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A perturbation-variation treatment is applied to interconnect the unrestricted, projected unrestricted,
and spin-extended Hartree—-Fock wavefunctions with the first order sum-over-state perturbation
wavefunction. The restricted Hartree-Fock wavefunction is chosen as a starting point. From these, the
interrelations among these theories are clarified not only for the first order correction to the
wavefunctions but also for their spin densities. Moreover, the natures of the unrestricted and
spin-extended Hartree—Fock theories in the spin-correlation problems are examined in the light of the
physical reality of the correlation phenomena in open-shell electronic systems. These results are
ascertained numerically by referring the spin densities calculated by these various methods and obtained

from experiments.

I. INTRODUCTION

Since quantum chemistry deals with essentially
insoluble many-body problems, the approximate
“concept” which extracts an essence of the physi-
cal reality becomes very important. Among these
approximate concepts, the orbital model (Hartree-
Fock theory) has worked very well in the elucida-
tion of the electronic structures of atoms, mole-
cules and solids. It is distinguished from other
theories by its physical simplicity and visuality.®
However, there are still many things when we go
beyond the Hartree—Fock theory. These phenome-
na, which are called collectively electron correla-
tion phenomena, are topics of current interest in
quantum chemistry,? Among these, spin-correla-
tion is the main interest of this series of papers.

There are several methods which are based
essentially on the orbital model and which also in-
clude spin-correlation effects in open-shell elec-
tronic systems. Among these, we focus our pres-
ent interest on the unrestricted, 3 the projected*
(or annihilated®) unrestricted and spin-extended!’®
Hartree—-Fock theories. The unrestricted Hartree-
Fock (UHF) wavefunction is a single determinant
in which different orbitals are allowed for differ-
ent spins. However, objections can be raised to
spin-density calculations with this method, since
its'wavefunction is not an eigenfunction of $2. The
projected (or annihilated) unrestricted Hartree—
Fock (PUHF) wavefunction is the spin-projected
(or spin-annihilated) function of the UHF wave-
function after energy minimization. Then this
wavefunction does not satisfy the variation condi-
tion. The spin-extended Hartree-Fock (SEHF)
wavefunction is the function which minimizes the
energy after spin-projection of a single determi-
nant and accords with the GF method of Goddard.’
An extension of these methods was recently made
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by varying the orbitals within all the spin functions
of the same multiplicity. ®

In the previous paper of this series,® we ana-
lyzed the UHF wavefunction in configuration-inter-
action language to first order and showed a simple
relation existing between the UHF and PUHF wave-
functions. From this, we found a simple method
to separate the spin density calculated by the UHF
method into contributions due to the spin-polariza-
tion (SP) and spin-delocalization (SD) mecha-
nisms. 1% Because of the physical simplicity and
visuality of each mechanism, a more profound
understanding than before on the nature of spin
density has become possible. 1

In the present study, our purposes are twofold;
one is to interconnect these theories in relation
to the first order sum-over-state perturbation

(FO-SOSP) theory and the second is to clarify the
natures of these orbital theories in spin-correla-

tion problems. In the following two sections, we
present perturbation-variation descriptions of the
UHF and SEHF wavefunctions to first order, tak-
ing the restricted Hartree—Fock (RHF) wavefunc~
tion as a starting point. The results on these or-
bital theories are compared in Sec. IV with the
FO-SOSP theory starting from the RHF wavefunc-
tion. The interrelations among these theories are
clarified not only for their first order corrections
to the wavefunctions but also for their spin densi-
ties. Then, in Sec. V, the natures of the UHF and
SEHF theories in the spin-correlation problems
are examined in the light of the physical reality of
the correlation phenomena in open-shell electronic
systems.!! Lastly in Sec. VI, concluding remarks
on the results are given.

I1. PERTURBATION-VARIATION DESCRIPTION
OF THE UHF WAVEFUNCTION

The starting wavefunction of the present study
is the RHF single determinant!? built up from ¢
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closed orbitals and s (=p — ¢q) open orbitals,

o=l d’l-d;l"' d)kgk"' quaqd)a-bl“ “Um Uy I (1)

The superscript s means that the configuration is
an eigenfunction of S? with eigenvalue (s/2)(s/2
+1). We++ 1 denotes a normalized determinant.

In the following, %, [ refer to closed orbitals, m,
n to open orbitals, #, u to vacant orbitals and 7,

j to general orbitals. These orbitals constitute

an orthonormal set. The important feature of the
RHF wavefunction is the following Brillouin theo-
rem. Consider the one-electron excited configura-
tions of the forms,

SUE) =119, P -+ (@B~ Ba)/ V2« hBglqur =+ Upll,
SUE = 1Py Py e+ Dl +  Veladgar+ =+ Byl )
S‘I’rtn= ” z/)lil' . ¢q$q¢0#1 b lpm-llptzl)m*l b d)p Il s

then the Hamiltonian matrix elements between °¥,
of Eq. (1) and the configurations given in Eq. (2)
vanish:

C¥ 3] swf () =0,
¥, || ¥m =0 ®)
¥ |se|*w)=0

The UHF single determinant built up from p a-
spin and g £-spin orbitals is written as

Vyup =l G387 -+« OPR- o+ GePider -+ b SS I,
which is an eigenfunction of S, with eigenvalue @
s/2, but not an eigenfunction of S2. Note that ¥yup
is independent of unitary transformations within
the a- and B-spin orbitals except for an unimpor-
tant constant factor. This holds also for the RHF
wavefunction of Eq. (1) for unitary transformations
within the closed and open orbitals. After rele-
vant unitary transformations, * the differences be-
tween the UHF and RHF orbitals become very
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small. ' We set these differences as f{ and f5.
¢?=d)i+f‘ix i=1,---,P.
¢f=lpi+ff i‘:l;"’vq’

In the treatment below, it is more convenient to
substitute

o= (fe+fR)/2,
me= (FE=F8/2 k=1, -+, q. (©)
Then, Eq. (5) becomes

(5)

Gk =Pp+ M+ 0y,
Bp =V — T+ 0y, (7)
Gm=bm+S -

In Eq. (7), m, represents the spin-polarization ef-
fect on the originally doubly-occupied RHF closed
orbital ¢,, and is called orbital spin-polarization.
0, represents the shift of the mean value of the ¢
and ¢ orbitals from the RHF orbital #,, and is
called closed orbital shift. f is called open or-
bital shift.

In the UHF method, the total energy expressed
by

Eyur = (Yypur l 3C| Yyur)/ Fyur ‘ Yyur) » (8)

is minimized to all orders of the independent or-
bital corrections /¢ and f§ and therefore, to all
orders of the independent corrections m,, o,, and
f%. However, since our main interest in the pres-
ent study lies in the spin-correlation correction
which comes chiefly from the first order correc-
tion to the RHF wavefunction, it may be sufficient
to minimize the energy correct to second order in
M, Oy, and f&, 151¢ Inserting Eq. (7) into Eq. (4)
and expanding it up to second order, we obtain the
following expression (except for a normalization
factor):

Yyur =¥+ ‘/5?0 Il lp@z "t ”k‘/’k(013+ Ba)/‘/_ o ¢q$q¢q+1 s Yy 1

+ Jz‘kE N,d, -+ odhelaB=Ba)/ V2 <+ Y dleur s+ Ul

NGB Dlanr e ooy
+k2‘n Py v 040p+** Beda¥esr "+ byl

-‘k:fnw,ilm TeTe*** Yobalenr** Uyl

VZ k2°|| Uy = Mo(aB+ Ba)/VZ = o+ PBdbur®** Uyl

+ Z?ZZI)‘{“ Py + - (@Bt Ba)/VZ « oo mpy(aB+ Ba)/ V2 « v loligur s+ Uyl
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1 9By - - - odu(@B= Ba)/VZ « ++ oyt (af= Ba)/VE -+ Ybelour - B ll}
+220° 27 1ydy -+ » m(@B+ Ba)/V2 « v« oy (@B Ba)/VZ -« o PBelgur+ - Uyl

B 1(#R)

+ﬁ§c2°{ll Pidy v - T(@B+ Ba)/V2 + v Y llgurs =+ fE o= Uyl

+1i ¢1$1' i Ukzpk(aﬁ" ﬁa)/ﬁ' i %%ﬂm e f: b Zl), ”}
2020 Py o e Dblguy =+ Fee-f% v Y, |l + (higher order terms), 9)

m < n

where 3° and }° mean the sums within the closed
and open orbitals, respectively.

Now, let us expand the orbital corrections m,,
o, and f2 in terms of the complete set of the RHF
orbitals {zp,}. From the antisymmetric property
of determinants, the expansions become

M= aid,, on=21 b, fa=Zicn,  (0)
t
where ¢ runs over the vacant orbitals. Insertion of

Eq. (10) into Eq. (9) gives the UHF wavefunction
written in configuration interaction language to sec-

Eq. (9).

o= 11991 PedulaB+ Ba)/V2 -+« PB¥au* +* Pyl

‘ (11)
Note that this configuration is not an eigenfunction
of $% and can be expanded by the spin eigenfunc-
tions as,®

Ui=[s/(s+2)]"/25Wi(2)+ [2/(s + 2) /229t | (12)
where the configurations, $¥%(2) and **?¥! satisfy

S2sWE(2)=(s/2)(s/2 +1)5¥L(2),
(13)

ond order. Among the first order one-electron ex- 2asagt _ shot
cited configurations, the most important is the S* = (s/2+41)(s/2+2) %0,
configuration ¥ arising from the second term of and are given by
s \1/2 PN
Wi (2)= (s +2)7/2 |¢¢¢k Pasr*+ = Uy (§> (aB+pa)a--- a-(-s-) aa?a es afa--- a} “ (14)
S
‘“2‘1’;: (s +2)-1/2 I RR R zp’{(aﬁ_,, Ba)a ... a+ aa?a cos afae . a} I, (15)

where we use abbreviations such as

Il ¢1$1‘ . ‘pt‘pk(aﬂ*' Ba)--- ‘anq‘ﬁ'm A 1/), Il
= || Ps¥pdgar s - Yp(aB+Ba)a--- all . (16)

Note that $*2¥} is the main spin-contaminating con-
figuration of the UHF wavefunction.® The effects

of spin-annihilation® and spin-projection* on the
UHF spin density can be analyzed by using Eq.
(12).° Among the second order two-electron ex-
cited configurations, the most important is the con-
figuration,

S =Py Py oo Do v Ddanr.o- Ppll,  (17)

arising from the sixth term of Eq. (9). Note that
the above two-electron excited configuration is usu-
ally one of the most important configurations in
electron correlation corrections.” The matrix
element between ¥, of Eq. (1) and *¥{f of Eq. (17)
becomes

Cv, | 5| WD =K, . (18)

The UHF total energy correct to second order in

m,, O and f3 is obtained from Eq. (8) by inserting
the CI expression Eq. (9) and by using the Brillouin
theorem shown in Eq. (3), but it is omitted for
brevity. From the variation theorem, we can re-
quire the expansion coefficients af, b} and cf, which
make this second order energy stationary. The re-
sults are summarized in Eqs. (A1)-(A3) of the Ap-
pendix. By using these coefficients, the UHF wave-
function correct4o first order in the orbital cor-
rections is written as,

Yynp="¥o+V2 ?‘ ;vaﬁ‘l’f.*- V2 2’?" biowi(1)
3
sD T chow, . (19)
m

Equations (A1)-(A3) are coupled equations. In
order to solve these equations, a SCF procedure
becomes necessary. The situation is very similar
to that which appears in the coupled Hartree-Fock
perturbation theory.'® As seen in this theory, the
uncoupling of these equations makes the problems
very simple. The uncoupled equations of Egs.
(A1)-(A3) are
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at e 130 (mt | km)
® [/ (s +2)] *Ex(2)+ [2/ (s +2)] 2B} —E( - Ky’

- (20)
bi=0, (21)
ct=0. (22)

By using the relation

SEL(2) - S*2EL=[(s 4 2)/25]00 Ky + Kme) . (23)

m
Eq. (20) is also written as,
32 (mt| km)

SEx(2) = Eg— (1/8) T g+ Kme) = Ky ©
As seen from Eqgs. (21) and (22), the orbital shifts
o, and f5 are zero in the uncoupled approximation.
This is expected from the Brillouin theorem, Eq.
(3). However, in the coupled equations, they are

not necessarily zero. Thus, the UHF wavefunction
is written in the uncoupled approximation as,

Uypr="To+ V20 0 al¥t . (24)
k t

at= (20)

Three remarks are necessary about Eq. (20).
First, the numerator comes from the matrix ele-
ment (¥, 13¢ | ¥f) =~ (1/V2)3? tmt | km)and second,
the term S*2E! in the denominator comes from the
spin-contaminating configuration syt appearing
in Eq. (12) and third, the term K, in the denomi-
pator arises from the matrix element (*¥, |5C| S¥Li)
as shown in Eq. (18).

III. PERTURBATION-VARIATION DESCRIPTION
OF THE SEHF WAVEFUNCTION
In this section, we consider the SEHF wavefunc-
tion along the similar line to the treatment of the
previous section. In the SEHF method, the single
determinant,

TR ’—nt I—Bl .
V=1l P8 oes ' PF oo @S P DS -

X eee b5l
having the same form as the UHF function of Eq.
(4) is first spin-projected and then the component
orbitals are varied to minimize the energy,

ESEHF = < Os‘llsp ‘ SCI Os\I,sp>/< Os‘I’spl Os‘I’sp> ’ (25)
where O, is the projection operator! having the
property,

S20,=(s/2) (s/2+1)0 .

The differences between the SEHF orbitals and the
RHF orbitals are defined similarly to Egs. (5)-(7)

and are expanded by the RHF orbital set as in Eq.
(10):

=20 affv, of=00 bl fiE=1"city,. (26)
t t t
We assign primes for the SEHF case.

Since ¥, has the same form as ¥yyp, the effect
of the projection operator on ¥, can be examined

up to second order by referring to Eq. (9). Among
the terms of Eq. (9), only those terms which are
not eigenfunctions of S? suffer changes. Especially
the following relation is obtained from Eq. (12).

0,0t = [s/(s +2)]M/250Wi(2) . (27)

The expression of the SEHF energy correct to sec-
ond order in the orbital corrections is easily de-
rived by using Eq. (27) and the equality

oyl e] 00 =, || v,

but it is omitted for brevity. As before, the SEHF
orbital corrections are obtained by varying this en-
ergy expression with respect to aff, bl c!f. The
results are the coupled equations given in the ap-
pendix. By using these coefficients, the SEHF
wavefunction correct to first order in the orbital
corrections is given by

SWpr = W+ [25/ (s + 2)]1/2k2c'§,” altswt(2)
VI bt et (1) + 0 0 iU . (28)
. : b b - 7 m m

As seen in the previous section, the uncoupling
of the coupled equations giving a}’, b.' and ¢! leads
to the following simple equations:

3 20 (mt | km)

7 _
K TG D EL@) - Bl Ky (@)
bt=0, (30)
ct=0. (31)

That is, in the uncoupled approximation, the orbit-
al corrections of and f/* vanish as expected from
the Brillouin theorem and the SEHF wavefunction
becomes

Wopur = o+ [26/(5+ 22T T af wi2) . (32)

In comparison with Eq. (20), note that in the denom-
inator of Eq. (29) the term K,, still appears, al-
though the term due-to the spin-contamination is,

of course, projected out in Eq. (29).

IV. COMPARISON WITH THE SUM-OVER-STATE
PERTURBATION THEORY

In this section, we compare the results for the
UHF and SEHF wavefunctions and the result for the
PUHF wavefunction reported previously® to the
first order sum-over-state perturbation (FO-SOSP)
wavefunction based on the RHF wavefunction, Some
relations among these theories will be clarified.

Considering the Brillouin theorem Eq. (3) for the
RHF wavefunction, s spin-functions® arising from
the one-electron excitation from the closed orbit-
al k to the open orbital # interact with the RHF
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TABLE 1. First order coefficients in‘the uncoupled approximation.®

Method

s+2_t

ap

(1/2)1238, (mt | k)

Fo-sosp 570 + 2171/ FEL@) - B 0

b (1/2)Y 2% (mt | ko) 172 5.t

vaE [(s +2)/sT/{E4(2) - Ey— (1/5) 0.8 (K g + Kpnp) = Kpat 2/s)'* *af,

1/2)123.2 (mt | km)
b om
PUHF 7D/ R = £y (/53 S K a7 K ) = Kol 0
SEHF (1/2)'/2%, pomt | k) o

Is/(s +2) 2 {°E}@2) — Eqf = [(s +2)/s)' *Kpy

2The coefficients are defined by,

=S¥+ °D Y gt SWh(2) +E°Zj' gt 2yt
] k

bThe energies *E{(2) and *2E} are connected by the following equation:

S EE=SE}2) - [(s+2)/2512° Ky Ky«
m

wavefunction ¥, of Eq. (1). They all have the
same spin-multiplicity s +1.'® However, since our
present interest lies in the first order spin-corre-
lation correction, we have only to consider the
configuration S¥:(2) of Eq. (14) among these s spin-
functions.® Then, from the first order perturba-
tion theory,

$Wgos="¥o+ ﬁ‘%_;ctzv ak(S0S)*¥i(2) , (33)

where the coefficient af(SOS) is given by

_ 332 (mtkm)
“[s/(s +2)"BFEI2)- Eq

Since the FO-SOSP coefficient given by Eq. (34)
is essentially the uncoupled one, it is compared in
Table I with the UHF, PUHF, and SEHF coeffi-
cients obtained by the uncoupled approximation,
These coefficients are defined by the equation

ai(sos) (34)

V=0, 2 T sat St (2)+ 1 00 S2atse2wt | (35)
] 13 k t

where the last configuration is the spin-contami-
nating configuration. In the UHF method, there
exists the following relation,

sa'tz = (3/2)1/2 s+2a,tz ,

coming from Eq. (12). In Table I, the term (1/

§) 2o (K mp + K i) in the denominators of the UHF

and PUHF coefficients arises from the spin-con-
taminating configuration **?¥ [see Eqs. (12) and
(23)]. The exchange integral K,, common to the
denominators of the UHF, PUHF, and SEHF co-
efficients but missing in the FO-SOSP coefficient
comes from the second order two-electron excited
configuration *¥{!, which is usually one of the most
important configurations in the electron correlation
corrections'!” [see Eq. (18)]. When s approaches

to infinity as in some solid states, the UHF,

PUHF, and SEHF theories become identical, 1

This fact may be considered as a justification of the
UHF theory in infinite systems. Interestingly,
even when s =, these UHF, PUHF, and SEHF
coefficients are different from the FO-SOSP co-
efficient by K,; in the denominator. The physical
meaning of the appearance of K,; will be fully dis-
cussed in Sec. V.

Since spin density is a good manifestation of the
spin-correlation effects in open-shell electronic
systems, it is useful to compare these four meth-
ods with respect to this property. By applying the
normalized spin-density operator, 2°

P(’V)= (Sg>-1 vzszv 6(1',, - r) ’

to the uncoupled equation (35), and by using the fol-
lowing relation,®

(£, | p(r) | =28L) = (2/8)12 (5%, | p(r) | ¥{(2)) ,

we obtain the following equations for the first order
spin density,

P=Pgp +Psp (36)

where

Psp = ¥y | p(r) | ),
o @)
psp'—'? tE {safﬁ' (2/3)1/28*211;5 (s‘l’o | p(r) l"Pi(Z)) .

In Eq. (36), pgp and pgp are the contributions due to
the spin-delocalization (SD) and spin-polarization
(SP) mechanisms. *!° From Egs. (35) and (37),

Pgp is shown to be always positive and has the same
value in the FO-SOSP, UHF, PUHF, and SEHF
methods to the first order uncoupled approxima-
tion:
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TABLE II. pgp in the uncoupled approximation.

Method Psp
2 & ot [km) \
rososp  Lxepr B oy,
o
IF 2 v T ot 1 kenr)
b s 5 D By (1500, Wy gl gy D)
PUHF® [s/(s" 2)) (pynplsp

o
2 Sy Dbt | ko)
s Ek: 2,: SELR2) ~Ey— (1 4 2/8)Ky,

SEHF Y (el , ()

2Reference 9.

(Psos)sp = (Pynr)sp = (Ppunr)so = (Psgnrlsp - (38)

However, pgp is different for different methods and
offers a good measure of the spin-correlation ef-
fects included in these methods. In Table II, the
formula of pg, calculated from the uncoupled equa-
tion (35) are compared among the FO-SOSP, UHF,
PUHF, and SEHF theories. In the UHF method,
Pgp includes the contribution due to the spin-con-
taminating configuration *?¥f, although it is easily
picked out by the projection? or annihilation® meth-
od.

Referring to Table II, we notice that the differ-
ences in pgp among the FO-SOSP, UHF, and SEHF
theories lie in their denominators. Since the ex-
change integrals K,,, K, and K, are always posi-
tive, the relations,

| (Psos)sp | < | (Pynr)se l , (39)
| (Psos )sp l < l (Psenr)sp | (40)

are expected in the first order uncoupled approxi-
mation. The relative magnitude between (pyyp)sp
and (Pggyr)sp depends upon the relative magnitude
between 32 (K, + Kny) and 2K,,. As to the relation
between (Pyyr)se and (Ppyyr)sp, We have already
reported previously® 1%,

(Ppynr)lse = [/ (s +2)] (pUHf')sp . (41)

Note that when s approaches to infinity, the spin
densities calculated from the UHF, PUHF, and
SEHF theories become identical, although they are
still different from that obtained from the FO-SOSP
method.

To examine the reliability of the above relations .
(39), (40), and (41) in actual calculations, we sum-
marize in Tables III and IV spin densities calculat-
ed by these various methods. The spin densities
of the first-row atoms shown in Table III were ob-
tained by Goddard?! except those calculated by the
FO-SOSP method. 22 As seen from the RHF values,
all the spin densities except those of Li(2%S) and
Li(32S) are due only to the SP mechanism. The
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spin densities of the doublet alternant hydrocarbon
radicals shown in Table IV were calculated by the
Pariser-Parr-Pople method with the same inte-
gral values. #'?* In the position of negative spin
density, only the SP mechanism is important.

In both Tables III and IV, the relations (39), (40),
and (41) hold satisfactorily for all the SP contribu-
tions. Although one exception to relation (39) is
found for Li(22P), the reason is probably due to
the differences in the basis functions between the
FO-SOSP?° and UHF?! calculations. For the spin
densities where both of the SD and SP mechanisms
are important, both contributions are positive in
the cases shown in Tables III and IV. Then, from
Egs. (38), (39), and (40), the relations pgos< Pyur
and pgog < Pspyr are expected. These relations hold
in both tables with an exception of the latter rela-
tion at the 3 position of the pentadienyl radical
shown in Table IV. This is perhaps due to the
crudeness of the uncoupled approximation,

As to the relative magnitude between (Pyyr)sp
and (Pgpyrlsp, the relative magnitude between
2 (Kpp + Kme) and 2K, becomes a subject of discus-
sion (refer Table II). Generally speaking, the
more similar the orbitals ¥; and ¥, are, the larger
is the exchange integral K;;. If both orbitals ¥; and
; belong to the same partial symmetry (e.g., both
are s — AO’s or p— AQ’s in atoms, or both are
0-MO’s or 7— MO’s in molecules), the similarity
(e.g., in nodal property) between the orbitals ¥,
and ¥; is closely related to the level splitting be-
tween the orbitals ¢; and ¥;, Then, for example
in the alternant hydrocarbon radicals, we can ex-
pect the relation, K,,,+K,;>2K,, and then, }2 (K,
+K,;) 2 2K,; which results in the relation,
[ (Psgnur)sp | <! (Pyyrlsp |. Moreover, in the posi-
tions where the SD contribution is also important,
the SP contribution is positive for the cases shown
in Table IV. Then, from Eq. (38), this relation is
rewritten as,

lpSE}!F | s l Pyur I . (42)

The above relation holds actually in Table IV with
the few exceptions of the 3 and 5 positions of the
benzyl radical. On the other hand, if the partial
symmetry of the orbitals ¢, and ¥, are the same
but different from that of the orbital ¢,, as in the
Pand D states shown in Table III, the reverse relation,
Ko+ K, < 2K, is expected for similar reasons as
above. Although this leads to the relation

| (Pynr)sp | < | (Pggppp)sp | for doublet radicals
(s=1), we can not deduce any general relation be-
tween 33, (K, +K,;) and 2K,,, and then between
(Pypr)sp and (Pgppr)sp. Actually in Table III, we
can see the relation, pyyp <Oggyr for the doublet
P and D states.
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TABLE III. Spin densities of the first-row atoms calculated by the various methods.®

Atom  State  RHF FO—SOSP PUHF SEHF (GF) Exptl.

Li 2’5 0.1667 0.2065" 0.2248 0.1866 0.2406 0.2313
3'S  0.03864 oo 0.05253 0.04335 0.05622 oo
2’p 0.0 -0.02222° -0,01747  —0,00582  —0,02304  =—0.0182
3¥p 0.0 e -0.005531  —0,001843  —0.007318 oo
3'D 0.0 e -0.000036  —0,000012  —0.000053 e

B 2Py 0.0 0.0073¢ 0.0192 0.0067 0.0362 (0.0003)

c P, 0.0 0.0227¢ 0.0753 0.0398 0.0733 0.00889

N iS55 0.0 0.07304 0.1853 0.1179 0.1579 0.0970505

o} P, 0.0 0.0610¢ 0.1944 0.1013 0.2137 0.11398

F 2Py, 0.0 0.0470°¢ 0.1298 0.0444 0.2454 0.071835

2Reference 21,

bA, W. Weiss, Phys. Rev. 122, 1826 (1961).

°R. W. B. Ardill and A. L. Stewart, Proc. Phys. Soc. (London) 92, 296 (1967); A. W. Weiss,

Astrophys. J. 138, 1262 (1963).

%, F. Schaefer IIl, R. A. Klemm, and F. E. Harris, Phys. Rev. 176, 49 (1968),

V. THE NATURES OF THE UHF AND SEHF THEORIES
IN THE SPIN-CORRELATION PROBLEMS

In this section, the natures of the UHF and SEHF
theories in the spin-correlation problems for open-
shell electronic systems are discussed in the light
of the physical visuality of the Sinanoglu’s many-
electron theory.2*'!! As in the previous section,
our starting point is the RHF wavefunction.

In the closed-shell systems, the orbitals are de-

termined by the average Coulombic field, where
the effect of spin (the Pauli antisymmetric condi-
tion) functions to modify this field. However, in
the open-shell systems where the numbers of the
a- and B-spin electrons are different ( s#0), the
effects of spins are not cancelled out and the field
becomes spin-dependent, This is the physical rea-
son of the different orbitals for different spins
(DODS). !'® However, in the RHF theory, two elec-
trons of different spins are forced on the same

TABLE IV. Spin densities of the doublet alternant hydrocarbon radicals calculated by the

various methods. ®

Radical Position FO-SOSP®  UHF PUHF SEHF Full-CI
Allyl 1 0.584 0.651 0. 547 0.584 0.578
LN 2 —0.167 —0.302 —0.093 —0.167  —0.156
Pentadienyl 1 0. 405 0. 545 0.383 0.452 0.413
/2\/\ 2 —0.127  —0.307 —0.094 —0.159  —0.140
/ 4 3 0.444 0.524 0.422 0.415 0.452
Benzyl® . 1 0.771 0.718 0.602 0.715
2 2 ~0.189  —0.060 —0.134 —0.110

3 3 ..o 0.254 0.157 0.279 0.185

4 4 -0.158  —0.050 —0.143  —0.070

5 5 0.225 0.128 0.260 0.165

2References 23 and 24,

l’These values are obtained by the present author.
°The values for the PUHF method of benzyl radical are obtained by the smgle annihilation

of the spin-contaminating quartet state.
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spatial orbital, by neglecting the spin-dependent
character of the field. Therefore, in the theory of
the electron correlation starting from the RHF
wavefunction, the orbital correction term f; repre-
sents chiefly the orbital spin-polarization 7; shown
for example in Eqs. (7) and (26).!* Although the
closed and open orbital shifts, o; and f§ are also
included in f,, they are expected to be small from
the Brillouin theorem, Eq. (3).'°* Note that in the
closed-shell systems, f; is always very small, It
appears only from the third order correction.
Thus, f; gains simple physical reality only in open-
shell electronic systems.

As shown by Sinanoglu ang Silverstone, !! the two-
electron correlation effect U}, is also very impor-
tant. It is expressed as the sum,

ﬁ{,=@(_;¢f})+ﬁ“=o o+o0—o , (43)

where ® is the two-electron antisymmetrizer. The
first term, ®( f, f,) (the unlinked cluster o o in the
Sinanoglu’s notation) represents chiefly the “cou-
pling” of the orbital spin-polarizations which is
important only in the open- shell electronic sys-
tems. The second term U;; (o—o) represents main-
ly the correlation correction due to the binary
“collision” of two electrons. This belongs essen-
tially to the two-body phenomena and its importance
is common to both closed- and open-shell electron-
ic systems. Moreover, U;; represents a large
part of the correlation energy. !

In the orbital theories like the UHF and SEHF
theories, one introduces first rather formally the
orbital correction f, as in Eq. (5) and then makes
it optimum to all orders by the variation method.

In this sense, the orbital theory may be considered
as the orbital (one-electron function)-constrained
vaviation method. However, since the first order
correction to the wavefunction is determined by
varying at least the energy correct to second order
in orbital corrections, !* there comes out the cou-
pling terms ®( f, f,) in the energy expression.
These are seen in Eq. (9). Among these coupling
terms, the most important term is J¢¥Y (al)? s Wit
arising from the sixth term of Eq. (9). On the
other hand, these two-electron excited configura-
tions, especially ¥, are also important in de-
scribing the correlation effect U;;, which is ex-
pressed as the sum of terms like J 53 dhi *wif, 11V
The important difference between these CI expres-
sions of ®&( ﬁ f,) and U, 4 lies in their coefficients;
although the coefficients in the former term are
constrained as the product of the orbital correc-
tions like (a})?, those in the latter term are the free
variational parameter like df,f, Since in the UHF
and SEHF theories only the former term appears,
the effect of the latter will be incorporated “effec-
tively” through the variation method into the con-
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strained former term. Inother words, in the UHF
and SEHF theovies, the real spin-polarization f; is
distorted to some extent by the “effective” inclusion
of the correlation effect essentially due to U;;. Owing
to the particular importance of the configuration

swi! it appears even in the uncoupled equations

of the UHF and SEHF theories shown in Table I

as the exchange integral K,, in the denomina-
tor. (Recall that (¥,I%CI*¥il)=K,,.) As a re-
sult, the spin densities due to the SP mecha-
nism calculated by the UHF and SEHF theories
ave always lavger (in absolute magnitude) not
only than those calculated by the FO-SOSP
method [Eqs. (39) and (40)], but also than those ob-
tained by the full-CI method and experiments.
Some manifestations of the relations expected from
the above conclusion and Eq. (38) are seen in
Tables III and IV except the UHF spin densities of
Li(22S) and Li(22P) and the SEHF spin densities of
the 3 and 1 positions of the pentadienyl and benzyl
radicals, respectively.

Before completing this section, some discussions
are necessary about the alternant molecular orbit-
al (AMO) method®’® for the closed-shell electronic
systems. In this theory, the orbital correction
S #¥° formally similar to m, in Eq. (7) is first in-
troduced in order to represent the “alternant” cor-
relation effect trying to keep the two a- and B-spin
electrons on separate positions.! By applying this
method to benzene, one can obtain 78% (one param-
eter) and 90.4% (two parameters) of the best pos-
sible improvement in energy within the 7-electron
treatment. ®® However, this “alternant” effect is
essentially a manifestation of the binary correlation
effect U;;. This is clear from the fact that all the
first order configurations linear in f*° are com-
pletely projected out by the projection operator.® It
functions only in the coupling form ®(f{“°f{*®)as a
relief of the binary correlation effect U;;. In this
sense, the orbital correction f;”‘° introduced in-
tuitively in the AMO method is more imaginary than
real. However, in the open-shell electronic sys-
tems, the statements given for the SEHF method
apply also to the AMO method. Namely, in both
cases, the orbital spin polarization effect and the
“alternant” correlation effect disturb each other.

V1. CONCLUDING REMARKS

As shown in the previous section, in the UHF and
SEHF theories, the real spln-polarlzatlon correc-
tion f‘ is dlstorted to some extent through the “ef-
fective” inclusion of the correlation effect due es-
sentially to U;;. Moreover, the fact that in the
SEHF theory, the error in the‘expectation value of
the one-electron operator begins from the first or-
der term in the error function® seems to support
the above conclusion. Since both of the correc-
tions, f; and U;; are important in'the open-shell
electronic systems, it seems necessary for the fu-
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ture theories of spin-correlation to include both of
these corrections explicitly in a relevant frame-
work, or to exclude reasonably the effect due to
the correction Uy;.

In order to keep f; from the effect of I},,, Meyer?®
dropped off from the SEHF function the configura-
tions S¥if and *¥!¥(1) coming from the sixth term
of Eq. (9) and considered only the polarization in-
teraction term arising from the eighth term of Eq.
(9). Although he considered only the spin-polariza-
tion correction 7} in Eq. (26) in an approximate
way, his results were satisfactory in the calcula-
tions of the hfs constants of the first-row atoms.
Since in atoms, the energetically most important
correlation effect is the intra-shell (pair) correla-
tion effect expressed mainly by the configurations
like *¥tf and *Wi4(1), his treatment may be justified.
However, it seems still questionable whether the
configurations “¥!! and *¥i%(1) are purely U,; origin
and can be omitted completely The relative weight
in their origins between f, and fl, ; should be exam-
ined if we adhere to the framework of the SEHF
theory. On the other hand, taking account of the
considerations given in the present paper, we may
rather set up more direct method which covers
both correlation effects ﬁ and ZAI‘ ; in the possible
simplest but unconstrained framework. In this
sense, the multiconfigurational (MC) SCF method
seems promising.?” This point is the problem to
be discussed in the future studies.
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APPENDIX

First, by differentiating 2Eyup, the UHF total
energy correct up to second order in the orbital
corrections, wii.gh respect to af,, we obtain

3d *Eqgp/dat=2at{[s/ (s + 2)]°E}(2) + [2/(s +2)]2E}
- Eg- Ky} ‘
- (mt | km)
+ Oat{Z (km | tm)-

1(#R) m

+ 2 a{T (tm | um) - (tu | kk) - (tk | uk)}

u(#t) m

- 22 a{(tu | tR)+ (u | 1)}

1(#R) u(#t)

+ b;Eo (Kmk- Kmt)

(®1| tt)- (=t | 1t)}

+ D0 em | tm)= 502 (tm | um)

1(#k) m u(#t) m

Pt {2 (mn | kn)= (mk | tt) - (kt | mt)}

- Eo_zv c* {(tu | mk)+ (ku | mt)}

HIROSHI NAKATSUJI

=0. (A1)

Second, by differentiating with respect to b, we
obtain

3d Eyyp/dbl =20} {°Ef(1) - Eq+ Ky}

+ 20T (e | Im) = (k1| 1)+ 3Gt | R)}

1(#R) m
+ 2 04T (¢m | um) - (bu | kR)+ 3(kt | uk)}
u(#t) m

+ 27 T Ak | ) - (tu | TR) - (bu | 1)}

1(#k) u(#t)

+ak2 (K= Kome)

+ Zat D m | km)- L at I wm | tm)

1(#r) m u#t) m

+ 27t A2 mn | kn) = (mk | #t)+ 3kt | mt)}

+2 E;:)c,“,,{4(kt | mu)— (tu | mk)= (mt | ku)}
=0, (A2)

Third, by differentiating with respect to ¢!, we ob-
tain

d*Eyyp/dct,=2ct,(CEL - Eg)

D c’{lz (im | in)= (mn | tt) + (mt | nt)}

n(¢m)

+ 2 ek {12 (nt | nu)- (tu | mm)+ (mt | mu)}

u(#t)

+ 0 T et {20mt | nu) - (mn | tu) - (mu | nt)}

n(#m) u(#t)

+25°at {2 mn | kn) - (mk | tt)- (et | mt)}
k n

22 T at{(tu | mk)- (et | mu)}
Eoul#t)

+225°0t{ X (mn | kn)~ (mk | tt)+ 3(kt | mt)}
k n

+22° T bu{aku | mt) -

kR u(#t)

(tu | mk)— (mu | 2t)}

=0. (A3)

In the above equations, (i | kI) is defined by,
@G | kD)= [ [ 9,(10,Q0) (1/71) $,(2)9,(2)d7,dT,

and E, *E;(1), *E;(2), **?E}, and *E', are energies
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corresponding to the configurations ¥, S¥i(1),
S¥i(2), **2¥f and *¥,, respectively. [See Egs. (1),
(2), (14) and (15). ]

Similarly, by differentiating 2Egpyp, the SEHF
energy correct up to second order in the orbital
corrections, with respect to a/f, we obtain

S
%d zESEHF/daI:t = Zal:t [S—Jrz{sEi(z) - Eo} - Kkt]
-5 (mt | km)
m

+ Eca,' {s+12 (rm

s
tem 0 |S+2 llm)'m(klltf)—(kt|lt)}

LY m{“”lZ}D (tm Ium)-s—iz-(tu |kk)‘(tk|”k)}

uiet)  |S+2

1(#R) u(#t)

Ty {—o«u | lk)+(ku|lt)}
+ 00T (Ko = Kone)

+ DT ke | tm)— T 0T (tm | um)

1(#R) m u(#t) m
N Z}"c,';{Z)" (mn | kn)— (mk | tt)- (kt | me)}
m n

- Evc,{:‘{(tu | mk) + (ku | me)}

m  u(#t
=0. (A4)

The results for b!f and ¢! have exactly the same
forms as those given in Eqs. (A2) and (A3) except
that af, b and c‘ appearing in these equations are
substituted by aff, b} and c!f, respectively.

*Based on a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at-
Kyoto University, December 1970.
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