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Some exact equations are derived which clarify some potentials that are hidden in the classical theorems
such as the Hellmann-Feynman (H-F) and the integral Hellmann-Feynman (I-H-F) theorems. The
differential form of the density equation given previously includes not only the classical force operator but
also the force operator associated with the quantum-mechanical potential introduced by Bohm. The latter
arises essentially only from the noncommuting property of coordinates and momenta in quantum
mechanics. However, after integration only the classical force term survives and results in the H-F
theorem. The important role of the quantum force term is completely hidden in the H-F theorem. This
fact would be closely related to the nondeterminicity and the classical interpretation of the H-F theorem.
A similar role of the quantum potential is also shown for the I-H-F theorem. We have also investigated
the origin of force density (the integrand of the H-F theorem) and isolated the roles of the generalized
exchange and correlation effects which are also hidden in the H-F theorem.

. INTRODUCTION

The Hellmann—-Feynman (H-F)* and the integral Hell-
mann-Feynman (I-H-F)? theorems permit us to study
quantum systems with semiclassical intuitions. The
simplicity and visuality of the theorems are quite use-
ful in understanding the regularities and varieties of
chemical phenomena,®* as shown for example in the ap-
plications of the electrostatic force (ESF) theory to
molecular structures, chemical reactions, and long-
range forces.?® These theorems have also been utili-
zed to study the characteristic behaviors of electron-
density which commonly occur in any nuclear rearrange-
ment processes. %7

However, these theorems are only weak necessary
conditions of the Schrodinger equation. That is, these
theorems alone are insufficient to determine the elec-
tron density and the transition density included in the
theorems. ® Previously,® we have presented the varia-
tionally deterministic expressions of these theorems
using the idea of Hohenberg and Kohn.!® These expres-
sions however require the exact knowledge of the den-
sity of the reference system.®

Recently, I have presented a nonvariational equation,
called the density equation, for the direct determination
of the (reduced) density matrix.' Within the N-repre-
sentable space of the density matrices the equation is
connected with the Schrodinger equation by a necessary
and sufficient theorem and is a self-contained equation
for the density matrix.'! It may therefore be considered
as giving a projection of the Schrodinger equation onto
the fewer particle space. Cho'? and Cohen and Frish-
berg!® have also given a similar equation, though the
implication of their equation is very different from ours.

In this paper I will derive from the density equation
some exact equations which will clarify some potentials
that are hidden in the classical theorems such as the
H-F and I-H-F theorems. In Sec. II we will start from
the density equation in the ¥ representation. For the
present purpose it is more convenient than that in the
density matrix representation and avoids also the un-
solved N-representability problem. We will differenti-
ate the density equation with respect to the external pa-
rameter included in the external potential. The resul-
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tant equation includes not only the classical force oper-
ator but also the force operator associated with the
quantum mechanical potential introduced by Bohm. 1% we
will discuss the role of the quantum force operator
which is hidden, by integration, in the H-F theorem.

In Sec. III we will isolate the generalized exchange and
correlation effects included in the differential density
equation and show that the effects are also hidden in the
H-F theorem. This formulation will also clarify the
origin of the force density which is the integrand of the
H-F theorem. In Sec. IV we will isolate a similar role
of the quantum potential which is also hidden in the
I-H-F theorem. Section V gives a brief summary.

11. QUANTUM FORCE AND THE H-F THEOREM

We consider a stationary N-electron system specified
by the Hamiltonian

H=T+V,+W ‘
- Z: Hi)+ D vali)+ iE w(i,j) (1)
i >

where T and £(i) denote the kinetic operator, V, and
v,(7) the external potential which depends on the exter-
nal parameter o (e.g., atomic number Z, and the nu-
clear coordinate R, in atomic and molecular systems),
and W and u(i,j) the electron—electron repulsion oper-
ator. We also write the one-electron operator in Eq.
(1) as o(9), i.e.,

o(d) = £(2) + va(d) . (2)
We define the nth order reduced density matrix by

l"(")(l""%’l 1o %)
=G, f (K17 = NOB(L N Dot ot ee e o

deml. * 'de
= yCo(¥', W), v (3)

where ,C, is the binominal coefficient and the prime on
¥ means that it depends only on the primed coordinates,
i.e., ¥'=¥(1’+++N’). The coordinate i =x; represents
both space 7; and spin s, coordinates. The symbol (***),
means the integration over the last N—n spin-space co-
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ordinates after the primed variables are equated with the
unprimed variables. With this notation the density equa-
tion is given in the ¥ representation as

E(¥’, \I’>n=<‘1’,, HY), , (4)

or in the T" representation as
f [Be™(1e+n; n+1, n+2) - E]

XT™2)(1 e v om4 2| 1o e e n+2)dXpyy A% =0 (5)

where the coordinates n+ 1’ and »+2’ are equated ton+1
and » + 2 after the operation of the reduced Hamiltonian
3™ given by

n

O (1e e nyn+ 1, n+2)=2 v(i)+z wli, )
i

>J
+(N—n)[v(n+ 1)+Z w(i,n+ 1)]

+3(N=n)N=n=-1Dwrn+1,n+2). (6)

It has been shown previously!! that if the density matrix
satisfies the density equation with » = 2, then the wave-
function connected with it by Eq. (3) will satisfy the
Schrodinger equation, and vice versa. The density equa-
tion (5) is a self-contained equation for the density ma-
trix so that it may be used for the direct determination of
the density matrix. ! The exact T and ¥ should also sat-
isfy the first-order density equation with n=1.

Although the density equation given by Eqgs. (4) and (5)
depends on both spin and space variables, we can also
consider the spin-independent density equation by re-
placing ( ), defined in Eq. (3) with ( ),, which is defined
by

Com [ 1]

* Isi=sy,- VXN =N
Xdsy*** ds,dX,,, " dxy . ¢

. .
**1Sn=Sny Xn+1=Xn+ls***

In such a density equation the density matrix I'™?® is
spin independent. It is easily shown that the previous
necessary and sufficient theorem!! also holds for such a
spin-independent density equation, if the Hamiltonian

of the system is spin independent. The formulation giv-
en in this section is also valid for such a spin-indepen-
dent case where we can replace ( ), with ( ),.

In order to derive an equation which is closely re-
lated with the H-F theorem we differentiate the density
equation with respect to the external parameter « in-
cluded in the external potential V,. From Eq. (4) we
obtain

£ (v, w),= <\p 2H > < n 2

where we have used the fact that the ¥ in Eq. (4) with
n = 2 should necessarily satisfy the Schrodinger equa-
tion. From Eq. (5) we obtain

<H'\If’ N\
da /y

BffC

(n+2)
8a F dx,"l dxm,z

oFE
% I-(n) =(Ncn/NCn+2) {

n+2)
+ f [3(3("’ —E] or dxml dxmz} B (9)
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where we have omitted the coordinate dependences of

T and 3. The first and the second terms on the rhs
of Eq. (9) correspond to the first and the last two terms
on the rhs of Eq. (8), respectively.

For the following study Eq. (8) is more convenient
than Eq. (9). It also avoids the unsolved N-represent-
ability problem. We will derive some exact equations
which the exact ¥ should satisfy, though they are not
sufficient for the ¥ to satisfy the Schrodinger equation.
Since the H-F theorem depends only on the diagonal ele-
ments of the first-order density matrix, i.e., the elec-
tron density p(1), we restrict ourselves to consider the
diagonal density equation with » = 1, which depends only
on the unprimed coordinates 1,+-+,». Namely, we omit
the prime on ¥ and H in Eq. (8), i.e.,

%(\p, ¥, = <\p ——\p> <
(10

where we stress that the operator applies only to the
immediate right, though we have used the same notation
( )n without any ambiguity. The quantity (¥, ¥), is con-
nected with the diagonal density matrix by T'"(1«- *n)
=N Cn (‘I’, ‘I’>n'

The differential density equation (10) has a form
which is suitable for studying the hidden potentials in

the H-F theorem. Inserting the Hamiltonian given by
Eq. (1) we can rewrite the first term of Eq. (10) as

(v 0) (o224,

<H¢ N
da/,

. which includes only the external potential V,, which de-

pends on the external parameter . Similarly, the last
two terms of Eq. (10) are transformed in three equiva-
lent forms as

<~1/ H——> <H~11 > <\11 Ta—‘l' <T\If % (12a)
n
<\p ™ 3‘I'> <T"'>\1: oY (12b)
da/,
=—-Z V;K ¥ Voo > <V¢‘I’, Ba>] (12¢)
which include only the kinetic operator. We have used

- the real and multiplicative property of the potential op-

erators V, and W. The rhs has arisen essentially only
from the noncommuting property of the coordinate and
momentum operators in quantum mechanics. In Eq.
(12b), T'™ is the kinetic operator associated with the
first n electrons

™ =Z t(z) ,

i=1

(13)
and we have used the relation

<\If,t(j)-g—z>" <t(])\I', aa> =0 (j=mn+1,++*,N),

(14)
which shows the Hermiticity of the kinetic operator as-

~ sociated with the integrated coordinate j. Since Eq. (14)

might not be trivial, we have given the proof in the Ap-
pendix. In Eq. (12c¢) the V, in front of the brace oper-
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ates on all the ¢th coordinates (1 <i<w) in the brace.

By such a way we easily obtain Eq. (12b) from (12c),
where 7™ =37 ~3V2, In this expression each term rep-
resents only the noncommuting part of the corresponding
term of Eq. (12b).

The quantity given by Eq. (12) can be compactly re-
written by introducing the quantum mechanical potential
defined formally by Bohm!*

1(i)¥
U¢= T )
: ™y
U(");'Z Ui= ‘I’ 2
i
d T¥
U=§; Ui=-",1',' (15)

This quantum (mechanical) potential has played an im-
portant role in his interpretation of quantum mechanics.
He has interpreted the quantum potential as a potential
produced by the “¥ field,” which obeys the Schrédinger
equation as the electromagnetic field obeys Maxwell’s

equat1on 4 mach particle is acted on not only by a
" “classical” potential V,+ W, but also by the quantum
potential U. 4 Note that the quantum operators U;, U™,
and U depend on all the spin—-space coordinates of the
system. However, since the quantum potential applies
only to the ¥ in the present paper, the ¥ in the denom-
inator always cancels. The quantum potential is essen~
tially a multiplicative operator as the classical potential
" is, since in Eq. (15) the kinetic operator applies only to
the ¥ in the numerator.

Since the quantum potential is produced by the Schro-
dinger ¥ field, 14 it should be a functional of the external
parameter o, so that we may further define the force
operator associated with the quantum potential by 80/ 5a,
as we define the force operator associated with the
classical potential by 3V,/3a. Namely, we define the
quantum force operator by

. Flz{w (r 2)- (T\If)——-}
where we have assumed ¥ to be real without loss of gen-
erality since our Hamiltonian is real. Again this defini-
tion is formal and in the present paper the quantum force
operator always appears in the form ¥(aU/8a)¥, so that
the ¥2 in the denominator of Eq. (16) cancels. Note that
the quantum force operator is essentially multiplicative
as the quantum potential is. The quantum force opera-
tors associated with U; and U'™ of Eq. (15) are defined
similarly to Eq. (16). Using these quantum force op-
erators we may rewrite the quantity given by Eq. (12)
in a compact form as :

 ~(v3a %)
da

(e - 35) i)

(n)
- <\Ij aU» \I,> ,
e/,

where we have used the relation obtained from Eq. (14),
i.e.,

<\p%\y> =0 (j=n+1,-+,N).

n

(16)

(1)

(18)
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Namely, the quantum force operator for the jth electron
averaged over the jth coordinate in the distribution ¥?
vanishes identically.

Thus, using Eqgs. (11) and (17) we can rewrite the dif-
ferential density equation (10) as

(m
aE 1'“"’(1°°'n)—,,,C< ( Ve , U )g:> . (19)
da R
When »=1, Eq. (19) gives
3E 1y~ ((ava aL) )
8a{p(l)—N V4 et da o . (20)

These equations include both of the force operators as-
sociated with the classical and quantum potentials. As
seen from Eq. (12), the quantum force term has arisen
essentially only from the noncommuting property of the
coordinate and momentum operators, i.e., the Heisen-
berg relation [g, p]=i#%, in quantum mechanics. When
n=N, Eq. (19) may be written in a formal form as

9E 2V, aUu
—_— e e—

2a da  oa ’ (21)
which is just a differential of the Schrédinger equation
E=U+ V,+ W again in a formal form.

The differential density equations (19) and (20) are
related to the H-F theorem by integration. Namely,
integrating these equations over the coordinates 1, «++,n
we obtain

(o). [ 2l

which is just the H=F theorem. The quantum force
term in Eq. (19) or (20) vanishes identically after the
complete integration, i.e.,

o(1)dr, , (22)

aU('l)
(2L )0 (=1, oum, (23)
because of the relation given by Eq. (18). Only the

classical force term survives after integration and gives
the H~F theorem.

The above formulation may be interpreted as isolating
an important role of the quantum force term in the dif-
ferential density equation. The equation gives a very
stringent condition which the exact density and wave-
function should satisfy. For instance, when the system
is spin independent, the symbol { ), in Egs. (19) and (20)
can be replaced by ( ), defined by Eq. (7) and the den-
sities I'™(1- -+ »n) and p(1) are then spin independent, so
that we may divide Egs. (19) and (20) by these densities.
From Eq. (19) we obtain

Zi (\1/—% \If) /(\I"I!) +<x1’— \1:) /(\w)

This expression may be called a “local force” expres-
sion from an analogy to the “local energy” expression
proposed by Frost.® Although the classical and quantum
force terms on the rhs are the functions of coordinates
71,°°*, 7, the sum of them, i.e., the local force,

should be everywhere a constant, i.e., the force 8E/9q,
as a result of a balance between the two terms. This is
certainly a very stringent condition. Equation (24) may

(24)
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further be interpreted as being analogous to the action—
reaction law in classical mechanics. The first and sec-
ond terms on the rhs may be understood as representing,
respectively, the normalized strengths of the classical
and quantum force fields at 7, 7, exerted on elec-
trons from the “nucleus” a. Their sum should be every-
where equal but opposite in direction to the “reaction,”
e., forforceacting on the “nucleus” @, —(3E/8a). Sim-
ilar interpretation would also be possible for Eq. (21).

However, when the differential density equations (19)
and (20)are integrated over the coordinates1, -+, n, such
a stringent condition is completely smeared out. The
quantum force term is completely hidden by such inte-
gration due to Eq. (23) and only the classical force term
survives, giving rise to the H-F theorem. Thus, in the
H-F theorem the quantum force term and the stringent
condition between the classical and quantum force terms
are completely hidden. This fact may be considered as
a source of the facts that the H-F theorem is only a
weak necessary condition (almost nondeterministic) for
the exact density and that the theorem is amenable to
semiclassical interpretations.

The above results are also in accordance with the re-
sults of previous studies. Balidzs!® has shown that the
electron density can not be a simple local function of the
classical potential alone. Bader and Preston!” have
studied the topological behavior of the kinetic energy
density. They have shown that the diagram due to the
noncommuting part of the kinetic operator is far from
understandable from only classical grounds. They have
analyzed its importance in the deterministic stage.

Lastly, we note that the quantum force operator has
beenderived from Eq. (10), which is a special case of Eq.
(8) for the diagonal elements with respect to the co-
ordinates 1’<++#»’ and 1-++n. In general, the last two
terms of Eq. (8) or the last term of Eq. (9) include
more complex terms than the quantum force term iso-
lated in Eq. (19), though they all vanish after the com-
plete integration. The last term of Eq. (9) gives a den-
sity-matrix representation of thé quantum force term in
a generalized fashion.

111. EXCHANGE AND CORRELATION EFFECTS
AND ORIGIN OF FORCE DENSITY

In this section we analyze the first-order differential
density equation (20) in more detail, separating out the
(generalized) exchange and correlation effects. This
analysis clarifies at the same time the origin of the
force density [9v,(1)/9a]p(1), which is the integrand of
the H-F theorem.

We first analyze the classical force term of Eq. (20).
We rewrite it as

Mr(lz) dx,

oV, > av (1) f
N<‘Il—aa ) , p(1) + 2

(25)
where I'(12)=T®(12). We then partition the second-or-
der density matrix I'(12) as
(26)

r(12)= 4 p(o(2) -3 mepD(2)+ B(12) ,
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which is a simple generalization of the relation existing
for the Hartree—Fock density matrix. p; is the density
of the natural orbital y;, i.e., p;(1)=y(1)y,(1), and »,
the occupation number of y;. The first term of Eq. (26)
is a simple product of the electron density and is nor-
malized to

1

3 f p(1) p(2) dx; dx, =3 N? , (27
which shows that this term overcounts the number of
interactions. The second term eliminates such over-
counting as seen from its normalization

E 2_mipi(1)pi(2) dx, dx, =5 N (28)

2 - i Pi\L) Dy X10X3 =2 IV ..
This term has a common origin to the so-called self-
interaction term. The last term B(12) denotes the rest
and may be understood as representing the exchange and
correlation effects in a generalized sense. In accor-

dance with this interpretation, it has the following in-
teresting property:

[ Ba2yax = [ Ba2)ax,-o (29)
since we have the formulas

[ rt12)ax, =X ;1 (1), (30a)

p<1>=§; nip1) . (30b)

Namely, the exchange-correlation effect B(12) repre-
sents a fluctuation in the two-electron space and van-
ishes identically when it is projected onto the one-elec-
tron space. Inserting Eq. (26) into (25) we rewrite the
classical force term as

av, v, oF
= =
N<\I/ [:Je] \I’>1 da p+ aozp

- Z ", p1< > f 922 p(19) gy, |

(31)
where the term (8E/8a)p has arisen from the first term
of Eq. (26) using the H~F theorem (22).

Next, we analyze the quantum force term in the first-
order equation (20). From Egs. (12) and (15) it is writ-

ten as
aU, > < v < o
271 - D22 (), 22
<\I’8a‘yl \I”t()aa, 4 )‘Il’aal

Carlson and Keller!® have shown that the wavefunction
¥ is expanded with the natural orbitals y; as

- (32)

\11(12---N)=%N;xi(l)ni(2--'N), (33)
where n; is the complementary function given by

@ M=VF [xHuize Maxy (34)
and is normalizéd to the occupation number #;:

Misns) =13 8y - (35)

The function (r;)™/2 (2 - N) is also a natural function
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which diagonalizes I'¥"1), Using this expansion we can
transform the quantum force term given by Eq. (32) as

aU.
< 1‘1’> Z”i(}(it'axg ‘X— :)
1

<¢ >(Xit><; =xitxy) s

where we have assumed y, to be real and abbreviated the
coordinate 1 of x; and ¢{. We now introduce the ovbital
quantum potential by

(36)

i#:

u‘=tx‘/x‘ s (37)
and the o7bital quantum force by

Bu, _i i

sa X [ ( ) (s ] ' (8)

These definitions are similar to those of the quantum
potential and quantum force operators given by Egs.
(15) and (16) respectively. Then, the quantum force
term (36) is written in terms of the orbital quantum po-
tential and force as

3

N< 2 > = ipl ba Z<m aa>X¢X1(“ -u,) .

(39)
In this equation the first term is the contribution of the
oribital quantum force (5u;/9a) weighted by the orbital
density »; p;. The second term represents the gener-
alized correlation effect, since it vanishes identically
in the Hartree—-Fock limit. This is easily verified from
Eq. (32) by replacing ¥ with the Hartree~Fock single
determinant. There, the term (8¥y;/2a) belongs to the
space spanned by the singly excited configurations from
occupied to unoccupied orbitals. *°

Inserting Egs. (31) and (39) into Eq. (20) we finally
obtain the first-order differential density equation in the
form

ov, ng au‘
p p=2;"494<aa Pt>'Z:"tpi Ey”
v, (2 .
—Zf ( ) B(lz)dxz - ZZ Q?(!%>X‘Xj(uj—u‘)-

i(#j

(40)
Here, we note that the term (3E/2a)p on the lhs of Eq.
(20) has canceled out with the same term in Eq. (31).
The term (9v,/9a)p on the lhs of Eq. (40) is the inte-
grand of the H-F theorem and may be called the force
density. In the exact limit the force density should be
equal to the sum of the terms on the rhs. The first two
terms show the contributions of the orbital classical
force ((dv,/8a)p;) and the orbital quantum force (81 /
9a) weighted by the orbital density »,p,. The last two
terms show the generalized exchange-correlation effects
arising from the classical and quantum force terms.
However, when we integrate Eq. (40) the terms coming
from the quantum force term vanishes identically since

u;
<p‘ da =0,
and moreover the exchange-correlation term coming

from the classical potential term also vanishes identical-
ly, i.e.,

(x(u,=u)y;)=0, (41)

Hiroshi Nakatsuji: Hidden potentials in classical theorems

f 2%a(2) p19) 4y, dx, =0 (42)
because of Eq. (29). Only the force density and the
orbital classical force term survive after integration
and both reduce to the H-F force. Namely, not only the
quantum force term but also the generalized exchange-
correlation effects are completely hiddew in the H-F
force. Although the statement that the generalized ex-
change-correlation effects are hidden in the H-F force
might be trivial since the H-F force depends only on the
electron density of the system, the differential equation
(40) shows how these hidden terms correlate with the
force density in the more stringent condition than the
H-F theorem.

IV. QUANTUM POTENTIAL AND THE I-H-F
THEOREM

In this section we start from the following necessary
condition for the Schrodinger equation: Suppose that we
have two isoelectronic systems a and b, The Hamilto-
nians of these systems are denoted as H, and H,, which
have the same forms as Eq. (1), and the wavefunctions
are denoted as ¥, and ¥,. When they satisfy the Schro-
dinger equations H,¥,=E,¥, and H,¥,=E,¥,, they neces-

- sarily satisfy the equations

(‘1’:':, (Hb"Eb) ‘I’b>n=0 (433')

and
(¥},(H, - E,) ¥,),= (43b)

When a =b these simultaneous equations reduce to the
density equation (4). We define the following difference
quantities between a and b:

AE=E,-E, (44a)

AV:HD —Ha= VbB - Vaa ’ (44b)
™y,

AU =T - TP, U= T (44c)

Since ¢ and b are isoelectronic systems, the kinetic and

~ electron repulsion operators are common to both sys-

tems. Then, the difference in the Hamiltonians are only
in the external potentials V,, and V,z. AU'™ is the dif-
ference in the quantum potentials.

Starting from Eq. (43) for the diagonal elements for
the coordinates 1’+++»’ and 1--* », and assuming ¥, and
¥, to be real, we obtain

AE(Qaqlb>n=<q’aA V\I’b>n+<lpa, T(")\I’b>n - (q’b’ T(")‘Ila>n ’
-(45a)
(45b)

where we have used Eq. (A7) of the Appendix. On the
lhs (¥,¥,), is the transition density matrix and the rhs
is composed of both the classical and quantum potential
terms as in the differential density equation (19). Equa-
tion (45) gives a stringent condition for these quantities.
However, when we integrate this equation for the co-
ordinates 1,¢-+,», the quantum potential term vanishes

=¥ (AV+AU™M)Y,), ,

identically

(¥, AU"”\IJ sy =0 (46)
from Eq. (A'7) of the Appendix. Only the class1ca.l po-
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tential term survives after integration and gives

AE% (B, AVE,) = f Av(1) pgy(1) dxy (47)

which is just the integral Hellmann—Feynman (I-H-F)
theorem,? in which S is the overlap integral S=(¥,¥,)
and p,,(1) is the normalized transition density Pas(1)
=(N/S){¥,¥,);. This theorem gives the energy differ-
ence for the isoelectronic process a—b only with the
transition density p,,(1). The above formulation shows
that the role of the quantum potential difference AU in

Eq. (45) is completely hidden in the I-H-F theorem (47).

This is similar to the quantum force operator aU‘™/sa
in Eq. (19), which is hidden in the H-F theorem. As
seen from Eq. (45a), the quantum potential difference
AU'™ has also arisen from the noncommuting property
of the coordinate and momentum operators in quantum
mechanics.

V. SUMMARY

In this paper we have derived some exact equations
which clarify some potentials that are hidden in the
classical theorems such as the H-F and I-H-F theo-
rems. The differential form of the density equation has
separated out an important role of the quantum force
operator which has arisen essentially only from the non-
commuting property of the coordinate and momentum
in quantum mechanics. However, when we integrate
the equation, the quantum force term vanishes identical-
ly and only the classical force term survives leading to
the H~F theorem. The role of the quantum force oper-
ator is completely hidden in the H-F theorem. This
fact may be closely related to the nondeterminicity and
the classical interpretation of the H-F theorem. Sim-
ilar role of the quantum potential has also been shown
for the I-H-F theorem. We have further investigated
the origin of the force density, which is the integrand
of the H-F theorem, and isolated the role of the gener-
alized exchange-correlation effects which are also hid-
den in the H-F theorem.
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APPENDIX

Here we prove the relation

) e, OF .
(v 5E) (w35 =0 Gty

(A1)
where v(j) is an arbitrary one-electron operator which
is Hermitian., We use the expansion formula given by
Carlson and Keller!® in the form

1 R . .
(1. N)=\/'_—NZP:XP(])771:(1,"".7_1’]+1,""N)-

(A2)
Then, the first term of Eq. (Al) is written as
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where ({* * *)), is defined similarly to Eq. (3) except that
the integrand in ({* * *)), does not include the coordinates
j' and j. Similarly, the second term of Eq. (Al) is writ-
ten as

v 1 9
Nyt 22\ = Xa
<”(] ', aa>,, N };;«vx” ba

< xoad{(nsr 32)) ) (40

Since v is an Hermitian operator, we have

‘ 9 9
(Xp’ 'UXq>=(UXp’Xq>: <Xp, U_BX;>=<UXpy '5X&q‘> . (A5)

Subtracting Eq. (A4) from (A3) and using (A5) we obtain
Eq. (Al). Equation (Al) is also valid for its diagonal
element

(2, o) 2E) = (), 2 =0 (Gen1yee,),

(A8)
which proves Eq. (14). Further, it is easy to prove the
relation

(lP',h(j," * ’k) On= (h(j,: tet ,kl)w’y§0>n=0

(w+1<j,*++,k<N), (a7
where % is an arbitrary Hermitian operator which de-
pends on fewer coordinates than N—n, and ¥ and ¢ are
two wavefunctions which aredifferent in general, Equa-
tions (A1) and (A7) means that even in the partial inte-
gration like (- --), the usual Hermiticity relation holds
for the Hermitian operator which depends only on the
integrated coordinates.
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