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The isotropic hyperfine coupling constants (HFCCs) are calculated for H,0*", CH,0* ",
CH,0’, CH;NH', CH,CH, , and CH,OCHj;' ', using the method of SAC (symmetry adapted
cluster expansion )-CI. After examining various basis sets, we found that the double-zeta
quality basis sets of Dunning are the best among the sets examined. The calculated values agree
fairly well with the experimental values. We point out that the conventional configuration
selection based on the energy criterion has an inherent limit for the calculation of HFCCs. The
influence of molecular vibrations on the HFCCs has been semiquantitatively examined for

CH,0*", CH,0', CH,NH', and CH,CH;.

1. INTRODUCTION

The isotropic hyperfine coupling constant (the Fermi
interaction constant) is one of the important physical quan-
tities of open shell molecules. It gives direct information
about the unpaired electron spin distribution in the mole-
cules. The hyperfine coupling constant (HFCC) of mole-
cules can be determined experimentally by ESR as well as by
microwave spectroscopy. The high resolution microwave
spectroscopic technique of transient molecules has recently
progressed to the point that a determination of the HFCCs of
several polyatomic radicals in the gas phase is possible.'

On the other hand, the reliable prediction of HFCCs by
ab initio MO calculations still remains a challenging prob-
lem. Since the HFCC, proportional to the spin density at a
nucleus,’ is a local property of molecules to be described by
an operator of delta-function-type, it is a more cumbersome
task to calculate them accurately enough by conventional ab
initio methods than it is to calculate other properties such as
the geometry and the energy.® In general, large basis sets and
an appropriate treatment of electron correlations are indis-
pensable when an ordinary CI approach is adopted in combi-
nation with operators of the delta-function-type and basis
sets of GTO. In an attempt to deal with this difficult problem
the present authors (T.M. and T.S.) proposed replacing the
delta-function-type operator with a spatially distributed op-
erator.* So far this approach has been explored to the extent
that most fundamental problems have been resolved but not
to the extent that an immediate application to realistic mole-
cules is yet possible. Therefore, in this work we employed the
symmetry adapted cluster expansion configuration interac-
tion (SAC-CI) method developed by one of the present
authors (H.N.)>® which has been shown to be efficient in
getting favorable results in conjunction with the convention-
al delta-function-type operator.” Emphatically, the SAC and
SAC-CI theories attack the entangling problems of the spin
correlation, the electron correlation and their coupling in a
very rational, and therefore, economical way.” In the present
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study, we demonstrate the capability of the SAC and SAC-
Cl theories in the calculations of HFCCs of fairly large radi-
cals of interest to chemists.

Compared with the conventional CI method, computa-
tions by the SAC-CI method converge rapidly with a small
number of variables. The SAC-CI theory satisfies important
requirements such as orthogonality and Hamiltonian ortho-
gonality to be imposed upon various states under considera-
tion and the ground state correlation is efficiently utilized for
the treatment of the correlation in excited and ionized states.
The size of matrices to be diagonalized is determined by the
number of linked terms, and a sufficient number of reference
configurations can be taken into account without increasing
the size of the matrices. Since there are many configurations
which contribute negligibly to the total energy, but signifi-
cantly to the spin density, a conventional perturbation theor-
etic configuration selection based on the energy criterion is
likely to fail. For example, a 1sinner shell orbital with a large
exponent may be quite significant even if it contributes negli-
gibly to an improvement in the energy. Because of the com-
pactness of the matrices to be diagonalized in the SAC-CI
method, it can be applied, without configuration selection,
to larger molecules than the usual CI method.

The HFCCs have been observed by ESR spectroscopy
for a vast number of molecules. However, most of them are
too large for comparison with rigorous calculations. Recent-
ly, Engels et al. showed that a quite flexible AO basis set like
a (12s7p) Gaussian set or a (13s8p) set contracted to [ 8s4p]
is necessary to reproduce satisfactorily the HFCC of the ni-
trogen atom in the *S state.® Such a large basis set is obvious-
ly not applicable to polyatomic molecules: The main purpose
of the present study is to show the capability of the SAC-CI
theory to predict HFCC:s for various polyatomic molecules
with a medium-sized basis set.

In Sec. II we briefly describe the SAC-CI method of
calculation. In Sec. III we calculate the HFCCs of H,O™" " as
a case study using basis sets of various degrees of sophistica-
tion. In Sec. IV through VI we present results for several
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molecules. The influence of molecular vibrations upon
HFCCs is discussed semiquantitatively. Finally in Sec. VII,
we discuss the HFCCs of the radical cation of dimethyl
ether, which was first observed by us,’ and stimulated our
interest in the theoretical reproduction of HFCCs.

Il. CALCULATIONAL METHOD

In the present study we have employed method 2 of Ref.
7 to construct the wave function of doublet molecules having
a single odd electron. We review the method briefly here.
Consider, for example, H,O* . The first step is to calculate
the SAC wave function of the closed-shell molecule, e.g.,
H,0, which is constructed by adding a single electron to the
doublet molecule of interest, i.e., H,O* .> Then, we con-
struct the doublet wave function for H,0* " using ionization
operators in the SAC-CI theory.® Method 2 is more efficient
and convenient than method 1 in Ref. 7, which constructs
the SAC wave function directly for doublet molecules. The
SACs5 program'® has been used for the calculations.

The threshold of configuration selection for the SAC-CI
method was set equal to 0.0 a.u. whereas that of the SAC
method was set to 1.0 X 1073 a.u.!! That is to say, we did the
configuration selection at the stage of the SAC calculation,
but not in the SAC-CI calculation. To calculate the HFCC,
the spin density matrix has to be constructed. In the un-
linked term we included only those SAC operators whose
coefficients were larger than 1.0 1072 a.u.'?

1. H,0*

The radical cation of water is suitable for testing the
basis set dependence of the HFCC since the molecule is small
enough to perform ab initio calculations with various basis
sets, and since the HFCCs of both oxygen and hydrogen
atoms were observed by matrix isolation ESR spectroscopy
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at 4 K.'> Moreover, an experimentally determined geometry
is available.'*

Table I shows the calculated HFCCs and the total ener-
gies for several basis sets of double-zeta (DZ) and even-
tempered qualities, both contracted and uncontracted. First,
we have compared three DZ sets: Huzinaga’s,'”” Dun-
ning’s,'® and Ellinger’s'’ (entries 1-3 of Table I). As for
Huzinaga’s DZ set (entry 1), we split the valence (outer-
most) basis function of his (73/7) settoa (6121/61) DZ set
to increase the flexibility.'> Dunning’s (entry 2) and El-
linger’s (entry 3) DZ sets are both contracted from Huzina-
ga’s (9s5p) primitive.'® Ellinger’s contraction has a larger
flexibility in the inner shell orbitals than Dunning’s. Huzina-
ga’s primitive hydrogen (4s) set was contracted to [2s] by
the scheme determined by Dunning as [3,1],'® and was used
for the DZ sets Huzinaga (entry 1) and Dunning (entry 2),
whereas the contraction scheme determined by Ellinger as
[2,2]'7 was used for Ellinger’s DZ set (entry 3). Next, we
proceeded to Huzinaga’s primitive (9s5p/4s) set (entry 4)
in order to check the effect of the various contractions. A
scale factor of 1.2 was used in the primitive for the hydrogen
atom in the above four entries. Finally, as an even more flexi-
ble basis set, the uncontracted (10s5p/8s) even-tempered
Gaussian (ETG) set'® (entry 6) was used in conjunction
with the same set after the contraction to a [ 8s4p/6s] (entry
5). The contraction scheme was the same as described by
Feller and Davidson,?’i.e., the single s and p contracted basis
functions on each atom were obtained from the inner part of
the 1s and 2p atomic self-consistent field (SCF) orbitals.?'
The contraction from (10s5p) to [8s4p] can be denoted al-
ternatively as [31111111/2111]. The exponents and the co-
efficients of the contracted set are listed in Table II. The
ETG set was chosen as a flexible basis set because any orbital
with larger exponents can be added systematically in the
inner shell according to the prescription given in Ref. 19.

TABLEL The isotropic hyperfine coupling constant and the total energy of H,O* " using the SAC-CI calcula-

tion.

HFCCs(G)
Total energy
Basis set (6] H (a.u.)
1. Huzinaga® (10s7p/4s)/[4s2p/2s] —11.74 — 26.46 — 75.841 360
2. Dunning® (9s5p/4s)/[4s2p/2s) —23.10 —26.16 — 75.867 959
3. Ellinger® (9s5p/4s)/[4s2p/2s) —1.97 —26.20 — 75.855172
4. Huzinaga® (9s5p/4s) primitive —17.78 —21.00 — 75.959 865
5. Even tempered® (10s5pld /8s1p)/[8s4pld /6slp]  — 19.42 —20.32 —76.095 723
6. Even tempered’ (10s5p1d /8s1p) primitive —19.04 —20.09 — 76.111 948
7. Even tempered® (11s5p1d /9s1p) primitive — 19.45 —20.44 —76.113713
Expt." 29.7 26.1

® Reference 15. Contraction of the oxygen atom can be denoted as [6,1,2,1/6,1]. The basis sets of the hydrogen

atom are Huzinaga-Dunning’s (4s)/[2s] with a scale factor of 1.2.
b Reference 16.
¢Reference 17.
9 Reference 18.

¢ Reference 19. Contraction of the oxygen atom can be denoted as [ 3,1,1,1,1,1,1,1/2,1,1,1]. Contraction of the
hydrogen atom is [3,1,1,1,1,1]. The exponent of a d function on the oxygen atom is 0.85. The exponent of a p

function on the hydrogen atom is 1.2.
TReference 19.

EReference 19. This basis set is essentially the same as 6 except that s functions with exponents of 22 788.241 0
and 370.084 67 are added to the oxygen atom and the hydrogen atom, respectively.

" Reference 13. The signs cannot be determined.
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TABLE I1.Exponents and contraction coefficients of the even-tempered ba-
sis set (10s5p/8s)/[8s4p/6s]).”

Exponent Coefficient

Oxygen s 7376.1004 0.074 521 999
2387.4970 0.170 063 72
772.785 31 0.817 881 76
Oxygen P 30.438 774 0.182 527 63
8.904 834 9 0.873 173 67

Hydrogen s 130.14149 0.094 983 385
45.764 686 0.159 23599
16.093 303 0.808 195 52

*Only contracted orbitals are listed. The uncontracted orbitals of which
coefficients are 1.0 are omitted. The SCF energies of the oxygen atom were
— 74.796 929 a.u. for (10s5p) primitive ETG set and — 74.796 928 a.u.
for the [8s4p] contracted ETG set. The SCF energies of the hydrogen
atom were — 0.499 974 29 a.u. for both (8s) primitive and [6s] contract-
ed ETG sets.

Since s-type orbitals with large exponents play a crucial role
in the calculation of spin density at a nucleus, we also tested a
primitive (11s5p/9s) ETG set (entry 7) which was identical
with the (10s5p/8s) ETG set except that s orbitals with ex-
ponents 22 788.2410 ( =0.093 108x3.08947'") and
370.084 67 ( = 0.030 432 2 2.843 71°) were added to the
inner shell of the oxygen atom and the hydrogen atom, re-
spectively. In all the ETG sets (entries 5-7) we added a d
function on oxygen and a p function on hydrogen as the
polarization function. The exponents were 0.85 and 1.2, re-
spectively. All six components of the Cartesian d function
were used.

In all the entries 1-3 the HFCC of the hydrogen remains
almost the same and close to the experimental value. The
calculated values in these entries are better than that of the
(9s5p) primitive (entry 4) although the latter gives a slight-
ly better total energy than the former three. On the other
hand, the calculated HFCC of the oxygen depends sensitive-
ly on the contraction scheme for the DZ quality basis sets
(entries 1-3), which is inevitable for this class of basis set to
describe the first row atoms. However, it should be noted
that the HFCC of the oxygen in entry 2 is fairly close to the
experimental value.

Even among the ETG sets a comparison of entries 5 and
6 reveals that the contraction produces an improvement in
the HFCCs. Since contractions can be regarded as a restric-
tion to inner orbitals with large exponents, and since the
coefficients of such orbitals in the contraction scheme may
become larger than those obtained by the calculation based
on their primitives, contracted basis sets may give larger spin
densities than uncontracted ones, which results in better
agreement with the experimental HFCCs. It is seen that the
(11s5p1d /9s1p) ETG set (entry 7) shows approach of
HFCCs to the experimental values as compared with
(10s5p1d /8s1p) ETG set (entry 6). This tendency of the
approach indicates the importance of s-type orbitals with
large exponents for the calculation of HFCCs. Obviously,
cuspless GTOs are an inherently inappropriate choice for a
basis set. This problem has been discussed in our previous
paper.*

All of the three ETG sets (entries 5-7) gave slowly con-
verging HFCCs for both oxygen and hydrogen, but they are
still far from the experimental values. However, Table I
shows that Dunning’s DZ set (entry 2) gives the best agree-
ment with the experimental values despite its DZ quality.
We suggest that the contraction in Dunning’s DZ set (entry
2) compensates for the deficiency of the uncontracted basis
sets for the reason given in the above paragraph and that
Dunning’s DZ set works well in the vicinity of nuclei. The
usefulness of Dunning’s DZ set for H,O" " is important to
bear in mind when we proceed to calculate HFCC:s of sizable
polyatomic molecules (see, e.g., Sec. VIII).

IV. CH;0, H,CO*', AND CH;NH

The r, structure of the methoxy radical (CH,O") and
its hyperfine coupling constants have recently been deter-
mined experimentally by one of the present authors using
submillimeter-wave spectroscopy in the gaseous phase.?
The experimentally determined C-O length lies between the
calculated values by Bent et al.?* and by Saebo et al.,?* as
shown in Table III. It is noteworthy that, compared with
methanol, the experiment found that the methoxy radical
had a shorter C-O length and a longer C-H as well as a
larger O—C-H angle.

Since no experimental data for the geometry were avail-
able for the other two radicals, we employed optimized geo-
metries for these radicals. The geometry of H,CO™*  has
been theoretically investigated by Feller and Davidson®’
which is used in the present work. The geometry of CH,NH
has not been calculated to our knowledge. We determined it
by using the UHF approximation with 6-31G* basis sets
because the experimentally determined geometry of CH,O
was fairly well reproduced by this approximation.? The op-
timized parameters are r(NC) = 1.4457 A, r(NH) = 1.011
A, r(CH,)=1082 A, r(CH,)=r(CH,) =1.089 A,
(HNC =107.5°, (H,CN=110.0°, /H,CN =/H,;CN
=111.1°, and /H,CH, = 108.6°. (The dihedral angle
between H,CN and CNH was fixed to 180.0°.)

Since the methyl groups of the methoxy radical and the
methylamino radical rotate almost freely under the experi-
mental conditions, the HFCCs of the hydrogens in the meth-
yl group were averaged for the three protons. The methoxy
radical with the C,, symmetry, however, was treated as be-
longing to the C, symmetry group because of the restriction
in the program systems employed'® so that the electronic

TABLE II1. The structure of the methoxy radical in comparison with the
structure of methanol.

r(C-0) r(C-H) /(HCO

Expt.? 1.3926 1.1177 113.9

CH,O0' Calc. Bentetal® 1.405 1.08  109°
Saebo et al.? 1.386  1.087 109.9
CH,0H Expt.* 1.4246 1.0936 108.5

2 Reference 22.
Reference 23.
°Fixed to the values of Yarkony et al. (Ref. 24).
9 Reference 25.
¢ Reference 26.
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TABLE IV. HFCCs of CH,0', H,CO™ ", and CH,NH" using Dunning’s
DZ sets (in units of Gauss).

Nucleus HFCCs Expt.
CH,O’ o —10.56
C — 15.02 — 15.56*
H 36.57 43.67
H,CO*’ o - 1327
C —28.92 —38.8°
H 117.11 132.7
CH,NH' C —11.93
Heny 29.01 34¢
N 6.69 13
Hy —21.47 22

* Reference 22.
®Reference 28.
< Reference 29. The signs cannot be determined.

structure was of either 4’ or 4" symmetry. Of course, the
calculated results for both 4 ' and 4 " symmetries were found
to be identical.

Table IV shows the result of calculations for HFCCs
using Dunning’s DZ set without any modifications. The use-
fulness of Dunning’s DZ set was illustrated in the previous
section, and the results of a more detailed examination to
confirm its usefulness are also given in Sec. V1. All the calcu-
lated values are in fair agreement with the experimental val-
ues available. It is noteworthy that the HFCCs of the pro-
tons, whether they are of the type of alpha or beta, are within
15% of the experimental values. Such an accuracy has not
been obtained easily for molecules of this size. This is consid-
ered as a consequence of the fact that the SAC-CI method
takes into account the electron correlation properly and can
include the configurations which contribute significantly to
the HFCC, and as a consequence of our finding the appropri-
ateness of Dunning’s DZ set. Since the HFCCs of the radical
cation of formaldehyde can be reproduced with a quality
similar to that of the two other neutral radicals, the charge
seems to have no specific effect.

In the calculations argued above, we ignored any dy-
namical effect such as the molecular vibration. Such a dy-
namical effect is discussed briefly in Sec. V.

Since the spin density and the total energy are indepen-
dent quantities, the effect of the conventional configuration
selection in CI calculations should be examined. Table V
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shows the relation between the threshold of selection and the
HFCCs for the methoxy radical which was calculated using
Dunning’s DZ set. The HFCC of oxygen was very sensitive
to the selection threshold. The HFCC of the carbon atom did
not converge even at a threshold of 10~® a.u. The HFCC of
the proton also showed an overall increase with the decrease
of the threshold. Thus, configuration selection is not recom-
mended in the calculation of HFCCs. All the calculations of
the present study were performed without any configuration
selection.

V. INFLUENCE OF MOLECULAR VIBRATIONS

In order to compare the calculated HFCCs with experi-
mental ones, dynamical effects such as molecular vibrations
should be taken into account properly. In this section we
treat this problem. Although the potential curves for each
normal vibration should be drawn to assess the effect of mo-
lecular vibrations, such calculations are obviously not prac-
ticable for large polyatomic molecules. Therefore, we esti-
mated the effects by varying some geometrical parameters of
the radicals along the vibrational modes which are consid-
ered to affect the HFCCs most sensitively.

Table VI shows the results of calculations for the three
radicals studied. The vibration which changes the angle H-
C-0 of the methoxy radical is considered to have the largest
effect upon the HFCCs. It was found that the HFCC of the
proton increases with the angle. According to the total ener-
gies calculated by the SAC-CI method, the radical tends to
become stabilized slightly as the angle decreases. Thus, the
HFCC of the hydrogens may decrease slightly when vibra-
tional averaging is carried out.

As shown in Table VI the total energy of the radical
cation of formaldehyde increases steeply as the H-C-O an-
gle changes by — 5°, whereas the HFCCs of the hydrogens
increase as the angle changes by + 5°. Therefore, the
HFCCs of the hydrogens will become larger when vibration-
al averaging is taken into account.

The HFCCs of the nitrogen and the hydrogen bonded to
the nitrogen in the methylamino radical are not sensitive to
vibrations. The HFCC of the hydrogens of the methyl group
increase when the H-C-N angle increases. The tendency is
the same as with the other radicals.

VI. CH;CHy

For the ethyl radical the HFCCs of all the nuclei are
determined experimentally,® so we will discuss this radical

TABLE V. Effect of the configuration selection threshold in determining the HFCC of CH,0".

Threshold of configuration selection (a.u.)®

103 10—¢ 10~7 10°# 0.0
o —37.13 —783 —650 —1015  —10.56
C — 19.94 —20.09 —18.19 — 15.30 —15.02
H 35.28 36.11 36.45 36.09 36.57
Number of linked
configurations® 191 300 417 488 808

®Threshold for SAC-CI. Threshold for SAC was set to be 1.0X 1075 a.u.

®Total number of linked configurations was 808.
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TABLE V1. Vibrational effects in CH,0', CH,O* ", and CH;NH"
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HFCCs(G)
Energy differences
(o) C H (10~ *a.u.)
+5 —~10.75 —~16.22 39.54 6.777
CH,O (HCO o —10.56 —15.02 36.57 0.0
P ~10.97 —13.51 34.34 — 0.457
Expt. —15.56 43.67
45 —13.23 —30.56 127.08 1.056
CH,0*’ (HCO o —13.28 — 2892 117.12 0.0
P —13.66 —27.74 109.02 6.691
Expt. —38.8 132.7
N c Hy Hc (10~ a.u.)
+5 6.75 —13.09 —21.06  34.43 9.344
CH,NH  (H.CN o 6.69 —11.93 —2147 2901 0.0
_5 6.74 —10.57 —21.51 2534 8.612
+5 6.94 —11.72 —2138 2867 0.980
ZHyNC U 6.37 — 1220 —2122  29.18 1.324
Expt. 13 22 34

in a little more detail than the other radicals discussed above,
although an analysis was done previously by one of the pres-
ent authors.” The calculations for the HFCCs using several
DZ quality basis sets have been carried out for a calculated
geometry by Pacansky et al.,*' and the results are summar-
ized in Table VII. Flexible basis sets like ETG sets are too
large to be employed for the calculations of such large polya-
tomic molecules as the ethyl radical. However, some advan-
tages of the use of DZ sets has been discussed for H,O" " in
Sec. I11.

Table VII compares the results obtained by using Dun-
ning’s, Ellinger’s, and Huzinaga’s DZ sets, as in the case of
H,O* . In addition, to increase the flexibility of the radical
center carbon atom, we contracted the Huzinaga’s p func-
tion into triple-zeta (TZ) sets. They may be denoted as
[6121/511]. Asthe basis set for the hydrogen atom, Huzina-
ga’s (6s) sets®? contracted to [2s] were also used. We also

TABLE VII. HFCCs of the ethyl radical, CH,CH; (in units of Gauss).

examined the effect of polarization functions on the radical
center. Several other basis sets were also tested but results
are not shown in Table VII because the essential features
were more or less similar to those listed in Table VII.

Itis apparent that the double zeta quality basis sets with-
out any modification give fair results for the HFCCs. Upon
increasing the flexibility of the basis set for the radical center,
the HFCC of the carbon atom of the methylene group, de-
noted C,, in Table VII, decreased away from the experimen-
tal value. The HFCC of the alpha protons also decreased
sharply when polarization functions were added on the
methylene carbon atom. The increase in the flexibility of
orbitals on the radical center may have caused an unwanted
spreading of the electron spin density. The HFCCs of the
carbon atom tend to depend on the basis set more sensitively
than those of the hydrogen atoms.

From Table VII, Dunning’s DZ set gives the best result

Basis sets C, Cy H, H§

1. Dunning® 222 - 122 —23.1 23.9
2. Ellinger® 23.6 —13.0 —18.2 22.4
3. Huzinaga A° 19.5 — 838 —22.3 24.3
4. Huzinaga B® 14.8 — 100 —234 24.5
5. Huzinaga C* 11.8 —-9.6 —18.8 23.9
Expt.f 29.5 13.6 22.4 26.9

® Reference 16.
®Reference 17.

< Reference 15. The contraction for the carbon and the oxygen atoms can be denoted as [6,1,2,1/6,1]. The basis
set of the hydrogen atom is Huzinaga-Dunning (4s)/[2s] with a scale factor of 1.2.

9The same basis set as 3 except that the p functions on C are contracted into triple-zeta set as [6,1,2,1/5,1,1].
The hydrogen basis sets of Huzinaga’s (6s)/[2s] were used. (Ref. 32) The contraction can be denoted as

[4.2].

©The same basis set as 4 except that the d orbital with exponent 0.6 was added on the C,, atom.

fReference 30. The signs cannot be determined.
&8 The average of the three protons.
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TABLE VIII. Vibrational effect in CH,CH,.

Momose, Nakatsuji, and Shida: Isotropic hyperfine coupling constants

HFCCs (G)
Energy differences
C, C, H, H, (10~*a.u.)
45 20,83 1323 — 2337 22.68 10.547
(H,C,C, o 22.53 -7 —2334 23.85 0.0
—5 2297 — 1034 —2322 24.76 5.767
45 25.28 — 1148 —22.85 23.84 0.391
LG Ca X -5 20.82 —11.77 —23.40 23.92 — 0471
5 21.85 —1nn —2333 24.03 07
(M,C.H, + 3.073
s 23.27 1181 —23.29 23.85 — 0879
Expt. 2.5 13.6 2.4 26.9

2The symbol X denotes a point which is on the line bisecting the angle, HC, H.

among the three DZ sets for HFCCs as in the case of H,O*"
in Sec. II1. Dunning’s DZ set describes outer shells of the
orbitals more flexibly than Ellinger’s DZ set which describes
inner shells better that the former. Therefore, it is conjec-
tured from Table VII that better HFCCs are obtained if
more flexible outer orbitals are used. This result implies that
the tails of valence orbitals extending into inner shells, viz.,
the probability distribution of the valence electrons in the
inner shell, are important in the calculation of HFCCs.

Table VIII shows the effect of molecular distortion on
the HFCCs. Three vibrational modes affect the HFCCs. The
HFCC of the alpha proton is not sensitive to vibrational
distortions. The HFCC of the beta protons increases when
the H;-C;—C,, angle decreases. Thus, the HFCC of the beta
protons will approach the experimental value if the vibra-
tional effect is operative. Since the potential barrier of the
bending motion of the methylene unit is found to be so flat,
the ethyl radical should be deformed with ease along this
vibrational mode. This motion will increase the HFCC of the
alpha carbon, thereby improving agreement with the experi-
ment.

VIl. CH;O0CH}"

Compared with those of other organic radicals, the beta
proton HFCC:s of radical cations of simple ethers are strik-
ingly large.>® They indicate that part of the odd electron on
the oxygen atom is delocalized over the alkyl groups.

As a typical example, the radical cation of dimethyl
ether was investigated. Since the geometry has not been de-
termined experimentally, we carried out routine calcula-
tions using GAUSSIAN 82, and the results are summarized in
Table IX. Since the singly occupied MO has a slightly anti-
bonding character for the C-O bond, the C-O bond length in
the radical cation is expected to be slightly shorter than the
1.41 A bond length of the parent molecule.>*

Table IX shows that the UHF calculation with double-
zeta quality basis sets gave a much longer C-O distance than
in the neutral molecule contrary to the expectation stated
above. When polarization functions were added on the car-
bon and the oxygen atoms (6-31G* set), the C-O distance
decreased, and when the electron correlation was included

using the second order Méller-Plessett perturbation calcu-
lation (MP2) it, further, became shorter, although it is still a
little longer than the experimental value for the neutral mol-
ecule. It is empirically known that polarization functions
affect the geometry of neutral molecules more critically than
the electron correlation. For example, UHF calculations
with 6-31G* are sufficient for the geometry of the neutral
radical, CH,O .?* In contrast, the result in Table IX shows
that not only the effect of polarization function but also the
effect of the electron correlation are required for the deter-
mination of the geometry of the radical cations. One of the
reasons for this difference between the neutral and the
charged species is that we used the basis sets that were opti-
mized for neutral atoms. For the calculation of ionic mole-
cules, these basis sets may not be appropriate. If we used the
basis sets that were optimized for the ionized atoms, the cor-
relation effect may not be so apparent. As the C-O distance
calculated by MP2 is still longer than that of the neutral
molecule, it seems that convergence has not yet been
achieved, since the C-O distance of the cation is expected to
be a little shorter than that of the neutral molecule as stated
above. However, further calculations are not practicable for
such a large molecule as dimethyl ether, so the geometry
determined by the MP2 calculation was used for the calcula-
tion of HFCCs with the anticipation that the geometry is a
tolerable approximation of the optimum geometry for the
radical cation. The full geometry was given in Fig. 1. Al-

TABLE IX. Structure of CH;OCH;" .

MIDI4 6-31G* 6-31G*
UHF UHF MP2°
CH,OCH; " C-O (A) 1.512 1.457 1.421
LCOC (deg)  123.6 120.22 121.35
' 6-31G*
RHF Expt.’
CH,OCH, C-0 (A) 1.391 1.41
£COC (deg) 113.81 1117

*Full excitation was adopted.
®Reference 34.
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FIG. 1. Optimized geometry of the radical cation of dimethylether.

though there are several combinations for the directions of
the methyl groups, the conformation in Fig. 1 was found to
be the most stable within the UHF calculation with the dou-
ble-zeta quality basis set. Actually, since the methyl groups
rotate almost freely, the conformation of the methyl group
probably does not affect seriously the result of the calcula-
tion of HFCCs.

Table X shows the HFCC calculated by the SAC-CI
method with Dunning’s DZ set in conjunction with the
UHF and the annihilated UHF (AUHF), which annihilates
the spin contamination in the UHF, calculations. The
HFCCs of the beta protons are averaged over the three pro-
tons. The calculated value by the SAC-CI method repro-
duced the large experimental HFCC of beta protons fairly
well. It is noticeable that the experimental HFCCs of the
protons are much larger than both the UHF and AUHF
calculations. It has been found that in other radicals most of
the UHF values are larger than the experimental ones, while
most AUHF values are smaller.” Thus, the case of the radi-
cal cations of ethers seems to be peculiar in reference to many
other systems so far studied. The reason for this peculiarity is
not known and a further investigation should be attempted.

VIIl. CONCLUSION

In the present study we have calculated the HFCCs of
polyatomic radicals using the SAC-CI method. With Dun-
ning’s DZ set, isotropic hyperfine coupling constants have
been obtained which are in good agreement with the experi-
mental data, even for fairly large molecules containing beta
protons. In particular, the calculated HFCCs of beta protons
agree to within 15% with the experimental values. We found
that the contracted basis sets gave better results than the
primitives, which probably reflects the weakness of the use
of unnatural cuspless orbitals as a basis set. The original

TABLE X. HFCCs of CH,OCH;" " (in units of Gauss).

Calc.*
UHF AUHF SAC-CI Expt.”
o —61.40 —21.15 — 16.86
C —17.80 —5.82 —-9.29
H¢ 30.81 19.43 39.40 43 + 1

* Dunning’s DZ sets.
°Reference 33.
¢ The average of the three protons.

Dunning contractions of the Huzinaga primitives seem to be
suitable for describing the spin density properties at the nu-
clei.

In conclusion, the important requirements for obtaining
reasonably good predictions of HFCCs are, (1) to take into
account the electron correlation adequately; (2) to include
the configurations which contribute significantly to the
HFCC, even if they are not so important for the energy and
other properties; and (3) to use basis sets of high quality.

The SAC-CI theory is suited for the calculation of
HFCCs, because it takes care of the requirements of (1) and
(2) properly. As a result of the rational setup of the theory,
the dimensions of matrices to be diagonalized are reduced
drastically,® so that the SAC-CI method does not require an
arbitrary configuration selection. As for the basis set, it is
shown that Dunning’s DZ set is the best compromise. Since
Dunning’s DZ set is considered to give an adequate descrip-
tion at and in the vicinity of the nuclei, and since the spin
density is a one-electron property just at the nuclei, the ade-
quacy of the set is expected to be transferable from molecule
to molecule. This feature is necessary for predicting the spin
densities of newly found radicals. Thus, we maintain that the
present approach is most useful for the practical treatment of
realistic molecules.
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