state at $R=10.0$ a.u. and 0.10967 eV of the $2^{1} \Sigma_{\mathrm{g}}{ }^{+}$state at $R=10.0$ a.u., respectively.

