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ABSTRACT

We investigate, in this paper, the Gaussian (G) function with odd powers of r, rxaybzc exp (−αr2
), called the r-Gaussian or simply the rG

function. The reason we investigate this function here is that it is generated as the elements of the complement functions (cf ’s) when we
apply the free complement (FC) theory for solving the Schrödinger equation to the initial functions composed of the Gaussian functions. This
means that without the rG functions, the Gaussian set of functions cannot produce the exact solutions of the Schrödinger equation, showing
the absolute importance of the rG functions in quantum chemistry. Actually, the rG functions drastically improve the wave function near the
cusp region. This was shown by the applications of the present theory to the hydrogen and helium atoms. When we use the FC-sij theory, in
which the inter-electron function rij is replaced with its square sij = r2

ij that is integrable, we need only one- and two-electron integrals for the
G and rG functions. The one-center one- and two-electron integrals of the rG functions are always available in a closed form. To calculate
the integrals of the multi-centered rG functions, we proposed the rG-NG expansion method, in which an rG function is expanded by a linear
combination of the G functions. The optimal exponents and coefficients of this expansion were given for N = 2, 3, 4, 5, 6, and 9. To show the
accuracy and the usefulness of the rG-NG method, we applied the FC-sij theory to the hydrogen molecule.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155105

I. INTRODUCTION

The exact solutions of the Schrödinger equation of a hydrogen-
like atom in the ground and excited states are represented by the
Slater functions,

χSTO = rn
Axa

Ayb
Azc

A exp (−αrA), (1)

where A denotes the center of the function. For this reason, Slater
functions are thought to be better to represent the wave functions of
atoms and molecules than Gaussian functions

χGTO = xa
Ayb

Azc
A exp (−αr2

A). (2)

However, in the modern quantum chemistry, Gaussian functions are
widely used to represent the wave functions of molecules.1–3 This is
because one- and two-electron integrals over the Gaussian functions
can be evaluated in closed forms, while those over the Slater func-
tions are not always possible.1–7 Although some other functions such

as the Bessel functions8 and the hyperbolic functions9 were also pro-
posed to represent the wave functions, we will not focus on them in
this paper. For the details about the Gaussian functions, many review
articles are helpful.1,6,7,10,11

The Gaussian functions are much different from the Slater
functions, especially at the short (near cusp) and long-range
regions.12,13 To improve the behaviors of the Gaussian functions, a
linear combination of the Gaussian functions has been used, such as
the STO-NG expansion method14 and the contracted Gaussian-type
orbital (CGTO) method.15–17 With such methods, the intermediate
and long-range regions would be improved. However, unfortu-
nately, any linear combination of Gaussian orbitals cannot describe
the cusp correctly.18 The cusp region is important, because much
stabilization is expected when an electron comes very close to the
nucleus. Actually, the cusp originates from the singularity of the
Coulombic potential.

Based on the studies of 2000–2004, one of the authors proposed
the free complete-elements (FC) theory, which is a general theory for
solving the Schrödinger equation.19–29 When we apply this theory to
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the initial wave functions composed of the Gaussian functions with
the choice27 of the scaling function g to be r, we obtain the functions
of the form

χrG = rn
Axa

Ayb
Azc

A exp (−αr2
A) (n ≠ 0). (3)

We referred to this function with odd n as the r-Gaussian function
or simply rG function: the even n function can be transformed to
the sum of the conventional Gaussian functions given by Eq. (2).
The rG function belongs to the class of the Gaussian functions
but has an odd power term in the front. If we perform the cal-
culations without the rG function, the converging speed of the
FC method to the exact wave function becomes very slow, and
the cusp condition is not satisfied, as shown below in this paper.
This means that the rG functions are necessary to represent the
exact, or at least accurate, wave functions. Unlike the conventional
Gaussian functions given by Eq. (2), the rG functions given by
Eq. (3) can describe the cusp at the origin because the first deriva-
tive of the rG function with n being odd is non-zero at the origin.
Thus, the inclusion of the rG functions in quantum chemistry cal-
culations is necessary for obtaining the reasonably accurate wave
functions; therefore, we study in this paper the role of the rG func-
tions in quantum chemistry and the methods of introducing the
rG functions, like integral evaluations, in the quantum-chemical
calculations.

This paper is organized as follows: in Sec. II, we introduce the
rG function and discuss its importance for energy and properties. In
Sec. III, we derive the closed formula for the one-center one- and
two-electron integrals including the rG function. In Sec. IV, we use
these closed formulas to calculate the hydrogen and helium atoms
with the FC theory. We will compare the converging speed of the
calculated energy to the exact one for the cases with and without
the rG functions. In Sec. V, the multi-center integrals, including the
rG function, are classified into the ones which are expressed in a
closed form and the ones which are not expressed in a closed form.
In Sec. VI, we propose the rG-NG expansion method to calculate
the integrals that are not expressed in a closed form. In Sec. VII, we
apply the rG-NG expansion method to the hydrogen molecule with
the FC theory. The summary will be given in Sec. VIII.

II. IMPORTANCE OF THE RG FUNCTION
In this section, we explain how the rG function is generated

from the FC theory. Then, we define the form of the rG function
used in this paper. We study the behaviors of the rG function near
the cusp and in the long-range region of the wave function. Then,
we study the role of the rG function in satisfying the cusp condition
with the Gaussian functions alone.

A. Generation of the rG function
The rG function is necessary for producing the exact wave func-

tion within the ground of the Gaussian functions. This is clear from
the fact that it is generated automatically with the FC theory, which
produces the exact wave function from any approximate wave func-
tion. In the FC theory,19–29 the exact wave function is expressed by a
linear combination of the complement functions (cf ’s) ϕI as

ψ =∑I cIϕI. (4)

The cf ’s are generated from an initial function ψ0, according to the
simplest ICI [iterative configuration (or complement) interaction]
scheme of the FC formalism

ψn+1 = [1 + Cng(H − En)]ψn, (5)

where H is the Hamiltonian of the system, En is the energy of ψn,
Cn is a variational parameter, n is called order, and g has the gen-
eral form of g = Σi,A giA + Σi,j gij. The cf ’s are produced as the linearly
independent and non-diverging analytical functions included in the
right-hand side of Eq. (5).

We produce the appropriate cf ’s starting from the initial func-
tion ψ0, which is composed of the normal Gaussian functions.
With the Gaussian functions, integrability is the main concern;
therefore, the appropriate choice of the scaling function is neces-
sary. For the one-electron electron-nuclear part of the wave func-
tion, which is the main topic of this paper, we choose the scaling
function as giA = riA. This choice is a “reasonable” choice, as dis-
cussed in the previous paper.27 Although the choice like giA = 1
− exp (−γriA) from the correct set of the g functions27 is a good
choice, it gives a mixed Slater–Gauss description and so is not
appropriate here. The “approximate” choice, giA = 1 − exp (−γr2

iA)

may also be a good choice, but this choice is not good because
then the electron-nuclear cusp-condition is not satisfied. As men-
tioned above, the satisfaction of the electron-nuclear cusp condi-
tion is expected to be important not only for the cusp condition
itself but also from the energetic point of view for the strongly attrac-
tive electron nuclear interaction near the cusp region. Thus, we
decided on the above choice of giA = riA in the present paper.

The two-electron part of the g function, gij is not the main
subject of this paper, but some general considerations would be
helpful. The first choice, gij = rij is not good for integrability. From
the integrability and the Gaussian environment, the approximate
function in the previous paper27 gij = 1 − exp (−γr2

ij) would be a
good compromise: we have to abandon the electron–electron cusp
condition, but in contrast to the electron-nuclear case, this con-
dition would be less important in this case because, energetically,
the electron pair is strongly repulsive; therefore a strong colli-
sion is not realistic. Another choice is gij = r2

ij . With this choice,
the FC theory is called FC-sij theory,26 in which, sij = r2

ij . With
this choice, the calculations can be performed using only one and
two electron integrals, like in the conventional quantum chem-
istry theories. This is trivial because sij = r2

ij = (xi − xj)
2
+ (yi − yj)

2

+ (zi − z j)
2
= r2

i + r2
j − 2xixj − 2yiyj − 2ziz j . At least with these two

choices, the FC theory with Gaussian functions can be performed
by the integral method. Within the two choices described above, the
first choice would be better in quality, but the second choice is easier.

B. Spherical harmonic Gaussian orbital
Here, let us discuss shortly the real-valued spherical harmonic

Gaussian orbital defined by

χSH = Sl,m exp (−αr2
), (6)

where Sl,m (l = 0, 1, 2, . . . , m = −l, . . . , l) is the spherical harmonic
function defined by
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Sl,m = rlPm
l (cos θ) cos mϕ,

Sl,−m = rlPm
l (cos θ) sin mϕ,

Sl,0 = rlpl(cos θ),

(7)

where, Pm
l is the associated Legendre polynomial, and pl is the Leg-

endre polynomial. With this orbital, the r term seems to exist outside
the exp () term if l is larger than unity. However, the r term disap-
pears if the spherical harmonic function is rewritten with the x, y,
and z coordinates using the relation,

Sl,m =∑
i, j,k

al,m
i, j,kxiy jzk, (8)

where the coefficient a is a constant depending on l, m, i, j, and k.6
Thus, the spherical harmonic Gaussian is actually a sum of Gaussian
functions, not including the rG function. In this paper, we do not
explicitly deal with the spherical harmonic Gaussian functions.

C. Behavior of rG at r = 0 and r = ∞
Here, we investigate the simplest rG function,

χrG = r exp (−αr2
), and the simplest Gaussian function,

γG = exp (−αr2
). Their Maclaurin expansions are written as

χrG =
∞
∑
n=0

(−α)n

n!
r2n+1

= r − αr3
+

1
2
α2r5
− ⋅ ⋅ ⋅ , (9)

and

γG =
∞
∑
n=0

(−α)n

n!
r2n
= 1 − αr2

+
1
2
α2r4
− ⋅ ⋅ ⋅ , (10)

respectively. From Eq. (9), the rG function is expressed as a linear
combination of r including odd powers only, and from Eq. (10),
the Gaussian function is a linear combination of r with even powers
only. This is in contrast to the Slater function

ψS = exp (−r), (11)

whose Maclaurin expansion is

ψS =
∞
∑
n=0

(−r)n

n!
= 1 − r +

1
2

r2
−

1
6

r3
+ ⋅ ⋅ ⋅ , (12)

that includes terms with both odd and even powers of r.
The first derivative of the rG function is

dχrG

dr
= exp (−αr2

) − 2αr2 exp (−αr2
), (13)

and the value of the first derivative at the origin is

dχrG

dr
∣
r=0
= 1. (14)

On the other hand, the first derivative of the Gaussian function is

dγG

dr
= −2αr exp (−αr2

), (15)

and its value at the origin is

dγG

dr
∣
r=0
= 0. (16)

This is the reason why the Gaussian functions do not satisfy the
electron-nucleus (e-n) cusp condition,18

∂ψ̂
∂r
∣
r=0
= −Zψ(r = 0), (17)

where Z is the charge of the nucleus. The value of the rG function at
the origin is zero, χrG(r = 0) = 0, which also implies that the rG func-
tion alone does not satisfy the e-n cusp condition.18 We will show in
Sec. II D how the rG function satisfies the cusp condition.

At the limit of r →∞, both the rG and Gaussian functions
converge to zero, χrG → 0 and γG → 0, respectively. The converging
speed of the rG function is slower (i.e., expanding) than the Gaus-
sian function since χrG/γG = r > 0, but is more rapid than the Slater
function.

D. Gaussian functions that satisfy cusp condition
Let us take a linear combination of the Gaussian and rG

functions as

χ = exp (−α1r2
) − Cr exp (−α2r2

). (18)

Its Maclaurin expansion,

χ = 1 − Cr − α1r2
+ Cα2r3

+ ⋅ ⋅ ⋅ , (19)

includes the terms with both odd and even powers of r. Since
d
dr χ∣r=0 = −C and χ(r = 0) = 1, Eq. (18) satisfies the n-e cusp condi-
tion if C = Z. Note that this holds true with the arbitrary exponents
α1 and α2. If either of the simple Gaussian or rG functions does not
exist, the cusp condition is never satisfied. In Fig. 1, the Gaussian,
Slater, and the function χ given by Eq. (18) with C = 1, α1 = 1, and
α2 = 2 are plotted.

FIG. 1. Plots of the Gaussian function χ
1 = exp (−r2), the linear combination

of the Gaussian and rG functions χ2 = exp (−α1r2) − Cr exp (−α2r2) [Eq. (18)
with α1 = 1,α2 = 2, C = 1], and the Slater function χ3 = exp (−r).
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If we express the Slater function [Eq. (11)] by a linear com-
bination of the rG functions (n = 0, 1, 2, 3, . . .) with α = 1, it
becomes

ψS ≃
∞
∑
n=0

cnrn exp (−r2
), (20)

where the coefficients are c0 = 1, c1 = −1, c2 = 3/2, c3 = −7/6,
and c4 = 25/24, . . .. Since ψS(r = 0) = c0 = 1 and d

dr
ψS∣r=0 = c1

= −1 = −Z, Eq. (20) satisfies the cusp condition. Note that the
function whose first derivative at the origin is nonzero among the
functions of rn exp (−r2

) (n = 0, 1, 2, 3, . . .) is only when n = 1;
therefore, the rG function (n = 1) is necessary to form the cusp.
Only the first two terms (n = 0 and 1) are necessary to satisfy the
relation as expected by the cusp value. The other terms would have
different values to represent the exact wave function, keeping the
relations as expected by the higher order cusp conditions, as we
studied before.30,31 For general atoms, this would be true.

III. MOLECULAR INTEGRALS
Some wave functions that behave correctly at the cusp region

have been proposed: for instance, the Jastrow factor multiplied by
the Gaussian function in the quantum Monte Carlo (QMC) stud-
ies,32 improvement of molecular Gaussian functions over small
regions,33 and the explicitly correlated Gaussian (ECG) functions
with an odd power of r.34 Unfortunately, the closed form integral
formulas for these wave functions are not known except for some
limited cases. Harris derived the recurrence relations for the explic-
itly correlated Gaussian functions with odd powers of r.35 However,
as noted in his paper that “odd powers cause great difficulty in inte-
gral evaluation,” the integration over the rG function for a general
molecule is still difficult.35

Thus, the integrals over the rG functions are the key point that
makes them useful for variational calculations. Among the molecu-
lar integrals, including the rG function, the most important integrals,
i.e., the one-center one- and two-electron integrations, are always
possible and expressed in a closed form, which will be shown in this
section. We do not discuss the integrals, including only Gaussian
functions, since they are already known.1–7

A. One-center one-electron integral
The one-center one-electron integral over the rG functions,

χ = rnxaybzc exp (−αr2
) (n = 0, 1, 2, . . .), is written as

⟨χ∣Ô∣χ′⟩ = ∫ rnxaybzc exp (−αr2
)Ôrn′xa′yb′zc′

× exp (−α′r2
)dxdydz, (21)

where the operator Ô is Ô = 1, 1/r, or − 1
2Δ for the overlap,

nuclear attraction, and kinetic integrals, respectively. For the overlap
integral, the right-hand side (rhs) of Eq. (21) can be written as

I(n, a, b, c,α) = ∫ rnxaybzc exp (−αr2
)dxdydz, (22)

where n, a, b, c, and α of Eq. (22) are n + n′, a + a′, b + b′, c + c′, and
α + α′ of Eq. (21), respectively. For the nuclear attraction integral,
Eq. (21) is written again as Eq. (22) where n, a, b, c, and α in Eq. (22)

are n+ n′ − 1, a+ a′, b+ b′, c+ c′, and α+ α′ in Eq. (21), respectively.
When we operate Δ on χ for the kinetic integral, we get

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 )χ = [
n(n − 2)

r2 +
nk
r2 +

a(a − 1)
x2 +

b(b − 1)
y2

+
c(c − 1)

z2 − 4αn − 2αk + 4α2r2
]χ (23)

where k = 2(a + b + c) + 3. Equation (23) implies that the kinetic
integral is written as a linear combination of Eq. (22) with n, a, b,
and c changed. Thus, all the one-center one-electron integrals are
written as the linear combination of Eq. (22). The detailed deriva-
tion to evaluate Eq. (22) is written in Appendix A, and the result is
as follows:

(i) when n is odd,

I(n, a, b, c,α) = I(−1, a, b, c,α) ×
1
αm

× d(d + 1)(d + 2) ⋅ ⋅ ⋅ (d +m − 1), (24)

where I(−1, a, b, c,α) is

I(−1, a, b, c,α) =
C

8αd
Γ(d)

Γ(12 + d)
Γ(

1
2
(a + 1))

× Γ(
1
2
(b + 1)) Γ(

1
2
(c + 1)), (25)

C = [1+(−1)a
+(−1)b

+(−1)c
+ (−1)a+b

+(−1)a+c
+(−1)b+c

+ (−1)a+b+c
], m = (1 + n)/2, and d = 1 + 1

2(a + b + c),
where C is eight when all of a, b, and c are even, and is zero
otherwise.

(ii) when n is even,

I(n, a, b, c,α) = I(0, a, b, c,α) ×
1
αm

× d(d + 1)(d + 2) ⋅ ⋅ ⋅ (d +m − 1), (26)

where I(0, a, b, c,α) is

I(0, a, b, c,α) =
C

8αd Γ(
1
2
(a + 1)) Γ(

1
2
(b + 1)) Γ(

1
2
(c + 1))

(27)
with d ≡ 3

2 +
1
2(a + b + c).

B. One-center two-electron integral
Using the rG functions, χi ≡ rni xai ybi zci exp (−αir2

), the one-
center two-electron integral, Iijkl ≡ ⟨χi(1)χ j(2)∣ 1

r12
∣χk(1)χl(2)⟩, is

written explicitly as

Ia1b1c1n1 ,a2b2c2n2 ,αβ ≡ ∫ r1
n1 x1

a1 y1
b1 z1

c1

× exp (−αr1
2
)

1
r12

r2
n2 x2

a2 y2
b2 z2

c2

× exp (−βr2
2
)dx1dy1dz1dx2dy2dz2, (28)

where n1 = ni + nk, a1 = ai + ak, b1 = bi + bk, c1 = ci + ck, and
α = αi + αk, and similarly for n2, a2, b2, c2, and β. The derivation to
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calculate Eq. (28) is written in Appendix B, and the results are as
follows:

Ia1b1c1n1 ,a2b2c2n2 ,αβ = lim
L→∞

L

∑
l=0

A(l, a1b1c1, a2b2c2)

× R(l, a1b1c1n1, a2b2c2n2,α,β), (29)

where the angular part A is

A(l, a1b1c1, a2b2c2)

=
1
2l

⌊l/2⌋
∑
k=0
(−1)k (2l − 2k)!

k!(l − k)!(l − 2k)!

l−2k

∑
na=0

l−2k−na

∑
nb=0

(l − 2k)!
na!nb!nc!

× T(a1 + b1 + na + nb + 1, c1 + nc)P(b1 + nb, a1 + na)

× T(a2 + b2 + na + nb + 1, c2 + nc)P(b2 + nb, a2 + na) (30)

with

T(m, n)≡∫
π

0
sinm θ cosn θdθ =

1 + (−1)n

2
Γ((m+1)/2)Γ((n+1)/2)

Γ((m + n + 2)/2)
(31)

and

P(m, n) ≡ ∫
2π

0
sinm ϕ cosn ϕdϕ

=
[1 + (−1)n

][1 + (−1)m
]

2
Γ((m + 1)/2)Γ((n + 1)/2)

Γ((m + n + 2)/2)
,

(32)

and the radial part R is

R(l, a1b1c1n1, a2b2c2n2,α,β) = R′(l, a1b1c1n1, a2b2c2n2,α,β)

+ R′(l, a2b2c2n2, a1b1c1n1,β,α).
(33)

Here we define di ≡ ai + bi + ci + ni + 2 (i = 1, 2). The value of R′ can
be calculated differently when d1 + l is odd or even, as follows:

(i) When d1 + l is odd,
let us define m1 ≡ (d1 + l − 1)/2.

(i-1) when d1 + d2 is even
In this case, d2-l is always odd, and R′ can be calculated as

R′(l, a1b1c1n1, a2b2c2n2,αβ)

= −
1
2

m1

∑
k=0

m1!
(m1 − k)!αk+1

(2m2 − 1)‼
2m2+1

√
π

√

(α + β)2m2+1

+
m1!

2αm1+1
(2m3 − 1)‼

2m3+1

√
π

β2m3−1 (34)

with m2 = (d1 + d2 − 2 − 2k)/2 and m3 = (d2 − l − 1)/2.
(i-2) when d1 + d2 is odd

In this case, R′ can be calculated as

R′(l, a1b1c1n1, a2b2c2n2,α,β)

= −
1
4

m1

∑
k=0

m1!
(m1 − k)!αk+1

m2!
(α + β)m2+1 +

m1!
2αm1+1

m3!
2βm3+1 (35)

with m2 = (d1 + d2 − 3 − 2k)/2 and m3 = (d2 − l − 2)/2.

(ii) When d1 + l is even,
let us define m1 ≡ (d1 + l)/2.

(ii-1) when d1 + d2 is even
In this case, R′ can be calculated as

R′(l, a1b1c1n1, a2b2c2n2,α,β)

= −

m1−1

∑
k=0

(d1 + l − 1)‼
2k+1αk+1

(2m1 − 2k − 1)‼
(2m2 − 1)‼

√
π

2m2+1
(α + β)(2m2+1)/2

+
(2m1 − 1)‼

√
π

2m1+1αm1
√
α

E(d2 − l − 1,α,β) (36)

with m2 ≡ (d1 + d2 − 2 − 2k)/2, where the function E is
defined as

E(n,α,β) ≡ ∫
∞

r=0
rner f (

√
αr) exp (−βr2

)dr. (37)

See Appendix C for the evaluation of the function E in
Eq. (37).

(ii-2) when d1 + d2 is odd
In this case, R′ can be calculated as

R′(l, a1b1c1n1, a2b2c2n2,α,β)

= −

m1−1

∑
k=0

(d1 + l − 1)‼
2k+1αk+1

(2m1 − 2k − 1)‼
m2!

2(α + β)m2+1

+
(2m1 − 1)‼

√
π

2m1+1αm1
√
α

E(d2 − l − 1,α,β) (38)

with m2 = (d1 + d2 − 3 − 2k)/2. See Appendix C for the
evaluation of the function E.

IV. APPLICATION TO THE HYDROGEN
AND HELIUM ATOMS

In this section, we use the normal Gaussian function as the
initial wave function of the FC theory and apply the variational prin-
ciple. The target system here is the hydrogen and helium atoms
because all the integrals required are expressed in a closed form. The
details of the FC theory were explained elsewhere.19–29

A. Application to the hydrogen atom
1. Calculation with rG functions

The initial wave functions we employed here were simple Gaus-
sian functions, ϕ1

0 = exp (−αr2
1) and ϕ2

0 = r2
1 exp (−αr2

1), where the
latter function is generated when the ϕ1

0 is differentiated by the expo-
nent α. It can decrease the α dependence on the initial function.
The g function was set as the inverse of the Coulombic poten-
tial, g = r1. The complement functions (cf ’s) generated by the FC
theory were {r0, r1, r2, r3, r5

} × exp (−αr2
1) (M = 5) at order n = 1,

{r0, r1, r2, r3, r4, r5, r6, r8
} × exp (−αr2

1) (M = 8) at order n = 2, and
{r0, . . . , r3n, r3n+2

} × exp (−αr2
1) at order n (n = 1, 2, 3, . . .), where

the number of the cf ’s M was M = 3n + 2. From order n = 1, the rG
function r1 exp (−αr2

1) was generated by the FC theory.
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TABLE I. The energy of the hydrogen atom calculated with and without the cf ’s including the rG functions generated by the FC theory.

Order n Ma Optimal αb Total energy (au) ΔE (kcal/mol)c Cusp value

With rG functions
0 2 0.282 942 −0.424 413 181 578 39 47.431 0.0
1 5 0.215 723 −0.499 586 293 415 05 0.260 −0.836 678
2 8 0.136 482 −0.499 992 169 229 77 4.913 × 10−3

−0.971 019
3 11 0.115 731 −0.499 999 984 782 51 9.538 × 10−6

−0.997 952
4 14 0.088 564 3 −0.499 999 999 749 48 1.883 × 10−7

−0.999 702
5 17 0.084 172 1 −0.499 999 999 999 41 3.702 × 10−10

−0.999 694

Without rG functions
0 2 0.282 942 −0.424 413 181 578 39 47.431 0.0
1 2 0.282 942 −0.424 413 181 578 39 47.431 0.0
2 5 0.487 134 −0.486 607 670 613 44 8.404 0.0
3 5 0.487 134 −0.486 607 670 613 44 8.404 0.0
4 8 0.559 442 −0.492 291 415 707 77 4.837 0.0
5 8 0.559 442 −0.492 291 415 707 77 4.837 0.0
6 11 0.685 074 −0.496 646 130 440 47 2.105 0.0
7 11 0.685 074 −0.496 646 130 440 47 2.105 0.0
8 14 0.742 184 −0.497 590 131 333 12 1.512 0.0
9 14 0.742 184 −0.497 590 131 333 12 1.512 0.0
10 17 0.849 087 −0.498 614 052 130 97 0.870 0.0

Exact −0.500 000 000 000 00 −1.0
aThe number cf ’s.
bThe exponent used in the cf ’s.
cThe difference from the exact energy.

Table I shows the total energy of the hydrogen atom calculated
with these cf ’s, where the exponents αs in the cf ’s were common
and optimized at each order, and ΔE is the difference from the exact
energy.

At order n = 1, a very accurate energy of ΔE = 0.260 kcal/mol,
which satisfies the chemical accuracy (ΔE < 1 kcal/mol), with only
five cf ’s. As the order increases, the total energy and the cusp value
converge to the exact values and the optimal exponent becomes
smaller. This can be understood that as the order increases, the
cusp region is described better and better by the rG function, while
the long-distance regions are described better and better by the
small exponents because both rG and Gaussian functions with small
exponents can describe the long regions. Here, the exponent α was
optimized commonly for all functions, but it may be optimized suc-
ceeding for the functions generated at each order. Finally, we note
that these improvements are not only due to the rG functions but
also due to all the cf ’s generated by the FC theory.

2. Calculation without rG functions
Here, we removed the rG functions such as rn exp (−αr2

)

(n: odd) from the cf ’s generated above. Then the cf ’s at order one
became identical to those at order zero, as {r0, r2

} × exp (−αr2
1)

(M = 2). Similarly, the cf ’s at order n and n + 1 (n: even)
became identical. Using these cf ’s without rn exp (−αr2

) (n: odd),
we calculated the energy of the hydrogen atom, as shown in Table I.

Without the rG functions, the converging speed was extremely
slow: at order ten (twice of five of the result with the rG functions),

ΔE became 0.870 (<1) kcal/mol with 17 functions, including up
tor32 exp (−αr2

). The cusp values were zero since Gaussian func-
tions alone cannot express the cusp. The optimized exponent
became much larger as the order increased, in contrast to the results
with the rG functions, where rG functions were included in the
calculation. This implies that the cf ’s without rG functions try to
describe the cusp region by using large exponents. The long-distance
regions were described by the large power of r, even though with-
out odd powers. These results clearly show the importance of the rG
functions to describe the exact wave function of the hydrogen atom.
The FC theory naturally generates such functions and leads us to the
exact wave function.

B. Application to the helium atom
1. Calculation with rG functions

We next applied the FC theory to the helium atom. The ini-
tial wave function was taken as ϕ1

0 = exp (−αr2
1 − αr2

2) and ϕ2
0 = (r

2
1

+ r2
2) exp (−αr2

1 − αr2
2), similarly to the hydrogen atom case: the lat-

ter function was generated by differentiating ϕ1
0 by α. The g function

was a linear combination of the inverse of the Coulombic potential,
g = r1 + r2 + r12. Generating the cf ’s according to the FC scheme,
we obtained the cf ’s that have the form of ϕ = Âra

1rb
2rc

12 exp (−αr2
1

− αr2
2), where Â is the anti-symmetrizer, and a, b, and c are non-

negative integers. We calculated the energy of the helium atom with
these cf ’s, as shown in Table II.

At order zero, the total energy is very high (ΔE = 378.223
kcal/mol), but as the order increased, the energy rapidly improved
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TABLE II. The energy of the helium atom calculated with and without the cf ’s including the rG functions generated by the FC theory.

Order n Ma Optimal αb Total energy (au) ΔE (kcal/mol)c Cusp value

With rG functions

0 2 0.3836 −2.300 987 378.223 0.0
1 14 0.3094 −2.892 648 6.950 −1.584
2 46 0.2114 −2.903 384 0.214 −1.920
3 108 0.1748 −2.903 714 6.51 × 10−3

−1.989

Without rG functions

0 2 0.3836 −2.300 987 378.223 0.0
1 6 0.5777 −2.593 150 194.888 0.0
2 19 0.6486 −2.767 562 85.443 0.0
3 36 0.7126 −2.795 921 67.648 0.0
4 69 0.7636 −2.832 854 44.472 0.0

Exact −2.903 724 −2.0
aThe number cf ’s.
bThe exponent used in the cf ’s.
cThe difference from the exact energy.

and became converging to the exact energy variationally. Actually,
at order two, we got a chemical accuracy of ΔE = 0.214 (<1) kcal/mol
with 46 cf ’s including the rG functions. The optimized exponent
became smaller as the order increased, which implies that the long-
range regions were improved at higher order: the cusp region was
already improved with the rG functions.

2. Calculation without rG functions
Next, we removed the rG functions such as ϕ

= Âra
1rb

2rc
12 exp (−αr2

1 − αr2
2) with a or/and b being odd from

the cf ’s generated above, i.e., cf ’s with both a and b are even are
used. However, the cf ’s with c being odd were not removed. The
energy calculated with these cf ’s is shown in Table II.

As the order increased, the total energy became lower, but the
speed was very slow: even at order four, the energy was still as high
as ΔE = 44.472 kcal/mol with the remaining 69 functions and with-
out the rG functions. This is in sharp contrast to the calculations
where the rG functions were included in the manner of the FC
theory. Similarly to the hydrogen-atom case, the optimal exponent
became larger and larger as the order increased, which implies that
the cf ’s without the rG functions are very poor to describe the cusp
region. Actually, the cusp values were all zeros. Thus, we understand

that the rG function is very important to describe the exact wave
function.

3. Comparison with Full CI
For comparison, we carried out the Full CI calculations of the

helium atom with the well-optimized Gaussian basis set series, aug-
ccpVXZ (X = D, T, Q, and 5), which include CGTOs with various
values of exponents but do not include the rG functions and the r12
terms. As shown in Table III, a full CI energy of 1842 configurations
with the aug-cc-pV5Z gives ΔE = 0.259 kcal/mol, which is worse
than an FC energy of ΔE = 0.214 kcal/mol at order two with only
46 cf ’s. These results imply that the rG functions that are produced
by the FC theory are of critical importance to describe the exact wave
function, rather than using the CGTOs with various exponents.

V. MULTI-CENTER ONE- AND TWO- ELECTRON
INTEGRALS

The multi-center integrals over the rG functions are not known
in the closed form, unlike the popular Gaussian functions. Here, the
“closed form” means that the integral is written by a finite num-
ber of elementary functions (including the exponential and error
functions).

TABLE III. Full CI energy of the helium atom with the well-optimized Gaussian basis functions.

Basis set Number of basis functions Number of configurations M Energy (au) ΔE (kcal/mol) Cusp value

aug-cc-pVDZ 9 24 −2.889 548 8.896 0.0
aug-cc-pVTZ 23 144 −2.900 836 1.812 0.0
aug-cc-pVQZ 55 554 −2.902 720 0.630 0.0
aug-cc-pV5Z 105 1842 −2.903 312 0.259 0.0

Exact −2.903 724 −2.0
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TABLE IV. Integrals including rG functions which are expressed in a closed form.

Type Integralsa

One-center one-electron integral ⟨ηA∣Ô∣ηA
′
⟩ (Ô = 1, 1

rA
, − 1

2Δ)

One-center two-electron integral ⟨ηAηA
′
∣ 1

r12
∣ηA
′′ηA

′′′
⟩

Two-center one-electron integral ⟨χA∣γB⟩,⟨χA∣Δ∣γB⟩, ⟨χA∣
1
rA
∣ηB⟩, ⟨χA∣

1
rB
∣χA⟩

Two-center two-electron integral ⟨χAχB∣
1

r12
∣χA
′χB
′
⟩, ⟨χAγC∣

1
r12
∣χA
′γD⟩ ((C, D) = (A, B), (B, B), (B, A))

Three-center two-electron integral ⟨χAγB∣
1

r12
∣χA
′γC⟩ (C ≠ A, B)

aThe χ and γ represent the rG and Gaussian functions, respectively. The η is either χ or γ. The subscripts A, B, C, and D of χ and γ represent the center of the orbital.

TABLE V. Integrals, including the rG function, that are not expressed in a closed form.

Type Integralsa

Two-center one-electron integral ⟨χA∣χB⟩,⟨χA∣Δ∣χB⟩, ⟨χA∣
1
rB
∣γA⟩, ⟨χA∣

1
rB
∣γB⟩

Three-center one-electron integral ⟨χA∣
1
rC
∣χB⟩, ⟨χA∣

1
rC
∣γB⟩

Two-center two-electron integral ⟨χAηC∣
1

r12
∣γAηD⟩ ((C, D) = (A, B), (B, B), (B, A)), ⟨χAηC∣

1
r12
∣γBηD⟩ (C, D = A or B)

Three- or four-center two-electron integral ⟨χAηB∣
1

r12
∣ηCηD⟩ ((C, D) ≠ (A, A), (A, B), (B, B), (B, A))

aThe χ and γ represent the rG and Gaussian functions, respectively. The η is either χ or γ. The subscripts A, B, C, and D of χ and γ represent the center of the orbital.

The one-center one- and two-electron integrals are expressed
in a closed form, as shown in Secs. III A, and III B. The two-center
(namely A and B) one-electron integral cannot be expressed in a
closed form if the integrant has both rn

A and rm
B terms (n and m are

odd including −1) outside the exp functions. Only when the 1/rA
term of the nuclear attraction potential cancels the rn

A term (n is
odd), the one-electron integral can be expressed in a closed form.
The three-center one-electron integral, including the rG function,
cannot be expressed in a closed form.

The two-, three-, and four-center (namely A, B, C, and D) two-
electron integral with the rG functions cannot be expressed in a
closed form generally because the integrant includes more than two
kinds of odd powers of rA, rB, rC, rD, or r12. Only when the bra
and ket functions have the rG functions with the same center and
the same electron number, the two-electron integral can be done
in a closed form because the two rG functions with the same cen-
ter give the normal Gaussian function (even power of r). In such
case, the integral is three-centered or two-centered one. In Table IV,
the Hamiltonian integrals that can be expressed in a closed form are
listed, where the χ and γ represent the rG and Gaussian functions,
respectively, and η is either χ or γ. In Table V, the Hamiltonian inte-
grals that cannot be expressed in a closed form, to the authors’ best
knowledge, are listed.

VI. rG-NG EXPANSION
As explained in Sec. V, the integral including the rG function

is not always written in a closed form. A possible way to do such

integrations is to use the expansion method of the rG functions
with ordinary Gaussian functions. We call this method the rG-NG
expansion method, like the STO-NG expansion method of O-ohata,
Taketa, and Huzinaga.14 By expanding the rG function(s) in the inte-
grand by Gaussian functions, the integrand is expressed as a linear
combination of normal Gaussian functions, and then we can always
perform the integration.

We calculate the integrals analytically when it is possible and
by the expansion method when the complete analytical method is
not known. Even in the latter case, the integral values are accurate
when we use the expansion number N, which is not too small, as will
be shown later. We can calculate the cusp values from our original
wave function composed of the G and rG functions, giving the non-
zero cusp values corresponding to the qualities of the wave functions
used.

Note that we replace the rG part in the integrand with the NG-
expanded Gaussian functions only when we calculate the integrals
shown in Table V. We do not replace the rG wave function itself
by the expanded functions. Thus, the wave function, including the
rG function, does not lose the cusp. Even though the rG part in the
integrant is replaced with the Gaussian functions, the integral value
does not change so much, as shown in this section, since the volume
around the cusp is very small.

A. Least square fitting of the rG function
First, let us express the simplest rG function, r exp (−r2

), by a
linear combination of N Gaussian functions (N = 2, 3, 4. . .),
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TABLE VI. Optimal coefficients and exponents in the rG-NG expansion (N = 2, 3, 4, 5, 6, 9).

Coefficient α Norm Coefficient/norm

N = 2

−0.821 947 686 546 2.430 284 026 359 1.387 244 036 443 −0.592 504 033 143
1.012 758 684 238 0.822 936 412 214 0.615 793 075 984 1.644 641 233 778

N = 3

−0.231 132 200 153 9.229 168 980 590 3.773 827 462 243 −0.061 246 096 295
−0.966 448 306 287 1.763 421 030 872 1.090 629 157 540 −0.886 138 335 479

1.293 743 956 365 0.885 896 274 098 0.650 799 556 906 1.987 929 989 561

N = 4

−0.119 243 215 058 27.563 055 577 560 8.573 449 870 085 −0.013 908 428 563
−0.244 873 137 144 5.083 450 943 806 2.412 843 033 044 −0.101 487 388 028
−1.103 916 603 413 1.524 507 977 161 0.977 816 515 108 −1.128 960 890 266

1.523 453 984 094 0.916 041 042 601 0.667 338 670 069 2.282 879 821 631

N = 5

−0.071 639 108 816 71.360 386 041 332 17.498 587 170 477 −0.004 093 993 882
−0.124 760 345 054 13.106 575 211 939 4.909 384 083 415 −0.025 412 626 703
−0.263 663 687 751 3.709 883 799 726 1.905 155 033 169 −0.138 394 872 418
−1.229 197 644 878 1.399 772 323 043 0.917 176 975 615 −1.340 196 796 865

1.723 661 292 096 0.933 711 384 771 0.676 970 248 746 2.546 140 388 427

N = 6

−0.046 184 298 897 167.605 582 607 617 33.199 110 835 111 −0.001 391 130 598
−0.076 079 502 014 30.758 767 497 376 9.308 651 882 563 −0.008 172 988 202
−0.132 266 574 507 8.634 462 363 825 3.589 934 856 262 −0.036 843 725 528
−0.282 425 421 559 3.025 219 115 124 1.634 849 275 304 −0.172 753 186 379
−1.344 390 627 075 1.322 883 808 029 0.879 126 492 650 −1.529 234 573 541

1.903 782 666 123 0.945 306 333 949 0.683 265 540 271 2.786 299 840 861

N = 9

−0.015 344 717 018 1 494.545 145 214 440 171.313 611 581 681 −0.000 089 570 915
−0.024 395 272 860 274.171 594 067 078 48.020 528 453 792 −0.000 508 017 584
−0.037 762 088 092 76.805 211 387 704 18.490 689 624 785 −0.002 042 221 727
−0.057 577 491 339 26.478 053 817 384 8.319 067 299 029 −0.006 921 147 440
−0.089 786 550 011 10.404 697 107 366 4.128 879 170 601 −0.021 745 986 332
−0.153 404 904 990 4.505 653 563 474 2.204 085 509 135 −0.069 600 251 149
−0.334 422 988 781 2.148 628 918 050 1.264 827 078 083 −0.264 402 142 061
−1.646 466 633 260 1.204 367 638 394 0.819 368 757 478 −2.009 433 015 640

2.366 671 815 831 0.964 258 756 895 0.693 514 085 114 3.412 579 306 795

r exp (−r2
) ≈

N

∑
i=1

Ci exp (−αir2
), (39)

where {αi} and {Ci} are the exponents and the linear expansion coef-
ficients, respectively. We determine these parameters by using the
least square fitting techniques: they are determined by minimizing
the error ε given by

ε ≡ ∫
∞

r=0
[r exp (−r2

) −
N

∑
i=1

Ci exp (−αir2
)]

2

r2dr. (40)

When the ε value takes the minimum, the first derivatives with
respect to {αi} and {Ci} are zero,

∀i,
∂ε
∂Ci
= 0 and ∀i,

∂ε
∂αi
= 0. (41)

We determined the {αi} and {Ci} to satisfy ∑N
i=1 ∣∂ε/∂Ci∣ + ∣∂ε/∂αi∣

< 10−15 by using the Newton’s method and confirmed that all the
eigenvalues of the Hessian matrix were positive.
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FIG. 2. (a) Plots of the rG function (red) and rG-NG functions (blue: N = 2, green: N = 3), and (b) their radial distribution functions, where r2 is multiplied by each function. As
N increases further, the rG-NG functions overlap almost completely with the rG function, supporting the high accuracy of this expansion.

TABLE VII. Least-square-fitting error ε of the rG-NG expansion [Eq. (40)] for N = 2, 3, 4, 5, 6, 9, and the value at the origin of the rG-NG expanded function [ψ(0)] that must
converge to zero.

N 2 3 4 5 6 9 ψ0
a

ε 4.2872 × 10−5 1.8445 × 10−6 1.3821 × 10−7 1.4335 × 10−8 1.8574 × 10−9 9.5642 × 10−12 0.0
ψ(0)b 1.9081 × 10−1 9.6163 × 10−2 5.5421 × 10−2 3.4401 × 10−2 2.2436 × 10−2 7.5112 × 10−3 0.0

aψ0 is the rG function, r exp (−r2
).

bψ is the rG-NG expanded function.

In Table VI, the optimal exponents {αi} and coefficients {Ci} are
listed for N = 2, 3, 4, 5, 6, and 9, respectively. The normalization fac-
tors and the coefficients divided by the normalization factor are also
given (they would be useful when one uses them in quantum chemi-
cal packages). For each N, the minimum exponent was a little smaller
than 1.0 (0.822. . . 0.964, etc.), while the positive coefficients and the
other exponents were larger than 1.0 with negative coefficients. This
is understood as follows: in the region of very large r, the r exp (−r2

)

is well expressed by one exp (−r2
) because the r exp (−r2

) asymptot-
ically approaches exp (−r2

) as r →∞. Therefore, their signs should
be identical. In the region of small r, the Gaussian functions with
the larger exponents are necessary to mimic r exp (−r2

). The value
at the origin (r = 0) of the first Gaussian function (with α < 1)
is unity, but that of r exp (−r2

) is zero. To compensate for this
gap, the signs of the rest of the Gaussian functions should be
opposite.

For example of the rG-NG functions, we showed in Fig. 2(a)
the plots of the rG-NG functions (N = 2 and 3) to compare with the
rG function. In the region of small r, there is a large gap between
the rG-NG function and the rG function. The values of the rG-NG
functions at the origin, ψ(0), are 0.19 and 0.096 for N = 2 and 3,
respectively, while that of the rG function is zero. However, as N
(number of expansions) increases, the value at the origin converges
to zero (see Table VII for N = 4, 5, 6, and 9). These gaps are not so
important when we consider the radial distribution function (ψ × r2)
because the volume around the origin is very small. Comparing
the radial distribution function of the rG-2G function with the rG

function, they are almost overlapping [see Fig. 2(b)] except in the
region of large r. However, the gap between the rG-NG and rG func-
tions becomes smaller as N increases. Even for N = 3, the gap is
invisible in the original scale in Fig. 2(b). The amount of the gap
is measured by the least square error ε [Eq. (40)], and it is listed in
Table VII for N = 2, 3, 4, 5, 6, and 9.

For N = 4 and N = 6, the error is ε = 1.3821 × 10−7 and 1.8574
× 10−9, respectively. These errors are smaller than those for the STO-
NG expansion: ε = 6.8803 × 10−5 and 4.0069 × 10−6 for N = 4 and
N = 6, respectively.14 Thus, the efficiency of the least square fit-
ting for the rG-NG expansion is better than that for the STO-NG
expansion.

Using the rG-NG functions, we calculated expectation val-
ues for operators Ô = 1, d/dr, d2

/dr2, 1/r, − 1
2Δ, and r. The errors

in the calculated expectation values are listed in Table VIII. It is
observed that the error of the expectation value decreases roughly
by one digit as N increases by unity, except for ⟨ψ∣d2

/dr2
∣ψ⟩. In

this case, the error of the expansion near the nuclei is expanded by
the second differentiation, leading to a slow convergence. Contrary
to this, the ⟨ψ∣r∣ψ⟩ value converges faster because the error of the
expansion near the nuclei is diminished by the r term.

B. rG-NG expansion for the arbitrary exponent
If we substitute r in Eq. (39) for

√
ar (a > 0) and divide both

sides by
√

a, we get
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TABLE VIII. The error of the rG-NG expanded functions (N = 2, 3, 4, 5, 6, 9) in the expectation value for the operator Ô.a

Ô /N 2 3 4 5 6 9 ψ0
b

1 3.6487 × 10−4 1.5698 × 10−5 1.1763 × 10−6 1.2200 × 10−7 1.5808 × 10−8 8.1399 × 10−11 1.1750 × 10−1

d/dr −1.6737 × 10−3
−1.1111 × 10−4

−1.2357 × 10−5
−1.8398 × 10−6

−3.3334 × 10−7
−4.1923 × 10−9

−1.2500 × 10−1

d2
/dr2 7.0201 × 10−2 9.2629 × 10−3 1.7870 × 10−3 4.2847 × 10−4 1.1899 × 10−4 4.4676 × 10−6

−1.1750 × 10−1

1/r −1.6737 × 10−3
−1.1111 × 10−4

−1.2357 × 10−5
−1.8398 × 10−6

−3.3334 × 10−7
−4.1923 × 10−9 1.2500 × 10−1

− 1
2Δ 1.0341 × 10−2 1.3367 × 10−3 2.5630 × 10−4 6.1314 × 10−5 1.7012 × 10−5 6.3829 × 10−7 1.3708 × 10−1

r 3.1376 × 10−4 9.2535 × 10−6 5.2628 × 10−7 4.3495 × 10−8 4.6201 × 10−9 1.4281 × 10−11 1.2500 × 10−1

aThe value 1 − ⟨ψ∣Ô∣ψ⟩/⟨ψ0∣Ô∣ψ0⟩ is shown, where ψ0 is the rG function, r exp (−r2
), and ψ is the rG-NG expanded function.

bThe expectation values of ⟨ψ0∣Ô∣ψ0⟩ is shown.

r exp (−ar2
) ≈

N

∑
i=1

Ci
√

a
exp (−(αia)r2

). (42)

Thus, the rG function with arbitrary exponent a can be expanded
with {αia} and {Ci/

√
a}, where {αi} and {Ci} are the same values as

those for a = 1.

C. Two-center integral with the rG-NG expansion
In this section, we check the accuracy of the two-center integral

with the rG-NG expansion. The target integral is

F = ∫ rA exp (−αr2
A) rB exp (−αr2

B)dr, (43)

where A and B are separated by R. This integral cannot be expressed
in a closed form because it includes two rG functions in the inte-
grand. To calculate this integral value, we expand the rB exp (−αr2

B)

term by N Gaussian functions, i.e., we approximate it by

FNG = ∫ rA exp (−αr2
A)

N

∑
i=1

Ci exp (−αir2
B)dr, (44)

and we further expand the rA exp (−αr2
A) term and approximate by

FNG,NG = ∫

N

∑
i=1

Ci exp (−αir2
A)

N

∑
j=1

C j exp (−α jr2
B)dr. (45)

In a practical calculation, we do not need to expand the
rA exp (−αr2

A) term in Eq. (44) to evaluate the integral because
Eq. (44) can be expressed in a closed form. However when we cal-
culate the three- or four-center integral which are listed in Table V,
we need to use the rG-NG expansion more than once. In such cases,
we need to check the accuracy of the two-folded use of the rG-NG
expansion. The calculated values of Eqs. (44) and (45) with
α = 0.270 95 and R = 1.4011 and R = 2.0 are shown in Table IX. Note
that the exponent α = 0.270 95 is the optimal STO-1G exponent for
exp (−r) and R = 1.4011 is the equilibrium distance of the hydrogen
molecule.

In Table IX, the FNG and FNG,NG converge to the exact value as
the number of expansion N increases. When N = 9, the F values have
more than 8- digit accuracies in all cases. The accuracy of FNG was
almost the same as FNG,NG for all of N, which implies that multiple
use of rG-NG expansion little loss the accuracy of integration. Note

that, in general, the use of rG-NG expansion m times appears in Nm

expanded terms, and the computation time increases proportional
to Nm.

VII. APPLICATION TO HYDROGEN MOLECULE
We next applied the rG-NG method to the hydrogen molecule

at the equilibrium geometry. The calculations were performed using
the FC-sij method,26 which is an approximate FC theory in which
the two-electron gij function is approximated by rij

2 and further rij
2

is rewritten using the one-electron functions alone, as explained in
Sec. II A. Therefore, we cannot expect the highly accurate result
as obtained above for the He atom. The initial wave function

was the Valence Bond (VB) type function, ψ0 = Â
NAO

∑
i=1

NAO

∑
j=1

ci, jϕ(i, j)0 ,

where ϕ(i, j)0 = φA,i(1)φB, j(2)(α(1)β(2) − β(1)α(2)), and φA,i(1)
and φB, j(2) (i, j = 1. . . NAO) are the Dunning–Hay’s DZP
(double-zeta polarization) basis functions16 centered on nuclei
A and B and occupied by electrons 1 and 2, respectively.
The π orbitals were not included in the initial wave func-
tion. Therefore, the number of the initial basis functions used
was NAO = 3, and the total number of the initial cf ’s was
M0 = 9. Applying the FC-sij method, the cf ’s including the rG func-
tions were generated. We used the rG-9G expansion method for the
integrals of rG functions for which the integrals cannot be expressed
in the closed form, and for others we used the closed integral forms
summarized also above.

The calculated energies of the hydrogen molecule are shown
in Table X. At order n = 0, the error of the energy ΔE was 14.88
kcal/mol. As the order increased, the errors became smaller. At order
n = 2, the error ΔE became 0.62 (<1) kcal/mol and then we could get
the chemical accuracy. However, the results are much less satisfac-
tory because, in the FC-sij method, the two-electron gij function was
approximated using the one-electron functions.26

We also calculated the energy by removing the rG functions
from the cf ’s generated above, and the results were shown in Table X.
At order n = 2, the error was 0.72 (<1) kcal/mol, which was worse
than but not much different from the results of including the rG
functions. For the helium case, the errors of the energies calculated
without the rG functions were much worse than those calculated
with the rG functions (see Table II). This difference is understood
as follows: in the hydrogen molecule, the generated cf ’s improve
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TABLE IX. Convergence of the integral value of Eq. (43) by the rG-NG expansion. (R = 1.4011 au and 2.0 au, α = 0.270 95).

FNG [Eq. (44)] FNG,NG [Eq. (45)]

N Valuea Total number of expansions Valuea Total number of expansions

R = 1.401 1 au

2 31.833 852 31 2 31.798 442 96 4
3 31.867 585 14 3 31.865 422 17 9
4 31.869 511 73 4 31.869 252 50 16
5 31.869 736 37 5 31.869 701 06 25
6 31.869 765 98 6 31.869 760 04 36
9 31.869 771 67 9 31.869 771 66 81

Exact 31.869 771 82 31.869 771 82

R = 2.0 au

2 26.501 822 21 2 26.483 328 13 4
3 26.519 914 50 3 26.519 169 01 9
4 26.520 691 49 4 26.520 702 11 16
5 26.520 691 20 5 26.520 700 17 25
6 26.520 684 28 6 26.520 686 29 36
9 26.520 682 36 9 26.520 682 19 81

Exact 26.520 682 30 26.520 682 30
aBoldface denotes the converged figure.

TABLE X. The energy of the hydrogen molecule calculated by the FC-sij method with
and without the cf ’s including the rG functions.

Order n M Total energy (au) ΔE (kcal/mol)a

With rG functions

0 9 −1.150 771 14.88
1 162 −1.170 226 2.67
2 999 −1.173 490 0.62

Without rG functions

0 9 −1.150 771 14.88
1 108 −1.169 730 2.98
2 639 −1.173 325 0.72

Exact −1.174 476
aThe difference from the exact energy.

both the bonding region and the atomic region. Since the bonding
region is distant from the nuclei, the wave function calculated with
the rG functions has little difference from those calculated with-
out the rG functions. The wave function in the atomic region was
well described without the rG functions by the contracted primitive
Gaussian functions in the DZP basis.

Thus, in these test calculations, we could confirm that the rG-
NG expansion worked well in a molecular calculation.

VIII. SUMMARY
In this paper, we introduced the rG function defined by Eq. (3).

This function is a product of the ordinary Gaussian function and the

term rn. The rG, Gaussian, and Slater functions were compared, and
were focused on the cusp regions. By introducing the rG function,
the cusp condition can be satisfied.

It is important to note that the rG function is generated
automatically when we apply the FC theory to the initial func-
tion composed of the Gaussian function. This means that the rG
function is necessary to construct the exact wave function start-
ing from the Gaussian function. In Tables I and II, we showed
that the FC theory applied to the hydrogen and helium atoms
certainly leads to their exact wave function with the complement
functions, including the rG functions. We then showed the impor-
tant effects of the rG functions leading to the exact wave function
by taking them off of the expansion. For the hydrogen atom, an
accurate energy of ΔE = 0.260 kcal/mol (ΔE is the difference from
the exact energy) was obtained with only five functions, includ-
ing the rG functions, while ΔE = 0.870 kcal/mol was obtained with
ten normal Gaussian functions. For the helium atom, ΔE = 0.214
kcal/mol was obtained with 46 functions including the rG function,
while still ΔE = 44.47 kcal/mol remained with 69 normal Gaus-
sian functions. We also noted that the rG functions are important
for improving the cusp regions, as well as the regions distant from
the nucleus. These results clearly show the importance of the rG
functions.

For the multi-center rG integrals, no closed forms are available.
So, we proposed the rG-NG expansion method, where the rG func-
tion is expressed as a linear combination of the ordinary Gaussian
functions. The optimal coefficients and exponents of the individ-
ual Gaussian functions were determined by the least-mean-square
fitting method. The errors ε of the fitting method in the rG-NG
expansion were smaller than those of the STO-NG expansion. Using
the rG-NG expansion, we calculated a two-center overlap integral
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and showed that the multiple use of the rG-NG expansion little
affects the accuracy of the integrals. Finally, we applied the rG-NG
expansion to calculate the hydrogen molecule with the FC-sij
method. At order n = 2, the error of the energy ΔE from the
exact energy was 0.62 kcal/mol, which was smaller than the chem-
ical accuracy. This calculation showed the usefulness of the rG-NG
expansion method in molecular calculations. Consequently, it is
recommended to include the rG functions in any Gaussian based
calculations.

In this paper, we took and introduced the rG functions pro-
duced by the FC theory for solving the Schrödinger equation on the
Gaussian group of functions. We investigated the basic problems of
utilizing the rG functions in quantum chemistry calculations and
applied the results to very small systems. General applications to the
normal size of molecules on the Gaussian ground will be done in
future works.

ACKNOWLEDGMENTS
The computations were performed using the computers at

the Research Center for Computational Science, Okazaki, Japan
(Project No. 22-IMS-C012). We also partly used the computational
resources of supercomputer Fugaku provided by the RIKEN Center
for Computational Science and SQUID at the Cybermedia Center,
Osaka University, Japan, through the HPCI System Research Project
(Project IDs: hp210157 and hp220091). This research was funded by
the JSPS KAKENHI (Grant No. 22H02045).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yusaku I. Kurokawa: Investigation (equal); Writing – original draft
(equal). Hiroshi Nakatsuji: Conceptualization (equal); Funding
acquisition (equal); Methodology (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article.

APPENDIX A: ONE-CENTER ONE-ELECTRON
INTEGRAL WITH rG FUNCTION

The one-center one-electron integral with the rG function can
be written as a linear combination of the following integral:

I(n, a, b, c,α) ≡ ∫ rnxaybzc exp (−αr2
)dxdydz (A1)

where n, a, b, and c are non-negative integers, and α is positive.

When n is odd, (A1) can be calculated by

I(n, a, b, c,α) = (−1)m ∂m

∂αm I(−1, a, b, c,α), (A2)

where m ≡ (1 + n)/2, and when n is even, (A1) can be calculated by

I(n, a, b, c,α) = (−1)m ∂m

∂αm I(0, a, b, c,α), (A3)

where m ≡ n/2. Thus, I(n, a, b, c,α) can be calculated from
I(−1, a, b, c,α) or I(0, a, b, c,α) according to the n value. They can
be easily calculated if we use the polar coordinates, and the results
are written in Eqs. (25) and (27) in the main text.

APPENDIX B: ONE-CENTER TWO-ELECTRON
INTEGRAL WITH rG FUNCTION

The one-center two-electron integral with the rG function can
be generally written as

Ia1b1c1n1 ,a2b2c2n2 ,αβ ≡ ∫ r1
n1 x1

a1 y1
b1 z1

c1

× exp (−αr1
2
)

1
r12

r2
n2 x2

a2 y2
b2 z2

c2

× exp (−βr2
2
)dx1dy1dz1dx2dy2dz2. (B1)

The 1/r12 can be expressed by the Laplace expansion as

1
r12
=
∞
∑
l=0

1
r>
(

r<
r>
)

l
Pl(cos θ12), (B2)

where r> ≡ max (r1, r2), r< ≡ min (r1, r2). The θ12 is the angle
between r1 and r2, and cos θ12 can be expressed using the polar
coordinates of r1 and r2 as

cos θ12 =
r1⋅r2

r1r2
=

x1x2 + y1y2 + z1z2

r1r2

= sin θ1 cosϕ1 sin θ2 cosϕ2 + sin θ1 sinϕ1 sin θ2 sinϕ2

+ cos θ1 cos θ2⋅ (B3)

Since the Legendre polynomial is defined by

Pn(x) =
1
22

⌊n/2⌋
∑
k=0
(−1)k (2n − 2k)!

k!(n − k)!(n − 2k)!
xn−2k, (B4)

the Pl(cos θ12) in Eq. (B2) is expressed, using Eq. (B3), as

Pl(cos θ12) =
1
2l

⌊l/2⌋

∑
k=0
(−1)k (2l − 2k)!

k!(l − k)!(l − 2k)!

×
l−2k

∑
na=0

l−2k−na

∑
nb=0

(l − 2k)!
na!nb!nc!

(sin θ1 cosϕ1 sin θ2 cosϕ2)na

× (sin θ1 sinϕ1 sin θ2 sinϕ2)nb(cos θ1 cos θ2)nc. (B5)

The rest part of the integrand in Eq. (B1) is written as

J. Chem. Phys. 159, 024103 (2023); doi: 10.1063/5.0155105 159, 024103-13

Published under an exclusive license by AIP Publishing

 11 July 2023 00:56:12

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

x1
a1 y1

b1 z1
c1 r1

n1 exp (−αr1
2
)x2

a2 y2
b2 z2

c2 r2
n2

× exp (−βr2
2
)dx1dy1dz1dx2dy2dz2

= dr1dr2dθ1dθ2dϕ1dϕ2 ra1+b1+c1+n1+2
1 ra2+b2+c2+n2+2

2

× exp (−αr1
2
) exp (−βr2

2
)(sin θ1)

a1+b1+1
(cos θ1)

c1(sinϕ1)
b1

× (cosϕ1)
a1(sin θ2)

a2+b2+1
(cos θ2)

c2(sinϕ2)
b2(cosϕ2)

a2 ,
(B6)

where the Jacobian, J = r2
1r2

2 sin θ1 sin θ2, is considered.
Using Eqs. (B2), (B5), and (B6), the two-electron integral can

be written as a linear combination of a product of angular and radial
parts as

Ia1b1c1n1 ,a2b2c2n2 ,αβ = lim
L→∞

L

∑
l=0

A(l, a1b1c1, a2b2c2)

× R(l, a1b1c1n1, a2b2c2n2,α,β), (B7)

where L = min (a1 + b1 + c1, a2 + b2 + c2), and A is fined in Eq. (30).
The upper bound L of the summation in Eq. (B7) can be truncated
at L = min (a1 + b1 + c1, a2 + b2 + c2) because A(l, a1b1c1, a2b2c2)

= 0 for all l > min (a1 + b1 + c1, a2 + b2 + c2). See the main text for
the evaluation of A. The radial part R is defined by

R(l, a1b1c1n1, a2b2c2n2,α,β)

≡ ∫

∞

r1=0
∫

∞

r2=0

rl
<

rl+1
>

ra1+b1+c1+n1+2
1 ra2+b2+c2+n2+2

2

× exp (−αr1
2
) exp (−βr2

2
)dr1dr2. (B8)

The r> and r< in Eq. (B8) disappear by separating the
integration range as

R(l, a1b1c1n1, a2b2c2n2,α,β) = R′(l, a1b1c1n1, a2b2c2n2,α,β)

+ R′(l, a2b2c2n2, a1b1c1n1,β,α)
(B9)

where

R′(l, a1b1c1n1, a2b2c2n2,α,β) ≡ ∫
∞

r2=0
rd2−l−1

2 exp (−βr2
2
)

× ∫

r2

r1=0
rd1+l

1 exp (−αr1
2
)dr1dr2.

(B10)

See the main text for the evaluation of R′.

APPENDIX C: EVALUATION OF Eq. (37)

For n = 0 and 1, Eq. (37) is evaluated as

E(0,α,β) =
arctan (

√
α/β)

√
π
√
β

(C1)

and

E(1,α,β) =
1
2

√
α

β
√
α + β

, (C2)

respectively. For n > 1, integrating Eq. (37) by parts yields a relation
between E(n,α,β) and E(n − 2,α,β) as follows:

(i) when n is odd

E(n,α,β) =
n − 1

2β
E(n − 2,α,β) +

√
α

β
√
π
(n − 2)‼
2(n+1)/2

√
π

(α + β)n/2 ;

(C3)

(ii) when n is even

E(n,α,β) =
n − 1

2β
E(n − 2,α,β) +

√
α

β
√
π
[(n − 2)/2]!
2(α + β)n/2 . (C4)

Starting from Eq. (C1) when n is even or Eq. (C2) when n is
odd, E(n,α,β) for arbitrary integer n can be calculated using
Eqs. (C3) or (C4).
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