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RELATIVE COORDINATE REPRESENTATION FOR LONG-RANGE INTERACTIONS
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Long-range interactions between two molecules are studied using relative (R-) coordinates. In the R-coordinates, not
only the potential energy operator but also the kinetic energy operator is separated into intra- and intermolecular parts.
This enables us to partition the hypervirial and virial theorems into intra- and intermolecular theorems. The intermolecular
theorems reduce the required accuracy of wavefunctions in perturbation calculations at least by one order. The Born—
Oppenheimer approximation of the partitioned virial theorem is also discussed.

1. Introduction

In a previous study [1] we have shown that the use
of relative (R-) coordinates simplifies the Hellmann—
Feynman force theory of long-range interactions in
comparison with the use of laboratory fixed (L-) coor-
dinates. The study [1] suggested us that the other
theorems, such as the hypervirial and virial theorems,

may also be simplified in the R-coordinate representation
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Fig. 1. Definition of the L- and R-coordinates. Molecule «
consists of electrons {2} and nuclei {4}. The positions {ry}
mean both of {r,}and {r4}. Similarly, molecule 8 consists
of {b}and {B},and {rg}mean {rp}and {rg}.

of long-range interactions — which we investigate in
this report.

The R-coordinates are defined and compared with
the L-coordinates in fig. 1. In the L-coordinates, the
position of a particle (i.e., electron or nucleus) is
measured from the laboratory fixed origin, but in the
R-coordinates, it is measured from the relative origin-
defined as the center of mass of the nuclei of a mole-
cule to which the particle belongs. Such definition is
unambiguous when the electron exchange between
molecules is negligible, i.e., only for long-range inter-
actions. We write the center of mass of the total system
as Q, the intermolecular vector between the centers
of mass of the molecules as RT, and the individual
particle positions as {r }. Two nuclear positions from
each molecule are omitted from the independent
variables TT.

 Note that the starting and end points of the vector R differ

from the two relative origins of {r}. This choice has the
merit to exclude the coupling between the electronic and
nuclear momenta in the kinetic energy operator T(r) (see
section 2). Then the intramolecular kinetic energy operator
T(r) is also expressible as the sum of the electronic and
nuclear kinetic energy operators, 7’e(re) + T'n(rn), where
{re}and {r,} denote electronic and nuclear coordinates,
respectively. This makes that the virial theorem holds
separately for electrons and nuclei, leading to the electronic
virial theorem (13a) under the Born—Oppenheimer approxi-
mation (see sections 3 and 4).

1 The omitted nuclear positions are given by the linear com-
binations of the independent nuclear positions.
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In this paper, we study the R-coordinate representa-
tion of long-range interactions between two molecules
a and § in a more general manner. In the R-coordinates,
not only the potential energy operator but also the
kinetic energy operator is separated into intra- and
intermolecular parts. Then, we can partition the hyper-
virial and virial theorems into intra- and intermolecular
theorems. The intermolecular theorems reduce the
required accuracy of wavefunctions by one order and
this is useful in perturbation calculations. We also discuss
the Born—Oppenheimer approximation of the parti-
tioned virial theorem. Finally, the R-coordinate
representation is compared with the ordinary L- coor-
dinate representation.

2. Hamiltonian in the relative coordinates

We consider a long-range interaction between two
molecules a and § without using the Born—Oppenheimer
approximation. In the L-coordinates, the hamiltonian
of the system is given by

HO =74 yO , HO =D

H=HO 4+ , ()

where T is kinetic energy operator, V(© the Coulomb
potential for the isolated molecules, and V() the
coulombic interactions between all the charges in
molecule @ and those in molecule .

We now express the hamiltonian (1) in the R-
coordinate representation. The potential energy operator
V is written as

v=vO@r) + v Ry, (2)

where tilde means the R-coordinate representation of
operators. The potential V© depends only on {r},
but V1) depends on both {r} and R. Using the chain
rule for derivatives [2], the kinetic energy operator
is expressed as

T=T(Q)+TR)+T(). (3)

The operator 7’(0) represents the translational energy
of the total system —5(M,, + M, ) 132/3Q2, T(R) the
intermolecular kinetic energy —3 1u~132/0R2 with
pl=M1+ Mzl and T(r) the intramolecular kinetic
energy T o7y )+ Tﬂ(rﬁ) with

T, (r)=-% {(;} 3%for2 — m;! %) a2/araar,,,)
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where m 4 is the mass of the nucleus A4, M, the total
mass of the molecule , and T’ means the sum over

the independent coordinates. We then obtain the R-
coordinate representation of the hamiltonian as

i =HO 4 FO |

HO = TRy + T(r) + VO(r) , )
HD = VD Ry,

where we have omitted the unnecessary translational
kinetic energy operator 7(Q). As shown in (4), the
R-coordinates clearly distinguish intra- and intermoleculai
origins of the kinetic and potential energy operators.
Especially, the separation of the kinetic energy operator
into the intra- and intermolecular parts is important

for the discussion of the hypervirial and virial theorems
in the subsequent section.

Since H© is separable for {r} and R, the Schrodinger
equation for the unperturbed state, (H© — EO)0y = 0,
can be transformed as |0) = exp(% iPR)¢O(r) and
EO® = (P22 + €©® where O (r) and €© are the
solutions of the Schrodinger equation for the isolated
molecules, (T(r) + VO — ¢©)¢©)(r)) = 0. The un-
perturbed wavefunction represents the molecules
moving freely with the intramolecular state ¢(0(r).
Since the quantities of HO and HO are unchanged
by the transformation from the L- to the R-coordinates,
the perturbation wavefunctions and energies are identical,
in each order, with those of the L-coordinate represen-
tation.

3. The hypervirial and virial theorems

In the R-coordinates, the partitioning of the
hamiltonian allows us to split the hypervirial and virial
theorems into intramolecular and intermolecular parts.
This is essentially due to the partitioning of the
kinetic energy operator.

The hypervirial theorem [3] is

([H, W})=(V|[H, W] |1 =0, (%)

where W= W(r, —id/dr, R, —id/dR) is the hypervirial
operator in the R-coordinates and |¥) the eigenfunction
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of H. When we define intra- and intermolecular hyper-
virial operators as

WA = i, —id/ar)

. - (6)
W = YR, —id/dR) ,

the hypervirial theorem can be splitted into two forms.

([(T() + VO + vy pyintra]y = g | (7a)

([(T(R) + vV, winter]y = | (7b)

These equations may be called intramolecular and
intermolecular hypervirial theorems, respectively.

The partitioned virtial theorems are derived from
the partitioned hypervirtial theorems. Choosing
Wit = 37 (—id/dr) in (7a), we get intramolecular
virtial theorem

QT(r) + VOy= @Oy (8a)
where

PO = 23 ravDyar=aRVD)R .
aAbB

The intramolecular 'virial theorem is the sum of the
electronic and nuclear virial theorems

QT.(r,) - Zb) r,d(VO + Vyary=0,
a

QTt () - E r d(VO + vWyar y=0 .

Similarly, choosing Winter = R(—id/dR) in (7b), we get
the intermolecular virial theorem:

QT(R) + VDY = (PO (8b)
or
QTRY—RAIVWBRY=0.

The sum of (8a) and (8b) gives the total virial theorem
(2T + V) = 0 which is identical with the ordinary virial
theorem [4] in the L-coordinate representation.

In the hypervirial theorems, the intramolecular
theorem (7a) contains both of the potentials V©® and
v, but the intermolecular theorem (7b) contains
only V. This means that in the perturbative calcula-
tions of the intermolecular properties which are ex-
pressible as [T(R), Winter] for any Winter the nth-
order perturbed wavefunction suffices to determine

the (n + 1)th-order correction. For the corresponding
intramolecular properties, we need nth-order wavefunc-
tion for the nth-order correction. Thus, in the inter-
molecular virial theorem (8b), we can reduce the accurac
of the wavefunction required for calculating (7~'(R)) by
one order. For first-order, the intermolecular virial
(R3VW/3RYO) vanishes identically * and the intra-
molecular virial theorem describes the total virial theorer
since (T(RPM = |P|2 {O11) + (1]0)}/2u = 0.

Using these virial theorems, we can express the
expectation values of the unperturbed operators
T(R), T(r), and VO by the expectation value of only
the perturbed operator V), When the energy of the
system is partitioned into direct and induced terms

E=Eg+Epg, Eg=HYY, Eq=HD, ()

ind >
the nth-order energies satisfy [5]
EW=pg®™ g =1 —n)E™ (10)

Combining these equations with the virial theorems
(8), we obtain

(TR = LRa VDR |
TEN® = 1)V + LRoVWam@-D - (11)

(\7(0))(’1) =Q2/n — 1)('\7(1))('!71) .

Since only the perturbed operator v appears on the
ths, the required accuracy of the wavefunction is re-
duced by one order in perturbation calculations. When
the multipolar expansion is used for the operator \7(1),
wavefunctions to order n determine the expectation
values (T(R), <T(r)), (V©) up to order 2n + 1. This is

.amerit of the R-coordinate representation.

4. The Born—Oppenheimer approximation

We define the electronic hamiltonian H, in the R-
coordinates as the sum of the electronic terms in the
hamiltonian (4). The electronic Schrodinger equation
is (l;'e —E)Y(re;r,, R) = 0. First, we summarize
the results for the Hellmann—Feynman theorem in
the R-coordinates [1] in order to derive the Born—
Oppenheimer approximation of the partitioned virial

* (6)(”) denotes E%=1 (kl6|n — k), where |n) is the nth-order
perturbation wavefunction.
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Table 1
Comparison of the L- and R-coordinate representationsa)

R-coordinates

Coordinate systems L-coordinates

intramolecular

Intermolecular

H=T+V Qs

H =T TR VO V¢, B

- Hamiltonian
Q o
| g€ - ~ o~ ~ ~i ~ ~(1), grintery,
g3 & Pl OO0 AT VOV, Wi =0 ARV, W) = ¢
e §~§ Virial ©). 1) Zre O al7(l)> ~ av®
D‘ = —_ = — =
2 8‘ S theorem QT+VV+VEH =0 <2T(r)+V r oF 0 2T(R)—-R 3R 0
Electronic _ ©),,,(1) =R () Iy ()]
hamiltonian Ho =TtV 4V He=TetV7+V
k=1 o ~, ~, ~
g § Mellmamn- o5, (a(v(0)+v(l))> o, <a (V(0)+V(1))> ey
< ) ST U D
"?c:“ S theorem ory, ory e ory ory e dR 9R /o
L 59 E. oE oF,
£ 22 Vidal ( 0L, ~ o), S . OB, OE, ~ e
5 & A 0), /(1) _°_ Oy N _C, o C . _ -
SEE oo QT VOO 25, r 0 ATV, 20 o AR=0 TR -Rp=0

a) The nuclear virial theorem under the Born—Oppenheimer approximation is omitted.

theorem. The Hellmann—Feynman theorem with
respect to a nuclear position 74 gives for the force
on nucleus 4 [6]:

Fy = —0E,[ory = (~a(VO +vDyjar >,

=(Y|-a(VO + VD)or, 19y . (122)

The Hellmann—Fyenman theorem with respect to the
intermolecular vector R gives

Fo= —3E,[dR =(-aVWVJaR), , (12b)

which depends only on VD). This was called force on
whole particles or force on molecule in a previous
paper* [1]. It has a merit to reduce the required ac-
curacy of the perturbed wavefunction by one order.

The intra- and intermolecular virial theorems take
the following form in the Born—Oppenheimer approxi-
mation:

QT+ VO+ VDY 4 SN 1 0, for,
AB

+RIE,OR =0, (13a)

27, - AZB) r,dE,[or, =0,

* Although the present definition of R-coordinates differs
slightly from the previous one (ref. [1]), the results for the
Hellmann—Feynman theorem are identical.

2T(R) — ROE,[OR =0, (13b)

where we have used the Hellmann—Feynman theorems
(12). The intramolecular virial theorem (13a) is identical
with the virial theorem in the L-coordinates. The inter-
molecular theorem (13b) represents the “classical” virial
theorem for the molecules moving in the potential

field E,.

5. Discussion and summary

In table 1, the R-coordinate representation is sum-
marized and compared with the ordinary L-coordinate
representation. The intramolecular theorems in the R-
coordinates involve both of the potentials V(© and
V() a5 is also the case for the theorems in the L-
coordinates, but the intermolecular theorems involve
only the perturbation operator V(). Then, in perturba-
tion calculations of intermolecular properties, we need
wavefunctions to order n — 1 in order to determine
the nth-order correction. Moreover, if the multipolar
expansion is applied for the interaction potential V1),
wavefunctions to order n will determine the properties
up to order 2n + 1. Under the Born—Oppenheimer
approximation, the electronic hamiltonian in the R-
coordinates H, is the same as that in the L-coordinates
H,, and therefore the intramolecular Hellmann—
Feynman and virial theorems are identical with those
in the L-coordinate renresentation.
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The results of the R-coordinate representation of
long-range interactions are:

(1) In the R-coordinates, the kinetic energy operator
is separated into intra- and intermolecular parts. This
enables us to partition the hypervirial and virial
theorems into intra- and intermolecular theorems.

(2) Use of the partitioned hypervirial and virial
theorems reduces the accuracy of the wavefunction
required in perturbation calculations at least by one
order.
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