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Solving the Schrödinger equation of a planar model H4 molecule 
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A B S T R A C T   

The Schrödinger equation of a planar model H4 molecule was solved with the free complement (FC) - local 
Schrödinger equation (LSE) theory using the direct local sampling (DLS) method. Although this molecule is often 
used to examine the intrinsic weakness of the Hartree-Fock related theory, the present FC-LSE-DLS theory suc-
cessfully produced accurate solutions of the Schrödinger equation at any geometries of this molecule. We 
mapped the two-dimensional potential energy surfaces and revealed that the ground state has a dissociation 
channel to a couple of H2 molecules but the two excited states have local minimums constructing H4 molecule.   

1. Introduction 

H4 molecule is a simple four-electron system but such hydrogen 
clusters and related compounds are key molecules in astrochemistry for 
the material composition in interstellar clouds [1–9]. The quan-
tum–mechanical potential energy surfaces (PES) of not only the ground 
but also excited states of these molecules should be significant for un-
derstanding the hydrogen-reaction chemistry in space. 

In quantum chemistry, H4 molecule has been often used to examine 
new developing theories since this is a simple 4-electron system but 
includes the strong especially static electron correlations. The Hartree- 
Fock based molecular orbital (MO) theory has the intrinsic weakness 
for this molecule and most of the single-reference theories break down 
for this simple system due to its strong diradical characters. For doing 
precise computations of this molecule, several interesting new-type 
theories different from the conventional quantum chemistry were pro-
posed [10–22]. For instance, whereas ordinary nonvariational coupled- 
cluster theories produce unphysical behaviours in the PES (see Sec. III), 
Paldus, Piecuch et al. [12] reported the Hilbert-space coupled-cluster 
theory and Voorhis and Head-Gordon [15] examined the variational 
coupled-cluster theory compared with the full configuration interaction 
(CI) method. Recently, Genovese, Meninno and Sorella performed ac-
curate calculations by the Jastrow antisymmetrized geminal power 
(JAGP) method [19] and produced very precise total energies. Since 
these reference data are informative and intelligible, we employed them 
to compare the accuracies with the present results. Further, several new- 
type theories were also applied to this molecule; a neural-network 
approach FermiNet [20], the exact two-body expansion by a reduced 

density matrix analog [21], the variational quantum eigensolver - uni-
tary coupled-cluster theory for quantum computer [22], etc. 

In this paper we study the H4 molecule with the free complement 
(FC) - local Schrödinger equation (LSE) - direct local sampling (DLS) 
theory. First, the FC-LSE-DLS theory must be explained. The free com-
plement (FC) theory is the theory for solving exactly the Schrödinger 
equation (SE) of atoms and molecules published in 2004 [23,24]. The FC 
theory is based on the following intermediate equation at order n, 

ψn+1 = [1 + Cng(H − En)]ψn (1) 

that leads to the exact solution of the SE ψ from some approximate 
wave function ψ0. In Eq. (1), H is the Hamiltonian of the system of in-
terest and g is the scaling function of the Scaled Schrödinger equation 
(SSE) that was introduced to improve the divergence defect of the 
original SE for the exact variational problem [23]. Eq. (1) can be 
transformed by extracting the elemental analytical functions {ϕI} as, 

ψ =
∑

I
cIϕI (2) 

where ϕI is referred to as a complement (complete element) function. 
This theory is an exact theory that is different from the conventional 
quantum chemistry theories. This theory has been developed in several 
different ways and applied to many basic problems [23–40]. By giving 
more variational freedoms in Eq. (2) than in Eq. (1), one can efficiently 
obtain the rapid convergences. To calculate the variables {cI} in Eq. (2), 
the first choice is to use the variational method with analytical in-
tegrations [25,27,34–37]. In the variational framework, very precise 
calculations were performed for small systems [25,27,34] and the 
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variational sij [36] and sij-assisted rij theories [37] were also proposed for 
more general atoms and molecules by relaxing the integration diffi-
culties. When the integral evaluation is impossible, an alternative choice 
was given as the sampling-based LSE theory [26,30] which is integral- 
free and applicable to any systems and functions in principle. We pro-
posed this theory to determine the FC wave function that is potentially 
exact. The LSE theory is similar in spirit to the least-squares local-energy 
method considered by Frost many years ago [41]. It also has some 
similarity to the pseudospectral or collocation methods [42–44] that 
were used for other purposes. 

We have applied the FC-LSE theory to first-row atoms and several 
small organic and inorganic molecules and obtained highly accurate 
solutions [32,33]. There, we used the efficient antisymmetrization al-
gorithm [29] and also proposed the inter-exchange theory [31] that 
realizes an order-N theory for big systems. Recently, we introduced the 
chemical formula theory to construct the cf’s according to the chemical 
locality [32] and the generalized scaling functions to accelerate the 
convergence to the exact solutions [38]. We also introduced the DLS 
method based on the inverse transformation method [39,40], which 
enabled to make the sampling distributions rationally according to a 
given density function without using the Metropolis algorithm [45,46]. 
Recently, the FC-LSE-DLS theory was satisfactorily applied to calculate 
the potential curves of the nine valence states of the Li2 molecule in a 
Schrödinger-level accuracy [40], giving absolute agreements with the 
experimental Rydberg-Klein-Rees (RKR) potential energy curves avail-
able [47–49]. 

The purpose of the present letter is to solve the SE of a H4 molecular 
system accurately with the FC-LSE-DLS theory and examine its intrinsic 
theoretical ability. In Sec. II, we specify the calculations of the FC-LSE- 

DLS theory for the present H4 molecule. We employ the local-based 
wave function according to the chemical formula theory [32] different 
from a molecular-orbital-based delocalized picture. In Sec. III, we first 
examine the accuracies of the present FC-LSE-DLS calculations by 
comparing with the reference data. We further calculate the two- 
dimensional (2D) PES of the ground and two totally symmetric singlet 
excited states in the square and rectangle planar geometries. These are 
model geometries but the computed results might be useful for under-
standing hydrogen-cluster chemistry. Lastly, the concluding remarks are 

given in Sec. IV. 

2. FC-LSE-DLS calculations of a H4 molecule 

In the present study, we employed the model planar geometries with 
the restrictions of square or rectangle. Fig. 1 shows their definitions. The 
coordinates of Fig. 1a are taken from Ref. [15], where R is defined as the 
distance between the center of quadrangle and each hydrogen and θ is 
the angle of two diagonal lines. The coordinates of Fig. 1b are taken from 
Ref. [19], where Rx and Ry are defined as simple horizontal x and ver-
tical y lengths between two hydrogen atoms. Corresponding to these 
geometries, we first prepared a set of initial functions for progressing the 
FC theory for the totally spatial symmetric singlet states, given by 

ψ (Cov,1)
0 =A

[(
H1s,AH1s,B)(αβ − βα)⋅(H1s,CH1s,D)(αβ − βα)

]

ψ (Cov,2)
0 =A

[(
H1s,AH1s,C)(αβ − βα)⋅(H1s,BH1s,D)(αβ − βα)

]

ψ (Ion,1)
0 =A

[(
H1s,AH1s,A)αβ⋅(H1s,CH1s,D)(αβ − βα)

]
+(symmetrized)

ψ (Ion,2)
0 =A

[(
H1s,AH1s,A)αβ⋅(H1s,BH1s,D)(αβ − βα)

]
+(symmetrized)

ψ (Cov(2s),1)
0 =A

[(
H1s,AH2s,B)(αβ − βα)⋅(H1s,CH1s,D)(αβ − βα)

]
+(symmetrized)

ψ (Cov(2s),2)
0 =A

[(
H1s,AH2s,C)(αβ − βα)⋅(H1s,BH1s,D)(αβ − βα)

]
+(symmetrized)

(3) 

where A denotes the four-electron antisymmetrizer and α and β 
denote the spin coordinates. ‘(symmetrized)’ represents the additional 
terms to satisfy the spatial symmetries: A1g in D4h for the square ge-
ometries and Ag in D2h for the rectangle geometries. We employed the 
simplest hydrogen-type 1 s and 2 s atomic orbitals for each center, given 
by   

with α1s = 1.0 andα2s = 0.5. In Eq. (3), ψ (Cov,1)
0 and ψ(Cov,2)

0 show a 
couple of independent covalent terms with different singlet couplings. 
ψ (Ion,1)

0 and ψ(Ion,2)
0 represent the ionic contributions corresponding to 

ψ (Cov,1)
0 and ψ(Cov,2)

0 , respectively. ψ (Cov(2s),1)
0 and ψ(Cov(2s),2)

0 are introduced 
to describe the PES for the excited states accurately. Thus, different from 
an ordinary MO theory, we employed the local-picture initial functions 
according to the chemical formula theory proposed before [32]. These 
guarantee the dissociation limits of four hydrogen atoms and are suit-
able for describing the PES and chemical reactions. We use the same 
form of the initial functions given by Eq. (3) for all the present calcu-
lations at all the adopted geometries. 

We employed the scaling functions in the scaled SE [23,24,38], given 
by 

giA = riA and gij = Ei(− γ1rij − γ2) − Ei(− γ2) (5) 

for the electron-nucleus and electron-electron cases, respectively, 
where riA denotes the distance between electron i and nucleus A and rij 

between electrons i and j. In Eq. (5), we used the parameters: γ1 =

0.00121 and γ2 = 0.000238 which were the roughly optimized values 
for a helium atom in Ref. [38]. 

Starting from this set of the initial functions and the scaling func-
tions, the FC theory was applied up to order n and collected the cf’s 
whose number is denoted as dimension M. By the FC theory, so-called 
inter terms: one-electron riAB terms and two-electron riAjB terms are 
naturally generated, where iA represents the electron i belongs to the 
center A of the Slater orbital in Eq. (4). Therefore, riAB represents the 

Fig. 1. Definitions of the coordinates of square and rectangle model geometries 
in the present study of a H4 molecule. The coordinates of (a) are taken from 
Ref. [15], where R is defined as the distance between the center of quadrangle 
and each hydrogen and θ is the angle of two diagonal lines. The coordinates of 
(b) are from Ref. [19], where Rx and Ry are defined as simple horizontal × and 
vertical y lengths between two hydrogen atoms. 

H1s,A = exp(− α1srA), H1s,B = exp(− α1srB), H1s,C = exp(− α1srC), H1s,D = exp(− α1srD)

H2s,A = rAexp(− α2srA), H2s,B = rBexp(− α2srB), H2s,C = rCexp(− α2srC), H2s,D = rDexp(− α2srD)
(4)   
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distance from the electron iA to another atom B and riAjB represents the 
electron–electron distance whose two electrons belong to different 
centers. The former works as a kind of polarization and also for the 
improvement of the coalescence condition at another atomic center. The 
latter also works for describing the polarization and the electro-
n–electron correlations in the chemical bond. The former is a one- 
electron function but out of common in ordinary quantum chemistry. 
The FC theory, however, generates them from the theoretical point of 
view and implies their importance in the exact-level solutions. After 
generating cf’s, their unknown variables were calculated by the HS 
method of the LSE theory [30]. 

The sampling points were produced by the recently developed DLS 
method [39]. We employed a N-electron density Γ(N) = ψ2

0 of the ground 
state with 9 × 106 sampling points at each molecular geometry. The 
coordinates of each electron were distributed by the conditional prob-
ability of Γ(N). As a result, most probability was found that each electron 
equally located on each atom one by one due to the locality and Pauli’s 
exclusion principle. For any geometry in the present study, the sampling 
points are constructed in the same style and this enables to compute the 
smooth PES in spite of a sampling-type procedure. 

3. Results and discussions 

3.1. Examination of the accuracies of the FC-LSE-DLS calculations 

We first performed the FC-LSE-DLS calculations up to order n = 3 
with dimension M = 8497.at the geometries defined in Fig. 1a with the 
fixed R = 3.2843 a.u. (=1.70 Å) and changing θ from 70 to 110 degree 
(70–90 and 90–110 are symmetric each other). The results for the 

ground state are summarized in Table 1 with the absolute total energies 
and H-square errors defined by 〈ψ |(H − E)2

|ψ〉. The H-square error is a 
good measure of the exactness of the wave function [30]: if this quantity 
is zero for any set of sampling points, the wave function is exact as the 
solution of the Schrödinger equation. Table 1 also summarizes the 
reference data for comparison: the full CI results of the double-zeta plus 
polarization (DZP) Gaussian basis by Voorhis and Head-Gordon [15] 
and the Hartree-Fock, non-variational coupled-cluster singles and dou-
bles (CCSD), and full CI results of the large Slater-type CVB2 basis 
calculated by the MOLPRO program package [50]. Fig. 2 shows the plots 
of these energies with respect to the angle θ. As shown in Table 1, the H- 
square errors were very small less than 0.000 03 for all of θ. It implies 
that the calculated results were sufficiently highly accurate and in the 
essentially exact level. In the reference calculations, the single-reference 
MO theories failed even with the present simple 4-electron system due to 
the large error for describing the static electron correlation. For 
instance, the potential energy curve of the Hartree-Fock theory with 
CVB2 basis set was considerably high and had a strange cusp at θ = 90 
degree. Such a discontinuity of the first derivative in the potential en-
ergy curve should never be seen in the nature. Thus, the Hartree-Fock 
theory breaks down and its wave function does not work as a good 
reference for the successive correlated theories. Actually, the potential 
energy curve of the HF-CCSD theory with CVB2 basis showed an 
unphysical lower energy region and also a strange cusp around θ = 90 
degree, which reflects the fault of the Hartree-Fock wave function. On 
the other hand, the full CI results were reasonable but their total en-
ergies with DZP basis were much higher than those of our calculations, 
though those of the full CI with CVB2 basis were much improved. 
Table 1 also shows the energy differences ΔE between the full-CI (CVB2) 

Table 1 
FC-LSE-DLS calculations of a H4 molecule with the FC order n = 3 and dimension M = 8497 at the geometries defined in Fig. 1a with the fixed R = 3.2843 a.u. and 
changing θ from 90 to 70 degree, compared with the reference data of the full CI method with DZP basis set by Ref. [15] and the Hartree-Fock, CCSD, and full CI 
methods with CVB2 basis set. The results at θ from 90 to 110 degree are symmetrically same as those at θ from 90 to 70 degree.  

θ (degree) FC-LSE Full CI(DZP)  
[15] 

Hartree-Fock (CVB2) CCSD 
(CVB2) 

Full CI (CVB2) 

Energy (a.u.) H-square error Energy (a.u.) Energy (a.u.) ΔE: Efull CI-EFC-LSE-DLS 

(kcal/mol)a 

90.0 − 2.015 338 80 0.000 014 49 − 2.001 978 − 1.735 934 − 2.022 071 − 2.014 183 0.702 
89.9 − 2.015 359 81 0.000 019 31  − 1.736 406 − 2.021 964 − 2.014 184 0.694 
89.8 − 2.015 362 87 0.000 019 16  − 1.736 879 − 2.021 858 − 2.014 186 0.698 
89.7 − 2.015 367 44 0.000 019 59  − 1.737 353 − 2.021 754 − 2.014 191 0.700 
89.6 − 2.015 375 51 0.000 019 41  − 1.737 828 − 2.021 651 − 2.014 197 0.705 
89.5 − 2.015 384 19 0.000 018 92 − 2.001 998 − 1.738 303 − 2.021 550 − 2.014 205 0.707 
89.3 − 2.015 406 60 0.000 018 60  − 1.739 255 − 2.021 354 − 2.014 227 0.708 
89.0 − 2.015 453 62 0.000 018 50 − 2.002 057 − 1.740 688 − 2.021 073 − 2.014 273 0.705 
88.5 − 2.015 573 06 0.000 018 13  − 1.743 090 − 2.020 641 − 2.014 385 0.708 
88.0 − 2.015 737 33 0.000 018 90 − 2.002 291 − 1.745 510 − 2.020 258 − 2.014 541 0.710 
87.5 − 2.015 938 62 0.000 019 23  − 1.747 948 − 2.019 925 − 2.014 739 0.712 
87.0 − 2.016 185 42 0.000 019 64  − 1.750 405 − 2.019 647 − 2.014 979 0.714 
86.5 − 2.016 473 88 0.000 018 77  − 1.752 882 − 2.019 426 − 2.015 257 0.715 
86.0 − 2.016 799 71 0.000 018 76  − 1.755 378 − 2.019 264 − 2.015 574 0.727 
85.5 − 2.017 163 46 0.000 019 65  − 1.757 895 − 2.019 163 − 2.015 928 0.720 
85.0 − 2.017 561 33 0.000 019 99 − 2.003 838 − 1.760 433 − 2.019 125 − 2.016 317 0.737 
84.0 − 2.018 458 35 0.000 022 74  − 1.765 573 − 2.019 242 − 2.017 195 0.787 
83.0 − 2.019 487 06 0.000 023 75  − 1.770 803 − 2.019 615 − 2.018 199 0.781 
82.0 − 2.020 637 83 0.000 024 74  − 1.776 128 − 2.020 235 − 2.019 325 0.810 
81.0 − 2.021 911 38 0.000 022 61  − 1.781 552 − 2.021 087 − 2.020 568 0.823 
80.0 − 2.023 260 96 0.000 017 01 − 2.008 733 − 1.787 078 − 2.022 151 − 2.021 927 0.843 
79.0 − 2.024 809 23 0.000 022 85  − 1.792 711 − 2.023 410 − 2.023 401 0.864 
78.0 − 2.026 431 60 0.000 024 23  − 1.798 455 − 2.024 848 − 2.024 993 0.879 
77.0 − 2.028 186 59 0.000 024 40  − 1.804 315 − 2.026 453 − 2.026 706 0.906 
76.0 − 2.030 065 88 0.000 024 60  − 1.810 293 − 2.028 216 − 2.028 543 0.937 
75.0 − 2.032 068 63 0.000 025 29  − 1.816 395 − 2.030 135 − 2.030 510 0.962 
74.0 − 2.034 217 89 0.000 027 10  − 1.822 624 − 2.032 207 − 2.032 611 0.984 
73.0 − 2.036 497 44 0.000 027 87  − 1.828 985 − 2.034 433 − 2.034 854 1.005 
72.0 − 2.038 937 67 0.000 028 35  − 1.835 481 − 2.036 816 − 2.037 245 1.044 
71.0 − 2.041 527 97 0.000 025 97  − 1.842 117 − 2.039 361 − 2.039 790 1.072 
70.0 − 2.044 257 44 0.000 022 41 − 2.029 083 − 1.848 896 − 2.042 073 − 2.042 497 1.086  

a Conversion constant: 1 a.u. = 627.5095 kcal/mol was used between a.u. and kcal/mol for all the data in this paper. 
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and the FC-LSE-DLS. ΔE were always positive, i.e. the full-CI (CVB2) 
total energies were still higher than our results. At θ = 90 degree, the 
energy of full-CI (CVB2) was ΔE = 0.702 kcal/mol higher than that of 
the FC-LSE-DLS, but ΔE became large as decreasing θ and became 1.086 
kcal/mol at θ = 70 degree. This implies that even the full CI method with 
quite large basis set cannot always describe the correct shape of the 
potential energy curve. The full CI method is exact when the basis set 
space is complete, but there is no systematic way to approach to the 
exact. On the other hand, the FC-LSE-DLS theory was successful to 
provide essentially exact results with accurate and smooth potential 
energy curves at any geometry of θ. 

We next compared the present calculations with other recent accu-
rate calculations of the JAGP method by Genovese, Meninno and Sorella 
[19]. They employed the geometries defined in Fig. 1b. They provided 
the total energies by the JAGP method compared with the complete 
active space (CAS(4,4)) and full CI results with the fixed Ry = 2.4 a.u. 
and changing several Rx. We performed the FC-LSE-DLS calculations at 
the same geometries to check the convergences at the FC orders n = 0 to 
3 with dimensions M = 6, 96, 1064, and 8497, respectively, and the 
results are summarized in Table 2 and the reference data are given in 
Table 3. In Tables 2 and 3, the energy differences from the most accurate 
energies by the FC-LSE-DLS of n = 3 were denoted as ΔE at each ge-
ometry. At all the geometry, as increasing the order n, both total en-
ergies and H-square errors converged rapidly and smoothly. The 
energies of the FC-LSE-DLS theory at n = 3 were lowest and best among 
any reference values. For instance, at Rx = 2.4, the energy and H-square 
error of the FC-LSE-DLS theory at n = 3 were − 2.113 171 23 a.u. and 
0.000 465 88, whose energies by JAGP(cc-pVTZ) and JAGP were 
− 2.108 4 ± 0.0003 and − 2.112 5 ± 0.0002 and ΔE were 2.994 and 
0.421 kcal/mol higher, respectively. The latter method was also very 
accurate but the FC-LSE-DLS energies were further lower than them and 
our results were always accurate regardless of the geometries. Moreover, 
due to the local picture of the wave functions, the freedom (dimension) 
to achieve these accurate solutions was not so large even compared to 
other references and, if one applies the cf selection scheme etc. [36,37], 
more compact and understandable wave function would be constructed 
without loos of accuracy. 

3.2. 2D potential energy surfaces of the ground and excited states on the 
restriction of the model planar square or rectangle geometries 

Next, we computed the 2D potential energy surfaces by the FC-LSE- 
DLS theory at n = 3 with M = 8497 in the model planar geometry 
assumed the square or rectangle restrictions for the ground and two 
totally symmetric singlet excited states. Figs. 3 to 5 show the PES for 
these states, respectively, to the Rx and Ry coordinates defined in Fig. 1b 
with coloured contour graphs. In Fig. 3 for the ground state, the right- 
upper position represents four dissociated ground-state H(1s) atoms, 
whose total energy is (-0.5) × 4 = -2.0 a.u. In the ground sate, two 
hydrogen molecules: 2H2 are constructed as the lowest energy pass. 
Thus, a molecular H4 is not formed at least with the present model ge-
ometries. In Fig. 4 for the first excited state, the right-upper position is 
same as the ground state, i.e. 4H(1s). In this state, there was an energy 
minimum constructing a molecular H4 at the square geometry: Rx = Ry 
= 2.225 96 a.u. with the energy: − 2.041 958 83 a.u., whose minimum 
position was computed using the 2D spline interpolation from the 
calculated discrete PES. This minimum was 26.3 kcal/mol more stable 
than the dissociated four H(1s) atoms, but 192.64 kcal/mol less stable 
than the two H2 molecules. Thus, if the system absorbs the light and is 
excited to this state, an H4 excited-state molecule is weakly constructed 
and then two H2 molecules are formed after the detransition to the 
ground state. In Fig. 5 for the second excited state, the right-upper po-
sition shows the dissociation of 3H(1s) + H(2s), i.e. one of the four 
hydrogen atoms becomes the 2s excited state, whose total energy is 
(-0.5) × 3+(-0.125) = -1.625 a.u. The PES of this state has a complicated 
shape because of several state repulsions. Interestingly, there were the 
local minimums at the rectangle (symmetry-broken) geometry, Rx =

1.841 96 and Ry = 2.543 64 a.u. and vice versa with the energy: − 1.888 
095 29 a.u., whose minimum position was also obtained using the 2D 
spline interpolation. This local minimum is 165.09 kcal/mol lower than 
the dissociated 3H(1s) + H(2s) state. The global minimum pass, how-
ever, was to generate two H2 molecules, which should be one in the 
ground state: H(1s)-H(1s) but the other in the excited state: H(1s)-H(2s). 

Fig. 2. Potential energy curves of the FC-LSE-DLS calculations of a H4 molecule with the FC order n = 3 and dimension M = 8497 at the geometries defined in Fig. 1a 
with the fixed R = 3.2843 a.u. and changing θ from 70 to 110 degree. Those of the reference calculations are also plotted for comparison. The left graph is large 
scaling and the right is enlarged drawing. 
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4. Concluding remarks 

In the present study, we performed accurate FC-LSE-DLS calculations 
for the H4 system using the DLS sampling method within the restricted 
square or rectangular model geometries. We first compared our calcu-
lations with the reference data by the Hartree-Fock, CCSD, full CI, CAS, 
and JAGP methods. Single-reference and/or non-variational theories 
based on the MO theory failed to describe the present simple four- 
electron system due to the strong static electron correlations. On the 
other hand, the present FC-LSE-DLS calculations were always successful 
at any geometries without any complexity because of the local de-
scriptions of the wave function based on the chemical formula theory. 
The obtained ground-state energies were very accurate and lowest 
among the existing reference data. 

We further investigated the 2D PES of the ground and two totally 
symmetric singlet excited states. On the restricted model planar geom-
etries, the channel of the creation of two H2 molecules was most stable in 
the ground state, but there were the energy minimums constructing a H4 
molecule at the square geometry in the first excited state and the rect-
angle symmetry-broken geometry in the second excited state. Thus, we 
are extending the present approach to study other Hn systems for as-
tronomical interests. 

Data availability 

The data that support the findings of this study are available within 
the article. 

CRediT authorship contribution statement 

Hiroyuki Nakashima: Methodology, Software, Validation, Formal 
analysis, Writing – original draft, Writing – review & editing, Visuali-
zation. Hiroshi Nakatsuji: Methodology, Software, Validation, Formal 
analysis, Writing – original draft, Writing – review & editing, 
Visualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgments 

We acknowledge the computer centers of the Research Center for 
Computational Science, Okazaki, Japan for their generous supports and 
encouragements to our research project (Project: 22-IMS-C012). We also 
used partially the computational resources of supercomputer Fugaku 
provided by the RIKEN Center for Computational Science, Japan, the 
supercomputer system at the Information Initiative Center, Hokkaido 

Fig. 5. Potential energy surface of the FC-LSE-DLS theory as a colored contour 
graph for the second totally symmetric singlet excited state of a H4 molecule 
with the FC order n = 3 and dimension M = 8497 at the model planar geometry 
assumed the square or rectangle restrictions. 

Fig. 3. Potential energy surface of the FC-LSE-DLS theory as a colored contour 
graph for the ground state of a H4 molecule with the FC order n = 3 and 
dimension M = 8497 at the model planar geometry assumed the square or 
rectangle restrictions. 

Fig. 4. Potential energy surface of the FC-LSE-DLS theory as a colored contour 
graph for the first totally symmetric singlet excited state of a H4 molecule with 
the FC order n = 3 and dimension M = 8497 at the model planar geometry 
assumed the square or rectangle restrictions. 

H. Nakashima and H. Nakatsuji                                                                                                                                                                                                             



Chemical Physics Letters 815 (2023) 140359

7

University, Sapporo, Japan, and the SQUID at the Cybermedia Center, 
Osaka University, Osaka, Japan through the HPCI System Research 
Project (Project ID: hp210100 and hp220091). This work was also 
supported by JSPS KAKENHI grant numbers 17H06233, 20K20295, 
20K21182, and 22H02045. 

References 

[1] T. Oka, Phys. Rev. Lett. 45 (1980) 531. 
[2] T. Oka, Rev. Mod. Phys. 64 (1992) 1141. 
[3] B.J. McCall, T.R. Geballe, K.H. Hinkle, T. Oka, Science 279 (1998) 1910. 
[4] Y. Morisawa1, M. Fushitani, Y. Kato, H. Hoshina, Z. Simizu, S. Watanabe, 

Y. Miyamoto, Y. Kasai, K. Kawaguchi, T. Momose, Astrophys. J. 642 (2006) 954. 
[5] S. Weinreb, A.H. Barrett, M.L. Meeks, J.C. Henry, Nature 200 (1963) 829. 
[6] E. Herbst, W. Klemperer, Astrophys. J. 185 (1973) 505. 
[7] T. Hama, N. Watanabe, Chem. Rev. 113 (2013) 8783. 
[8] G. Vidali, Chem. Rev. 113 (2013) 8762. 
[9] E. Roueff, F. Lique, Chem. Rev. 113 (2013) 8906. 

[10] J.B. Anderson, Int. J. Quantum Chem. 15 (1979) 109. 
[11] J.P. Finley, R.K. Chaudhuri, K.F. Freed, J. Chem. Phys. 103 (1995) 4990. 
[12] J. Paldus, P. Piecuch, L. Pylypow, B. Jeziorski, Phys. Rev. A 47 (1993) 2738. 
[13] K. Kowalski, K. Jankowski, Phys. Rev. Lett. 81 (1998) 1195. 
[14] K. Jankowski, K. Kowalski, J. Chem. Phys. 111 (1999) 2952. 
[15] T.V. Voorhis, M. Head-Gordon, J. Chem. Phys. 113 (2000) 8873. 
[16] M. Nakano, T. Minami, H. Fukui, R. Kishi, Y. Shigeta, B. Champagne, J. Chem. 

Phys. 136 (2012), 024315. 
[17] H.G.A. Burton, A.J.W. Thom, J. Chem. Theory Comput. 12 (2016) 167. 
[18] K. Gasperich, M. Deible, K.D. Jordan, J. Chem. Phys. 147 (2017), 074106. 
[19] C. Genovese, A. Meninno, S. Sorella, J. Chem. Phys. 150 (2019), 084102. 
[20] D. Pfau, J.S. Spencer, A.G.D.G. Matthews, W.M.C. Foulkes, Phys. Rev. Res. 2 

(2020), 033429. 
[21] D.A. Mazziotti, Phys. Rev. A 102 (2020), 030802. 
[22] Q. Guo, P. Chen, Front. Phys. 9 (2021), 735321. 

[23] H. Nakatsuji, Phys. Rev. Lett. 93 (2004), 030403. 
[24] H. Nakatsuji, Phys. Rev. A 72 (2005), 062110. 
[25] H. Nakashima, H. Nakatsuji, J. Chem. Phys. 127 (2007), 224104. 
[26] H. Nakatsuji, H. Nakashima, Y. Kurokawa, A. Ishikawa, Phys. Rev. Lett. 99 (2007), 

240402. 
[27] H. Nakashima, H. Nakatsuji, Phys. Rev. Lett. 101 (2008), 240406. 
[28] H. Nakatsuji, Acc. Chem. Res. 45 (2012) 1480. 
[29] H. Nakashima, H. Nakatsuji, J. Chem. Phys. 139 (2013), 044112. 
[30] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 142 (2015), 084117. 
[31] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 142 (2015), 194101. 
[32] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 149 (2018), 114105. 
[33] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 149 (2018), 114106. 
[34] Y.I. Kurokawa, H. Nakashima, H. Nakatsuji, Phys. Chem. Chem. Phys. 21 (2019) 

6327. 
[35] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 150 (2019), 044105. 
[36] H. Nakatsuji, H. Nakashima, Y.I. Kurokawa, Phys. Rev. A 101 (2020), 062508. 
[37] H. Nakashima, H. Nakatsuji, Phys. Rev. A 102 (2020), 052835. 
[38] H. Nakatsuji, H. Nakashima, Y.I. Kurokawa, J. Chem. Phys. 156 (2022), 014113. 
[39] H. Nakatsuji, H. Nakashima, Chem. Phys. Lett. 806 (2022), 140002. 
[40] H. Nakatsuji, H. Nakashima, J. Chem. Phys. 157 (2022), 094109. 
[41] A.A. Frost, R.E. Kellogg, B.M. Gimarc, J.D. Scargle, J. Chem. Phys. 35 (1961) 827. 
[42] S.A. Orszag, Studies Applied Math. 50 (1971) 293. 
[43] R.A. Friesner, Chem. Phys. Lett. 116 (1985) 39. 
[44] W. Yang, A.C. Peet, Chem. Phys. Lett. 153 (1988) 98. 
[45] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. 

Phys. 21 (1953) 1087. 
[46] W.K. Hastings, Biometrika 57 (1970) 97. 
[47] R. Rydberg, Z. Phys. 73 (1932) 376. 
[48] O. Klein, Z. Phys. 76 (1932) 226. 
[49] A.L.G. Rees, Proc. Phys. Soc. 59 (1947) 998. 
[50] H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, P. Celani, W. 

Gyorffy, D. Kats, T. Korona, R. Lindh et al., MOLPRO, version 2019.2; J. F. Rico, R. 
Lopez, G. Ramirez, I. Ema, D. Zorrilla, and K. Ishida, SMILES a package for 
molecular calculations with Slater functions. 

H. Nakashima and H. Nakatsuji                                                                                                                                                                                                             

http://refhub.elsevier.com/S0009-2614(23)00064-7/h0005
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0010
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0015
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0020
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0020
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0025
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0030
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0035
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0040
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0045
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0050
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0055
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0060
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0065
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0070
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0075
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0080
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0080
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0085
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0090
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0095
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0100
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0100
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0105
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0110
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0115
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0120
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0125
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0130
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0130
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0135
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0140
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0145
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0150
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0155
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0160
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0165
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0170
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0170
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0175
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0180
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0185
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0190
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0195
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0200
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0205
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0210
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0215
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0220
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0225
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0225
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0230
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0235
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0240
http://refhub.elsevier.com/S0009-2614(23)00064-7/h0245

	Solving the Schrödinger equation of a planar model H4 molecule
	1 Introduction
	2 FC-LSE-DLS calculations of a H4 molecule
	3 Results and discussions
	3.1 Examination of the accuracies of the FC-LSE-DLS calculations
	3.2 2D potential energy surfaces of the ground and excited states on the restriction of the model planar square or rectangl ...

	4 Concluding remarks
	Data availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


