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Multireference cluster expansion theory, called MR-SAC (multireference symmetry-adapted-
cluster) theory, is presented. This theory is exact and unique, and yet does not include
noncommutative algebra operator without imposing the completeness of the multireference
space. The ansatz is simple enough for a general use in the study of potential energy surfaces of the
ground and excited states of molecules. We have explained a recommended choice of the
multireference operators on the basis of the analysis of an origin of the breakdown of the single
reference theory. The method of solution of the MR-SAC theory is shown. The theory is given for
the ground and excited states of closed-shell molecules, doublet and triplet states, and molecules
with other symmetries. Test calculations are given for the ground and excited states of the CO
molecule at the equilibrium and elongated distances.

I. INTRODUCTION

Accurate descriptions of the wave functions and poten-
tial energy surfaces of the ground and excited states of mole-
cules are current topics in theoretical quantum chemistry.
These informations are important for the design, analysis,
and understanding of recent experiments in molecular spec-
troscopy and molecular dynamics. Theoretically, it is gener-
ally recognized that electron correlation plays a crucial role
in the studies of accurate wave functions and potential ener-
gy surfaces of molecules in ground and excited states. Now,
there seems to be only two methods which are of general
applicability for the study of electron correlations in both
ground and excited states, namely, the CI method and the
cluster expansion method.

Currently, the CI method is probably the most used
method for calculations of accurate wave functions and po-
tential energy surfaces. The reason is simply that there are, at
present, no other theories of comparable utility. The SDCI
method which includes single and double excitations from
the Hartree—Fock determinant is generally used for the stud-
ies of ground electronic structure. The MR-SDCI method'-?
which includes single and double excitations from several
main reference configurations is used for the studies of quasi-
degenerate states, excited states, etc. Especially, the MR—CI
method is of general utility and gives reliable descriptions of
various states in wide range of nuclear configurations,’ as
long as a sufficient number of main reference configurations
are considered. However, the problem is slow convergence.
Even for a moderate scale calculation, the dimension of the
matrices involved soon reaches to 10%-~10° especially for qua-
sidegenerate states and excited states. Other problems are
that the theory is not size consistent™ and rather dependent
on the choice of the reference orbital set. Further, it is usual-
ly difficult to solve dense excited states, e.g., several hun-
dreds of states in a relatively narrow energy region.

The cluster expansion method is based on the theory
currently growing.>~2* It is originally based on the ansatz

¥=e"|0), (1)

where |0) is the Hartree-Fock single determinant and T'is a
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sum of one-to-N particle excitation operators
T= T(l) + T(2) 4+ e+ T(N). (2)

The coupled cluster singles and doubles (CCSD) method?®
simulates well an exact wave function when applied to the
closed-shell ground state.'*??-27 The SAC (symmetry-
adapted-cluster) theory'®? is a generalization of the expan-
sion (1) to open shells. It is based on the ansatz

¥ =0e50), (3)

where S'is a sum of symmetry adapted single-to-Nple excita-
tion operators

S=SV4SD4 ... 4 g™
=3 s} 4)
T

and Q is a symmetry projector which applies only to the
unlinked part of the expansion. For singlet closed shells, Q is
unnecessary. This expansion is based on the fact that the
symmetry adaptation is essentially necessary for a nonlinear
expansion-like cluster expansion. When only 7" is adopted,
the ansatz (1) is identical with the UHF wave function,?®
while the ansatz (3) gives pseudo-orbital theory,'® when only
S Wisincluded. Though these theories are essentially a single
reference theory, it has several merits over the CI method.
The theory is more rapidly convergent than CI because it
includes multiple effects of correlations,® it is size consistent
and depends correctly on the number of particles involved,
and it is independent of the choice of the reference orbitals
and includes completely the self-consistency effect of the or-
bitals (Thouless theorem).252°

The single reference cluster expansion theory, however,
sometimes breaks down when applied to the states for which
the RHF determinant is not at all a good starting wave func-
tion.>*° Such cases occur as quasidegenerate states when we
study potential energy surfaces of molecules in a wide range
of nuclear configurations. They also occur, when we study
open shells and excited states, as internal correlation and
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semi-internal correlation which are specific to open shells.
There is also a case in which several determinants are degen-
erate due to spin-space symmetry restriction. (This case is
easily treated by a simple extension of the SAC theory.?') For
the study of such systems, a multireference version of the
theory is necessary.

For studies of excited and ionized states of molecules,’*
we have currently used SAC-CI theory.'®?' It is based on
the fact that the SAC theory determines not only the ground
state but also the excited functions which are orthogonal and
Hamiltonian orthogonal to the SAC ground state. Namely,
these excited functions span the space for excited states. We,
therefore, describe the excited states by a linear combination
of these excited functions, which we call SAC-CI theory.
Physically, this theory starts from the electron correlation of
the ground state so that only a modification in electron cor-
relation on going from the ground to excited states needs to
be described. The SAC-CI theory is appropriate for describ-
ing the correlations in open shells and quasidegenerate sys-
tems, as we have shown through many applications.*? It was
shown that the theory simulates well the full CI and nearly
full CI results.?'** However, the problem of the SAC-CI
theory is that it depends critically on the SAC solution.
When the SAC solution could not be obtained, the SAC-CI
method could not be defined. Thus again, we need the mul-
tireference version of the SAC theory.

We note that the CCSD method usually fails for the
chemical process including a fission of a more-than-double
bond or more-than-two bonds.® It works when the process
involves a fission of only a single bond. For example, the
SAC and SAC-CI methods including single and double ex-
citations as linked operators were successfully applied to the
study of the potential energy curves of the ground and excit-
ed states of the Li, molecule.>*

A general formalism of the multireference cluster ex-
pansion theory was given by Mukherjee et al.'* and by Je-
ziorski and Monkhorst.?2 The theory due to Mukherjee et al.
is based on the ansatz

v=c"d,, (3)
where @,, spans a model multireference space

¢M = z Ci¢i (6)

and ¢;’s are N-electron determinants. T'is an excitation oper-
ator given by

2
T'=tlaa; + (—21—') t;"a“abajai R (7)

The ansatz given by Eq. (5) is a straightforward generaliza-
tion of the single reference theory given by Eq. (1). However,
in this form of the theory, it has some serious defects as
summarized by Jeziorski and Monkhorst.?> The theory in-
volves noncommutative algebra for the operators which in-
clude the creation and annihilation operators of the “va-
lence” orbitals which are active in the model multireference
space. The operator T is not unique unless some additional
complex conditions are imposed simultaneously. When the
excitations including valence orbitals are neglected, one may
circumvent these difficulties.>> However, such theory can-

not be exact and therefore useless as a theory of general uti-
lity.

Jeziorski and Monkhorst®* proposed a multireference
coupled-cluster theory which is free from such difficulties.
They started from the ansatz

M
v, = Z C,. exp (T, (8)
M

where { @, } spans a complete reference space within the va-
lence orbitals. T* is the sum of one-to-N particle excitation
operators as given by Eq. (7) and is different for each refer-
ence determinant. This ansatz was first given by Sinanoglu
and co-workers®!! as a generalization of his many electron
theory to open-shell systems. Sinanoglu et al., however, did
not formulate up the theory to a complete solution but rather
introduced a “semiempirical” way of solution.!' In the for-
mulation of Jeziorski and Monkhorst, the theory is unique
and does not include noncommutative algebra because of the
completeness of the reference space. They further stressed
that the expansion (8) makes sense only if it applies simulta-
neously to all M wave functions from the exact manifold.?

From a practical point of view, the theory of Jeziorski
and Monkhorst seems to be too difficult to be applied, except
when some linear appoximation is introduced.*® The com-
pleteness requirement for the reference space means that the
dimension M of the { @, } functions soon becomes large. The
coupled cluster operator T# is associated to each reference
determinant. It would indeed be difficult to solve simulta-
neously all of these coupled-cluster operators for all of the M
wave functions. Even if we need only a lowest solution, such
procedure is necessary in this formalism. Certainly, more
practical and yet exact multireference theory is necessary.

Paldus et al.>>*” and Dykstra et al.?® reported that an
approximate coupled-cluster theory in which certain dia-
grams in the unlinked terms are neglected from the single
reference coupled-cluster theory behaves better than the
original theory in the region of a near quasidegeneracy.
However, in order for a theory to have a general a priori
applicability to any molecular systems, it would be better to
start from a general enough theory.

In this paper, we develop a multireference version of the
SAC theory which is free from the problems we have seen so
far. We call it MR-SAC (multireference symmetry-adapted-
cluster) theory. In the next section, we briefly analyze an
origin of the breakdown of the single-reference theory in a
perspective model system. We then formulate the MR-SAC
theory first for closed-shell systems, then for doublet and
triplet systems, and finally for the systems which have differ-
ent symmetries from these ones. We have preferred this type
of presentation for simplicity, rather than to first give the
theory in a completely general way, which is of course possi-
ble and given in Sec. VI together with the concluding sum-
mary. Test calculations are given for the ground and excited
states of the CO molecule at some internuclear distances.

Il. BREAKDOWN OF SINGLE-REFERENCE THEORY

We consider a model system in which only three config-
urations are enough to describe the system. They are |0),
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$7]0), and S }?|0), where |0) is the closed-shell HF determi-
nant and S| is an excitation operator (e.g., double excitation
operator). We assume that these configurations are normal-
ized to unity. In the exact case, the wave function is written
as

w°=10) + C,S}|0) + D,S*|0), 9)

where the superscript e denotes the exact case. This wave
function is determined by the equations

(O|H — E |¥°) =0,
(OIS)(H — E)|¥*) =0, (10
(OIS3H — E)|¥*) =0,

where we require the Schrodinger equation within the space
under consideration. The energy E of the system is written as

|€0]S,H |0)|?

where E, is the HF energy. On the other hand, in the cluster
expansion theory, we approximate the wave function in the
form

W< =exp (C,S])|0)
=[0) + C,ST|0) +1CiST*|0), (12)
where the coefficient of the unlinked term is a product of that

of the linked term. The superscript ¢ denotes the cluster ex-
pansion case. The solution is determined by solving

(O|H — E|¥°) =0,
(0|S,(H — E)|¥°) =0, (13)

which require the Schrodinger equation within the space of
the linked operators. The energy E of the cluster expansion is

E=tom osmsIor |
(0|S,HS 110) — E — ———— :
(0|S7HS[*|0) — E given by
J
ek 0|5, H |0)|*
—E, -

(0|S,HS |0y — E

(14)

(0]S,H |0)0|S,HS [*|0)

We compare the two energy expression (11) and (14) in
order to see the conditions under which the cluster expan-
sion theory simulates well the exact theory. They are as fol-
lows.

(1) The excitation energy from E to S }?|0) is approxi-
mately twice of the excitation energy from E to S}|0).

(2) (O|S,HS }*|0)~(0|HS ||0).

(3) When S [2|0) = 0, two solutions are trivially equal.
When only dynamic correlations are important and when
the correlation energy is small relative to the excitation ener-
gy (then, E in the condition 1 is approximated by E), we
expect that these conditions would hold approximately.
However, when the operator S | describes the internal corre-
lation, the excitations among quasidegenerate configura-
tion, etc., these conditions will easily break down.

As an example, we consider the CO molecule at a large
separation. In Fig. 1, we have defined |0), .5 ]|0), and S }*|0)
and given a sketch of these electron configurations. Here, S|
denotes a double excitation from the occupied o and 7,
MO’s to the unoccupied o, and 7. MO’s and may be written
as
Oc —0p

T —> Tc

(We of course need the configurations which are symmetric
pairs with respect to the occupations of the 7, and 7 MO’s.
We omitted them just for simplicity.) At an infinite separa-
tion, the configurations |0), S }|0), and S }?|0) represent the
states corresponding to C(*D) 4+ O('D ), C(*P) + O(*P), and
C('D) + O('D), respectively. Therefore, there the energies of
the ground and quadruply excited configurations |0) and
S 1%|0) are equal and the energy of the doubly excited config-

 2{(0|S,HS}|0) + 1C,(0|S,HS {*|0) — E }

uration S [|0) is about 3.2 eV Jower than the energy of the
configuration |0).% Thus, in this case, the condition 1 com-
pletely breaks down. Actually, the SAC calculation of the
ground state of the CO molecule does not converge when the
CO distance is larger than about 3.5 a.u.*® In the region
where the CO distance is larger than 5 a.u., we obtain the

lo> sflo> si2l0>

- & +, % H, %
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FIG. 1. Sketch of the electronic structure of the CO molecule at large sepa-
ration which shows the origin of the breakdown of the single reference the-
ory.
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SAC solution which represents well the excited X * state
which dissociates into C(*D )and O(*D ). There, we can calcu-
late the ground state by the SAC-CI theory by de-exciting
two electrons from this excited 3 * state.*® However, in or-
der to calculate the ground state of the CO molecule in all
nuclear separations by a single theory, we have to use the
multireference version of the SAC theory, which we present
in the next section.

lll. MR-SAC THEORY

We now propose multireference symmetry-adapted-
cluster (MR-SAC) expansion theory. In this section, our
concern is the singlet closed-shell system and its excited
states of the same symmetry.

After considerations, we think it appropriate to start
from the following ansatz:

vE=1y b‘,‘(M}}] exp (2C7‘S;’)|0)
K=o 7

= exp (Z C’,‘S}‘)[Kgob’f(M}]m)‘ (15)

Here, 1 denotes a state under consideration and |0) is the
closed-shell single determinant

0) = llp.a@,B ... pa@B ... pyagyB |- (16)
The occupied orbitals are denoted by {i} and the unoccupied
orbitals by {a}. These orbitals are not necessarily the HF
orbitals of the system under consideration. Rather, some-
times, the MC-SCF orbitals separated into two sets {i} and
{a} could be more appropriate. The operators {M }} and
{S]} are both symmetry-adapted operators in that they give
symmetry adapted configurations when applied to |0). We
note that M| = I is an identity operator. These operators

are defined by the excitations from the occupied set {} to the’

unoccupied set {a].

In this formalism, no noncommutative algebra occurs
because all the operators involved are defined by the creation
operators associated with the unoccupied orbital set {a} and
the annihilation operators associated with the occupied orbi-
tal set {/}. Our orbital set does not have a so-called valence
space which is the cause of the noncommutative operator
algebra. Thus, all the operators involved are commutative.
Therefore, the two expressions of the MR-SA C ansatz given
by Eq. (15) are equivalent. It may be noticed that the ansatz
given by Eq. (15) constitutes a generalization of both the
SAC and SAC-CI theories. The first expression of Eq. (15)
corresponds to the generalization of the SAC-CI theory and
the second one to that of the SAC theory.

This theory is exact because any excitation operators
can be included in the ansatz (15). In other words, any con-
figurations necessary to full CI can be defined and incorpo-
rated in the wave function (15).

In the MR-SAC ansatz given above, the part
[Zx-0b%M}]|0) of the second equation corresponds to
the multireference (MR) part and the operator exp (£,C4S })
represents the cluster expansion around this MR part. Our
C is state (u) dependent but independent of the M } opera-
tor. A merit of the present theory is that the MR part needs
not be complete, in contrast to the existing theories,'>??

since all the operators involved are commutative.

There are two ways of formulation starting from this
ansatz. One is to treat both of the coefficients {C#} and
{b%} as unknown variables and determine them iteratively.
The operators {.S ]} and {M } } should be chosen to be exclu-
sive in order to uniquely determine the variables {C#} and
{b%}. The other is to treat the MR part to be given in ad-
vance from for example different calculations. There, the
operators {.S |} need not be exclusive to the { M } } operators.
Rather, they should have some important elements in com-
mon. In this section we first describe the first formalism and
the second one which is described at the end of this section is
only a special case of the first one.

Physically, the operators { M } } represent state-specific
correlations. Quasidegenerate correlations, first-order cor-
relations, internal correlations in open shells, etc. are the
examples of such correlations. The operator

exp (Z Cc4s ;’)

represents a more or less transferable part of the correla-
tions. The dynamic correlation considered by Sinanoglu®!!
is just described by this part. For closed-shell ground state of
molecules at stable geometry, only the dynamic correlations
are important, so that we do not need the M} part of the
operators except for the M §( = I). Then, the theory reduces
to the single reference SAC theory.

This theory is applicable to the excited states of the
same symmetry within the same framework of the theory.
When two states are solved separately, the orthogonality and
the Hamiltonian orthogonality between the two states do not
hold exactly, as the MC-SCF wave function of the two states
do not satisfy these relations.

Generally speaking, the cluster expansion theory is in-
sensitive to the choice of the reference orbitals. This is exact-
ly so in the case of the single reference theory as Thouless’
theorem states.”® We can expect a similar property even for
the multireference version of the theory.

The MR-SAC wave function given by Eq. (15) is ex-
panded as

WE=b4]0) + 3 bk MY[0) + b5 S CHSTIO)
K=1 []
+ 3 SHRCIMISII0) + bESCHCESISI0)
K=1 |7

+% 3 Zb’,‘(CQ‘C*;MLS}'S}]O)+ (17)
K=11J

Here the first two terms are the zeroth order reference term,
the next two terms are first order to the coefficient C¥ and
the next two terms are the second order term. Note that the
order classification is somewhat different between the single-
reference and multireference theories.

In the multireference theory, the choice of the multire-
ference operators is obviously very important to get accurate
results. Since the M part needs not to be complete in the
MR-SAC theory, we can choose this part only from physical
considerations. We recommend the following choice of the
M-part operators. Namely, we may start from the ansatz
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wi=| S bEME+— 3 bi MLM]
K=o 2 k£,

1
+§J, z

K,L=1

bl MIM MY + ]

X exp (EC‘,‘SI)IO), (18)
1

where the operators in the second and third sums are taken
as the products of the lower operators, but the coefficients
b%,, bhx,, etc. are taken to be independent of the coeffi-
cients b% of the lower operators. This choice is suggested
from the analysis of the origin of the breakdown of the single
reference theory as given in Sec. II. The configurations
M M} |0), which cause the breakdown of the single refer-
ence theory and which are important as manifested directly
by the breakdown of the theory itself, are treated correctly in
the ansatz (18), giving the independent coefficients b%, . We
note that a set of the product operators may involve redun-
dant terms. We include only the linearly independent terms
in the summations of Eq. (18). We further note that in the
braces [ ], it is physically unnecessary to include all the high-
er order product operators since this is a multireference part.
We actually need here only such operators which represent
state specific correlations like quasidegeneracy, etc. For con-
venience in notations, we assume that the ansatz (18) is in-
cluded in the ansatz (15) as a special choice of the {M } }
operators.

It is interesting to define an exponential type operator
EZ 7 vy

%27 (ZaKA}})=aO+ZaKA} + A s a4l
K K 2! K,L

1 .
+ = Z axmAkALAY + -+, (19)
3 KTm

where K, L, M, etc. run nonzero positive integers. Then, the
ansatz given by Eq. (18) is written as

Y. (;b;M;),exP (; c¢s,*)|o>. 20)

This expression of the MR-SAC theory may be useful to
understand it in relation to the single reference theory as
expressed by

¥ =exp (Zb’,‘(M} +ZCfo)|O)
1

K

= exp (;b’,‘(ML) exp (Z C’,‘SI)|O). (21)

In the MR-SAC theory, the source of the breakdown of the
single reference theory, which is due to the part

exp (Zb EM }})
K

of Eq. (21), is corrected by replacing it with the general oper-
ator

T (Zb;M;).
K

This comparison further convinces us that the MR-SAC
theory, based on the ansatz (20) or (18), is rather insensitive
to the choice of the multireference operators { M } } (or to the

way of the separation of the operators into the M and §
parts), so long as the first candidates of the M }; operators are
already included into the M space. This property is impor-
tant in contrast to the practical problem often encountered
in the application of the MR—CI method.

Size consistency is one of the most important properties
of the cluster expansion theory. Then, is the MR-SAC the-
ory size consistent? It is easy to show that the MR-SAC
ansatz given by Eq. (20) is size consistent. The .S part of Eq.
(20) is size consistent because of the property

exp(A + B) = exp( 4 Jexp(B ),

and the M part is also size consistent because the & ¥ 7
operator is more general than the exp operator and includes
exp operator as a special case. When the systems 4 and B is
noninteracting, we can therefore expect the relation

CXP(A+B\=CXP (A)EL P (B)

from the physical requirement. Thus, the MR-SAC theory
written in the form of Eq. (20) is size consistent. However, for
the MR-SAC ansatz given by Eq. (15), the size consistency
property is satisfied in general only by the S part. For the M
part, the size consistency depends on the explict form of the
M operator part. When it is in a form of the full CI within
some active space, or in a form of the & 2° Z operator, it is
size consistent, but otherwise we cannot expect size consis-
tency. Thus, in an actual application we recommend to start
from the MR-SAC ansatz given by Eq. (20).

Now is the solution of the MR-SA C expansion given by
Eq. (15). We require the Schrodinger equation
(H — E,)¥* =0 within the space of the linked configura-
tions and obtain

(O|H —E,|¥*) =0, (22a)
(O|My(H —E,)|¥") =0, (22b)
(0|S,(H—E,)|¥*) =0. (22¢)

This is sufficient to determine all the unknown coefficients
{b%} and {C#]. In the solution, it is important to treat the
MR part together.

. Equations (22a)-(22c) may be written in the form of an
eigenvalue problem

Y [A% —E. Sk, ]dL =0, (23)
L

where the matrices involved are nonsymmetric and the coef-
ficients {d% } represent {b% } and {C#}. When the dimen-
sions of the matrices are large, an iterative method for eigen-
value problems of nonsymmetric matrix is available.*? It is
also possible to transform Egs. (22a)—(22c¢) in the two sets of
equations, Egs. (23) and (24),

2 Giyd = BY. (24)
J

In both methods, the solution is performed iteratively until
self-consistency is attained since the matrices 4# and G*
depend on the coefficients { C#}. More details of the calcula-
tional method will be given in a forthcoming paper.*!

It is also possible to formulate the MR-SAC theory
assuming that the multireference part [ 24 _ ,b%M § ]|0) of
Eq. (15) is given in advance from for example a preliminary
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calculation. In such a calculation, the choice of the M-part
operators as represented by Eq. (18) would be suggestive
especially because of the size-consistency property. In this
formalism the operators {S ]} and {M } } need not be exclu-
sive. Rather some important elements should be in common.
For example, {S]} includes all the singles and doubles and
{M L} includes some selected singles and doubles and their
product operators, i.e., the triples and quadruples. In this
formalism, only the {C#} coefficients are unknown varia-
bles and are determined by Eqgs. (22a) and (22c) only. The
iterative procedure coupled with the M part is unnecessary
though a few cycles may be meaningful. In Eq. (17), the first
two terms are already given and a role of the third term is to
modify and relax the second fixed term. The fourth and
higher terms represent the unlinked effects and modify and
represent higher excitation terms. Almost all the features of
the MR-SAC theory described above are satisfied also in
this form of the MR-SAC theory.

" This formalism of the MR-SAC theory is closely relat-
ed with the SAC—CI theory.'®?! In the SAC-CI theory the S
part is given by the SAC calculation and the M part is deter-
mined by the SAC-CI formalsim. The procedure of the
MR-SAC theory given here is reverse of this procedure.
This formalism resembles also to the multireference theory
of Mukherjee et al.'* given by Eq. (5), though the present
theory does not involve noncommutative operator algebra.

IV. MR-SAC THEORY FOR DOUBLET AND TRIPLET
SYSTEMS

The MR-SAC theory is easily extended to the doublet
and triplet systems. Here, we start from the ansatz

V*# = Qexp (Z C’,‘S;’) Kgob’,‘(M}]m)

=0 ¥ b;M}] exp (z C',‘S})IO), (25)
K=0 1
where |0) denotes an open-shell restricted determinant
0) = |lp,a@B - p,ap,Bp, .1 - pyall (26)

and Q is a symmetry projector. Since the operators M } and
S} are symmetry adapted, the projector Q applies only to the
unlinked terms of the expansion. Further, as will be shown
below, the projector Q has nothing to do with the determina-
tion of the wave function itself.

The determinant given by Eq. (26) defines uniquely the
occupied and unoccupied spin orbitals {/} and {a}, respec-
tively. The excitation operators M } and S| are defined by
the excitations from the occupied spin orbitals to the unoc-
cupied spin orbitals. Then, all the operators involved in Eq.
(25) are commutative. The theory is exact since any excita-
tion operators can be included in this way. The physical
meaning of the operators M } and S| are the same as those
summarized in the preceding section. Especially here, the
M }, operators are important to describe the internal correla-
tions in open shells. The quasidegeneracy also occurs in the
dissociation processes. The S| part of the operators de-
scribes the dynamic correlation which is more or less trans-
ferable among the different states of the molecule. We can
apply this form of the wave function to both the ground and

excited states which have the same symmetry as the determi-
nant |0).

The method of solution of the MR-SAC expansion giv-
en by Eq. (25)is similar to that given in the preceding section.
We assume the Schrédinger equation within the space of the
linked operators. Here, however, the symmetry projector Q
in the right-hand side of Eq. (25) is unnecessary and we ob-
tain

(O|H—E,|¥*) =0, (27a)
(O|My(H — E,)|¥*) =0, (27b)
(0IS,(H — E, )| ¥*) =0, (27c)

where ¥* is the same as ¥ * given by Eq. (25) except that the
projector Q is absent here, i.e.,

Wr = exp (zl;q‘s I)L;ob ;M;] 10). 28)

Equation (27b) is unnecessary when the M part is given in
advance. The projector Q became unnecessary in Eq. (27)
because the linked configurations |0), M § |0), and S }|0) are
symmetry adapted. This is due to the SAC formalism and is
common to the previous cases of the nonvariational solu-
tions of the SAC and SAC-CI theories. Though the projec-
tor Q is unnecessary for the determination of the wave func-
tion itself, it is necessary when we calculate some properties
of molecules.

As achoice of the M-part operators, we recommend the
following ansatz similarly to Eq. (18):

wr=0[ S biML++ T b MIM]
K=0 2! KL=1

1
+4 3 b';KLM}MLMH.--]
3!J,K,L=l

X exp (ZC ™) ;') |0)

—QFFP (; b;M;) exp (; c¢s;)|o>. (29)

In this ansatz, the source of the breakdown of the single
reference theory, as analyzed in Sec. I1, is corrected. Here we
note that in the open-shell case the products of the symme-
try-adapted operators, e.g., M M |, in Eq. (29) are not nec-
essarily symmetry adapted, though they are always so in the
case of the singlet 4, symmetry studied in the preceding sec-
tion. Therefore, when we impose Eq. (27b) for the product
operators M i M}, etc., we have touse QM Y M | .

V. MR-SAC THEORY FOR THE STATE WHOSE
SYMMETRY IS DIFFERENT FROM THAT OF |0)>

The MR-SAC theory derived so far is for the states
whose spin-space symmetry is the same as that of the refer-
ence wave function |0). Here, we consider the MR-SAC
theory for the nondegenerate states whose symmetry is dif-
ferent from that of |0). We call such symmetry “singlet B,”
for simplicity.

For the singlet B, state, we propose the following MR~
SAC expansion:

Y = Qexp (;C",‘S}) Y b;M}]d)o, (30)
K=o
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@, =R }|0). (31)

Here, ®, is one of the main configurations for the state under
consideration. R } is the symmetry-adapted excitation oper-
ator which generates such configuration from the determi-
nant |0). For example, the configuration R §|0) may be il-
lustrated as

- q,
- i
R{0)

We note that the configuration R {|0) spans a complete ref-
erence space, by a single configuration, within the space of
the valence orbitals i, and a, shown above. This is because
within the two active orbital space, three configurations con-
stitute the complete space,

—-q, oo
-, -
Bl Al Al

of which only the first configuration is singlet B,. Thus, since
the reference configuration spans a complete space, no non-
commutative algebra occurs and the theory is unique. The
operators M }. and S | are defined by the excitations from the
ground occupancy defined by the &,

As the configuration @,, we need not necessarily choose
the dominant configuration of the state under consideration,
though such choice may be convenient. It is all right if it is
included within the space of the multireference configura-
tions. The MR-SAC expansion given here is applicable to
both ground and excited states of the singlet B, symmetry.

The solution of the MR-SAC expansion given here is
very similar to the previous cases. We assume the Schro-
dinger equation within the space |®,), Mk|®,), and
S 1|®o); namely,

(Po|H — E, |¥*) =0,

(Po|My(H—E,)|¥*) =0, (32)

(Po|S)(H — E, )| #*) =0.

Again here the symmetry projector Q is unnecessary because
of the SAC formalism. The ¥* in Eq. (32) is different from
¥#in Eq. (30) in that the symmetry projector is absent in the
wH,

Y+ = exp (ZC?‘S})[ D b‘,‘(ML]d«"O. (33)

] K=0

It is also appropriate to choose the M-part operators as

given by

VEF=Q&ZLP (2 b',‘(ML) exp (2 Cé‘S,*)d)o. (34)
K 1
The reasoning of this choice is entirely the same as in the
previous section.

VI. GENERAL THEORY AND CONCLUDING REMARKS

So far, we have developed the MR-SAC theory for dif-
ferent symmetry types. Now, it is easy to write down in a
common general form. The ansatz of the MR-SAC theory is
written as

wH = Qexp (chs}) S buM }(]% (35)
K=0

where the part [Zx_ob%M ] P, corresponds to the mul-
tireference part and the operator exp(Z,C4S ]) represents the
cluster expansion around it. In Eq. (35), @, is the closed-shell
or open-shell restricted-type single determinant |0) given by
Eqs. (16) or (26), respectively, or the configuration R §|0) for
the singlet B, state. R | is a symmetry-adapted exciton oper-
ator which generates a (main) configuration of the singlet B,
state. The operators {S|} and {M } } are symmetry adapted
and are uniquely defined using the creation and annihilation
operators associated with the unoccupied and occupied orbi-
tals of ®,. All the operators involved are commutative. The
set {M } } involves the identity operator I = M {. Qis a sym-
metry projector and applies only to the unlinked terms of the
expansion. It is unnecessary for the singlet 4, state because
there the products of the operators belong again to the sing-
let A, space. Further, the projector Q has nothing to do with
the determination of the wave function. Namely, the nonvar-
iational solution is obtained from a set of the equations

(Po|H - E,|¥*) =0,
(¢0|MK(H—E#)|W”') =0, (36)
(¢O|SI(H_E/4)|W#‘) = O’

where ¥* does not include the projector Q:
P+ = exp (2C‘,‘S}> S b;M}]lpo. (37)
] K=0

In the multireference theory, the choice of the multire-
ference operators is obviously very important to get accurate
results. Since the M part needs not to be complete in the
MR-SAC theory, we can choose this part only from physical
considerations. From a consideration of the cases in which
the single reference theory breaks down, we recommend the
following choice of the {M } } operators:

wr=0| S biML+~ 3 bl MM}
K=0 2! KL=1
1
b S bl MMM+ ]
« JKL=1
X exp (ZC’,‘S ,*)[0). (38)
1

This wave function may be rewritten, introducing the opera-
tor & & 7 defined by Eq. (19), as

VE=QF L P (; b;M}) exp (Z C‘,‘SI)q)o. (39)

This form of the wave function is appropriate to imagine its
physical meaning, especially in connection with the single
reference SAC theory written as

¥ = Qexp (; bRML+ S c¢sr)¢o

= Qexp (; beM }}) exp (Z Cc:S })4"0. (40)

We note that except for the singlet 4, state, the product
operators M M } , etc. are not generally symmetry adapted.
The MR-SAC theory presented here has the following
properties.
(1) The theory does not include noncommutative alge-
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bra. All the operators involved are commutative.

(2) The theory is exact. Any excitation operators can be
included in the theoretical framework.

(3) The theory is unique. All of the unknown variables
are determined uniquely by Eq. (36). When both of the coeffi-
cients {b%} and {C#} are treated as unknown variables, the
operators { M % } and {S]} should be exclusive to each other,
but when the M part is assumed to be given, the {S} opera-
tors are chosen freely. Physically, the M § operators repre-
sent the state-specific correlations like quasidegeneracy,
first-order correlation, internal correlation in open shells,
etc. The part

exp (}; C:S ;')

represents a more-or-less transferable part of the correla-
tions which was called dynamic correlation by Sinanoglu.®'!
For closed-shell ground states at stable geometry, only dy-
namic part is important so that the single reference theory
works well.

(4) The {M [} operator space need not be complete in
the MR-SAC theory, in contrast to the existing multirefer-
ence cluster expansion theory.'**> We can choose the {M } }
operators only from the physical considerations without in-
troducing a noncommutative operator algebra.

(5) Excited states are solved simultaneously within the
same framework.

(6) The cluster expansion formalism is rather insensitive
to the choice of the reference orbitals as it is exactly so in the
single reference theory (Thouless’ theorem?®).

(7) The theory corrects the source of the breakdown of
the single reference theory as analyzed in Sec. II. This is done
by introducing a general operator & &% as Eq. (19) and
replacing the defective part of the single reference theory
with it. This is apparent from a comparison of Eq. (39) with
Egq. (40).

(8) The theory is expected to be less dependent on the
choice of the multireference M space than the multireference
CI theory.

(9) The MR-SAC theory based on the ansatz given by
Eq. (20) is size consistent. For the MR-SAC ansatz given by
Eqg. (15), the .S part is size consistent so that the size consis-
tency is satisfied if the M part is chosen to be so. The & 277
operator or the full CI within some active space s, e.g., such
a choice.

The MR-SAC theory is of general utility, especially for
the studies of the potential energy surfaces of the ground and
excited states. The properties summarized above are very
important for general utility of the theory. Especially, the
properties (1)—(4) and the simplicity of the present ansatz
itself are the important merits of the present theory over the
existing multireference versions of the coupled cluster the-
ory.'3?2 We note that the symmetry-adapted formulation
was useful for extending the theory to the general cases, in
addition to the fact that it is essential for the nonlinear ex-
pansion.'®

We have verified from many applications®” that the
SAC!%?! and SAC-CI'®?! theories are very useful for the
studies of molecular spectroscopies which involve ground,

excited, ionized, and anion states of molecules and their dy-
namics. The MR-SAC theory is a multireference version of
the SAC theory and is also considered as a generalization of
the SAC-CI theory. Therefore, the MR-SAC theory will
become useful for the problems for which the SAC and
SAC-CI theories are difficult to be applied. The results of
the test calculations given below for the CO molecule at sev-
eral internuclear distances may be considered to support this
expectation.

VII. TEST CALCULATIONS OF THE GROUND AND
EXCITED STATES OF CO

The MR-SAC theory developed in this paper has been
applied to the lower four '3 * states of the CO molecule at
the equilibrium and two elongated distances R =2.132,
3.75, and 5.5 a.u., respectively. The reason we have chosen
the CO molecule is as follows. Near the equilibrium distance
the HF configuration is a dominant configuration of the
ground state but when it is elongated, the weight of the HF
configuration decreases monotonously and approaches zero
in the dissociation limit C(*P) + O(*P). The HF configura-
tion itself approaches the dissociation limit C('D) + O('D).
AtR =R,,, the single reference SAC theory is valid for the
ground state but at R = 3.75 a.u., the theory does not even
converge and at R = 5.5 a.u., it converges to the third'> *
state. For a uniform description of these states, the multire-
ference theory is essential.

The basis set of the calculation is [4s2p] set of Huzin-
aga-Dunning.** We did not add d-polarization functions be-
cause this is a test calculation in nature. We have used the
Hartree-Fock MO’s as reference orbitals. The active MO’s
are limited to only eight MO’s, four upper occupied MO’s
and four lower unoccupied MO’s. The details of the MR-
SAC calculations are described separately.*' Since we ne-
glected the last term of Eq. (17), we approximated the fifth
term to be a product of the third term. As the M operators,
we chose all the single excitation operators and the double
excitation operators whose coefficients in the SDCI is larger
than 0.06. In addition, we have included double excitations
from 7 to 7* and from o to o*. The triple and quadruple
excitation operators were generated according to Eq. (18),
but higher excitations were neglected. The .S operators are
the rest of the double excitation operators. The MR-SAC
calculations converged nicely at all the distances for both the
ground and excited states. For a comparison, we have also
performed the SAC and SAC-CI calculations and full CI
and lower-order CI's.** For example, SDTQ-CI denotes a
CI which includes all single, double, triple, and quadruple
excitations from the HF configuration.

Table I shows the results of the calculations. The results
of the MR-SAC theory show excellent agreement with the
results of the full-CI and SDTQ-CI methods. This is so not
only for the ground state but also for the excited states, and
so not only for the equilibrium distance but also for the well
separated and moderately separated distances. The MR-
SAC theory is accurate not only for an ordinary ground state
but also for excited states and quasidegenerate states. The
number of the variables of the present MR-SAC calcula-
tions were about one-fourth to one-half of that of the full CI.
Therefore, we conclude that the MR-SAC theory is a good
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TABLE L. Energies of the lower four '3 * states of the CO molecule calculated by the CI, SAC, SAC-CI, and MR-SAC theories (a.u.).?

R No. of Main SAC
(a.u.) X state configuration® SD-CI SDT-CI SDTQ-CI Full-CI MR-SAC SAC-CI
2.132 1 |0) — 11273991 —112.74277 —112.74370 —112.74374 —112.74371 — 112.741 16°

2 |1) —112.15984 —112.19761 —112.20068 — 11220140 —112.19923 —112.19853
3 1) —112.08867 —112.10630 —112.11477 —112.11498 —112.11390 —112.11877
4 [2) —112.00617 —112.04226 —112.05527 —112.05541 —112.04850 — 112.04897
3.75 1 |0),]1) — 11248976 —112.50024 —112.51279 —112.51473 —112.51303
2 |0),|3) —112.34844 — 11235712 —112.38023 —112.38711 —112.37948
3 [0),]3) — 11224078 —112.26004 —112.33435 —112.33818 —112.33311
4 |2) —112.19421 —112.21403 —112.27292 —112.27447 —112.271 64 e
5.5 1 12) —112.406 74 —112.41451 —112.42449 —112.42490 — 11242338 —112.41589
2 |4) (absent)* (absent)* —112.35409 —112.35762 —112.353 65 (absent)?
3 |0) —112.33135 —112.33154 —112.33557 —112.33571 —112.33559 — 112.33522°
4 [2) —112.28787 —112.29227 —112.30269 —112.30294 —112.30153 — 112.296 64

2The Hartree-Fock energies are — 112.685 05, — 112.348 90, and — 112.286 63 a.u. for R = 2.132, 3.75, and 5.5 a.u., respectively.
®|i) means i-electron excited configuration from the Hartree-Fock configuration |0).

¢SAC solution.

9 This state is absent because it is essentially a quadruply excited state from the HF configuration.

approximation of the exact theory.

The single reference SAC theory gives good results for
the ground state at the equilibrium distance and for the third
excited state at R = 5.5 a.u. The SAC-CI theory was used to
calculate the other states. The results are also reasonable.
For the third state at R = 2.132 a.u., the SAC-CI energy
overshoots the full-CI energy. This is due to the nonvaria-
tional nature of the solution. At R = 3.75 a.u., however, the
single reference SAC theory did not converge so that we
could not define the SAC-CI theory at this distance. This
situation also shows a necessity of the MR-SAC theory.
Though the number of the test calculations are very limited
at present, the results of Table I may be considered to show a
practical utility and an accuracy of the MR-SAC theory for
the studies of the potential energy surfaces of both the
ground and excited states of molecules in wide range of nu-
clear configurations.
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