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A method of calculating hyperfine splitting constants (hfsc) of open-shell radicals is reported.
Since the hfsc reflects a very local property of the wave function at the position of the nuclei,
we use Slater-type orbitals (STOs) which have cusps at the centers. Spin correlation (spin
polarization) and electron correlation are taken into account with the use of the SAC-CI
(symmetry adapted cluster-configuration interaction) theory. Configuration selection is not
done since energy and spin density are very different properties. The dimensions of the
matrices involved in the SAC-CI method are small enough to permit such a procedure. The
integrals necessary for the SCF and SAC-CI methods are calculated by the STO-6G method
with the use of the available Gaussian program, and the hfsc’s and the cusp values are
calculated from the original STOs. Several STOs are examined for H,* and H,O*. The
resultant standard method is applied to the organic 7 and o radicals CH,;, CH,CH,, CH;NH,
CH,0, CH,0CH;", H,CO™", CH,CH, and HCO. The present results of hfsc’s show generally
better agreement with experiment than the previous calculations based on the Gaussian-type
orbitals (GTOs). In particular, the present results are free from the theoretical dilemma seen
for the GTO calculations that a variationally better wave function does not necessarily give a

better hfsc. This is important in developing a reliable theory for calculating hfsc’s.

I. INTRODUCTION

Fermi contact hyperfine splitting constants (hfsc’s) ob-
served by electron-spin resonance (ESR) and microwave
spectroscopy give information on the spin densities at the
nuclei of an open-shell molecule. Since this is a very local
property, ab initio calculations of the hfsc’s are more difficult
than the other electronic properties such as dipole moments,
polarizabilities, etc. It has been clarified that the following
factors are very important for adequate descriptions of the
hfsc’s: (i) spin-polarization correction'™; (ii) electron cor-
relation correction.>'°

Unrestricted Hartree-Fock (UHF) and projected

UHF methods only poorly include the spin-polarization cor-
rection.'? Pseudo-orbital theory* adequately includes the
spin-polarization effect, but does not include the electron
correlation effect which has been shown to be very impor-
tant, particularly for the hfsc’s of radical center atoms.’
Symmetry adapted cluster-configuration interaction (SAC-
CI) theory'"'? has been shown to be very effective in includ-
ing both spin—polarization and electron correlation correc-
tions.”!® We have noted that in the calculations of hfsc’s, we
have to be very careful about configuration selection, since
the energy and spin density are very different properties. In
the SAC-CI method, we can avoid the configuration selec-
tion,”'* because the sizes of the matrices to be diagonalized
are very small without selection, in contrast to ordinary CI
methods.® In the previous papers,”'® the SAC-CI method
has been shown to be able to provide hfsc’s of various radi-
cals that are in reasonable agreement with experiments. The
Huzinaga-Dunning contracted Gaussian-type orbital
(GTO) basis sets'® were recommended from a practical
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point of view. However, we have observed, at the same time,
the peculiar result that a variational improvement of the
wave function (e.g., uncontraction of the GTO set) does not
necessarily lead to an improvement of the calculated
hfsc’s.®1°

In this paper, we examine the necessity of the cusp con-
dition for the calculation of hfsc’s. Following Kato,'* the
exact electron density p should satisfy the following equation
at the position {R , } of the nucleus {4}:

lim{-d—lnp(r)]= -2Z,, (1)
dr

r—R,

where Z , is the nuclear charge. The wave function calculat-
ed with GTOs does not satisfy this condition. Since the cusps
and the hfsc’s are both properties dependent upon the elec-
tron density at the position of the nucleus, these two proper-
ties should be closely related. We expect that the density at
the nucleus calculated by the cuspless basis may underesti-
mate the true value. We have observed some examples in
which the primitive GTO calculations give poorer hfsc’s
than the contracted ones, though the energy is better (low-
er), as expected, for the primitives.'° Ishida,'® and Momose
and Shida'® have suggested the use of the Hiller-Sucher—
Feinberg (HSF) identity'”'® in order to replace the very
local delta function operator with a more global operator.
We here undertake a more straightforward method of using
Slater-type orbitals (STOs) as a basis set, since they have
cusps at the position of the nuclei, as the functional form of
the STOs is determined with reference to the exact wave
functions of the hydrogenic atoms. We use here the idea of
an STO-GTO expansion,'” so that a conventional GTO pro-
gram is enough for the calculations of the integrals necessary
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TABLE I. The contributions of STO and GTO to the one-center term of the
cusp value.

TABLE II. The dimension of the matrices involved in the SAC/SAC-CI
calculations.

Orbital Contribution of the cusp value Molecule SAC SAC-CI
Slater  yy, = 7y, exp( — £,,7) (s —18),_o = — £l H,0* 298 62
type X2s = Tas T €Xp( — §2,7) (Is—25"),_o = — My, CH, 364 130
Xas = 37 €xp( — £5,7) (2s—15),_0=0 CH,CH, 2322 1291
Xapz = Map.? COs O exp( — &,,r) other terms CH,NH 2502 827
202 = Moz ") p o —o CH,O 1462 743
(nl—mk'),_o = CH,OCH;" 4184 © 1371

+

Gaussian y, = 7, exp( — a,r*) All terms H,CO 1034 404
_ Gexp(—ar)  (nl—mk" —0 CH,CH 2059 1049
type X, = 7,7 COS U exp » r=0= HCO 1366 749

for the SCF and SAC-CI calculations. The spin densities and
the cusp values are calculated from the original STO wave
functions, since here the accuracy of the STO-GTO expan-
sion is not good. The importance of the cusp condition for
improving the wave function has been discussed by
Steiner.?°

il. METHOD

The cusp value, defined by the left-hand-side term of Eq.
(1), is written in a basis set expansion as

lim {—(i lnp(r)} = lim (22 D,.x» Xe/Y, quXqu) (2)
r~Ra\dr r=Ra\ pgq P

where {y, } is the basis set used and {D,, } the bond-order
density matrix. The prime on y, indicates a differentiation.
The cusp condition shows that the cusp value should be
equal to — 2Z,. The contribution of the basis functions to
the cusp value may be divided into a one-center term, which
is dominant, and two- and three-center terms, which are
small. The one-center term is the contribution of the basis
functions centered on the nucleus 4, and the two- and three-
center terms represent the contributions of the tails of the
basis functions centered on the different nuclei B. The differ-
ence between the STO and GTO is critical for the one-center
term. Table I shows the contributions of the STO and GTO
to the one-center term of the cusp value. The GTO does not
have the cusp at the center, so that the wave function based
on (a finite number of) GTOs never satisfies the cusp condi-
tion. On the other hand, the 1s STO does have the cusp and
the terms (1s — 15'),_, and (1s — 2s"), _, give a predomi-
nant contribution to the cusp value. Since the radial function
of the STO simulates the exact wave function for hydrogen-
like atoms, it would well describe a correct behavior of the
wave function near the nucleus. For instance, a single STO
N exp( — Z 4 r) satisfies the cusp condition.

Most self-consistent field (SCF) programs currently
available are for the GTO functions. We therefore undertake
the following procedure: We first choose some appropriate
STO set. We then expand them using the Gaussian expan-
sion method, STO-NG method, due to O-ohata et al.'® and
calculate all the integrals necessary for the SCF and SAC-CI
calculations by the GTO program. We here need integrals
related only to the Hamiltonian operator, for which the
STO-NG method is accurate if N is large.'® We have used
the program GAMESS?! for the SCF calculations and

SAC85% for the SAC/SAC-CI calculations. After obtaining
the SCF and the SAC-CI wave functions for doublet radi-
cals, we calculate the hfsc’s and the cusp values using the
original STO set, since for these quantities, the STO-NG
method is unreliable. In this procedure, an additional pro-
gram is used only for calculating the hfsc’s and the cusp
values based on the STO’s, so that this procedure is of gen-
eral utility. In the present calculations, we have used the
STO-6G expansion of Stewart.?>

The SAC-CI method'? is used to calculate the correlat-
ed wave functions of doublet radicals.” It appropriately in-
cludes the spin-polarization and electron correlation correc-
tions.”!? For H,O, for example, we first calculate the SAC
wave function'! for the closed-shell H,O, and then construct
the doublet wave function of H,O™ using ionization opera-
tors in the SAC-CI formalism.'*?? In the second SAC-CI
step, we avoid configuration selection, because spin density
is sensitive to this procedure.”!! In the first step, we do con-
figuration selection with 1, = 107> a.u.** The negligible
terms in the unlinked terms of the SAC and SAC-CI expan-
sions are dropped off as usual.?>**

Table II shows the dimensions of the matrices involved
in the SAC/SAC-CI calculations carried out in the present
study. They are identical with the numbers of the unknown
variables involved. We see that they are extremely small, in
comparison with those of the conventional CI method, as
seen below, particularly in the SAC-CI calculations, even
though we have avoided configuration selection. This makes
the SAC/SAC-CI calculations computationally very easy
and feasible, and useful because of the reliability of the calcu-
lated results as shown below.

1. RESULTS AND DISCUSSIONS

We have applied the present method to H;", H,O™,
CH,, CH,CH,, CH,NH, CH,0, CH,OCH;", H,CO™,
CH,CH, and HCO. We first examine several STO sets for
H,* and H,O", and select a standard set from a practical
point of view. We then apply this standard procedure to the
rest of the doublet radicals, orgazic 7 and ¢ radicals.

A.H;}, H,0*, and examination of basis sets

Table III summarizes the hfsc, cusp value, and total
energy of H,". Since H,' is a one-electron system, the SCF
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TABLE III. Hyperfine splitting constant (hfsc) (G), cusp value, and ener-
gy of H,".

STO-6G/GTO STO

Energy

Basis set hfsc Cusp hfsc Cusp (a.u.)
STO®

1. 15(1.0) 184.6 —0.12 2059 —2.00 —0.553 63
2. 1s(1.2) 313.6 —0.21 3514 —240 —0.58551
3. 15(0.8, 1.2) 3523 —0.21 395.1 —247 —0.587 67
4. 152p(1.2) 293.0 —025 3271 -—237 —0.598 11
5. 15#3,2542,2p+2° 289.4 —0.27 3279 -—2.11 —0.601 63
6. 15(1.0),1525(0.5) 2944 —0.23 3274 —2.24 —0.58795
7. No. 6 +2p(0.5) 292.6 —0.23 3246 —2.23 —0.589 77
GTO

(4s)/[2s]

(3,1)¢ Dunning® 330.1 —0.21 —0.586 38

(2,2) 280.8 —0.23 —0.58573

(1,3) 2362 —0.03 —0.585 64
Primitive 2942 —0.23 —0.58915
Large GTO basis® 323.7 — 0.602 56
Primitive 3241 —-0.28 —0.602 56
Exact 333.7 —200 3337 -—2.00 —0.602 62

?Values in parentheses show orbital exponents.

®The exponents are 15(0.8,1.2,2.0), 2s(1.2,2.4), and 2p(1.2,2.0).
¢ Contraction is shown in parentheses.

9 Reference 13.

¢ The result of (10s,2p,1d)/[6s,2p,1d] set in Ref. 8.

"Reference 25.

solution is the correct solution within a given basis set. The
internuclear distance is fixed to 2.0 Bohr. The exact values
were published by Stephens and Auffray.”> We have exam-
ined several STOs and GTOs. As STO results, we have given
the hfsc’s and the cusp values calculated from the STO-6G
Gaussian set and from the original STO set. The cusp values
calculated from the Gaussian wave functions are too small,
as expected. These cusp values arise merely from the contri-
butions of the tails of the GTOs on the neighboring H atom.
This is so even for the very large GTO basis set, the
(10s2p1d) set, which gives almost the exact energy.® The
hfsc’s due to the STO-6G sets are always smaller, as expect-
ed, than those due to the original STOs. This difference
shows the error of the STO-NG method at the position of the
nucleus. The hfsc calculated by the Huzinaga-Dunning
(3,1)/[2s] set compares very nicely with the experimental
value, as pointed out previously.'® However, when its primi-
tive set is used, the hfsc becomes much worse, contrary to the
improvement in the energy. We see that Dunning’s (3,1)
contraction is the best. The other [2s] contractions (2,2)
and (1,3) give poorer results for the hfsc, though these con-
tractions give a larger freedom for the inner part of the wave
function close to the nucleus.

When we use the original STOs, on the other hand, the
cusp values and the hfsc’s are much improved. The cusp
values are slightly larger than the exact value, except for the
trivial case of using the single 1s STO with § = 1.0. Compar-
ing the STOs Nos. 1 and 2, we see that the shrinking of the 1s
atomic orbital (A Q) is favorable for the hfsc, as for the ener-
gy. From the STOs Nos. 2 and 4, we see the importance of

the polarization function. No. 5 is the best STO set, so that it
gives the best results for all the properties, as well as the
energy. The STOs Nos. 6 and 7 are constructed from the first
few members of the complete set of the exact wave functions
of the hydrogen atom. Though they are small sets, their re-
sults are fairly good for all the properties given in Table III.
We therefore recommend the use of the STO set No. 6 or No.
7 in more comprehensive calculations. No. 6 involves only s-
type AOs and No. 7 involves the additional polarization
function.

Table IV gives the results for H,O ™, which are calculat-
ed by the SAC/SAC-CI method with the use of the experi-
mental geometry.?® In the first four calculations, we have
used the (5s4p) STO set of Bagus and Gilbert?’ for oxygen,
and various hydrogen STO sets are examined. In the next
four calculations, we have used the hydrogen No. 6 STO set
of Table III and various oxygen STO sets are examined. BG1
and BG2 denote nominal (4s3p) and accurate (Ss4p) STO
bases of Bagus and Gilbert.”” p(GTO) means that the (5p)/
[2p] CGTO of Huzinaga-Dunning'? is used for the p func-
tions of oxygen. This replacement serves to save computer
time without much affecting the cusp values. We have also
examined Clementi’s oxygen STO set.?®

Comparing the results of the STO-6G and STO sets, we
see that the hfsc’s are much improved by imposing the cusp
condition. The hfsc’s of oxygen and hydrogen increase by
about 7 G and 2-3 G, respectively, with an improvement of
the cusp values at oxygen and hydrogen from O to — 16.15
(exptl. — 16.00) and from — 0.7 to — 2.5 (exptl. — 2.0),
respectively, in average. The cusp value of oxygen agrees
better with the experimental value than that of hydrogen.
Though the hfsc of oxygen calculated by the BG1 set is
wrong, the other STO results compare well with the experi-
mental values for both oxygen and hydrogen. For oxygen,
the BG2 set is better than Clementi’s. The p-STOs of the
BG?2 set are safely replaced by the p-GTOs of Huzinaga—
Dunning, though the energy becomes considerably worse.
The result of the BG1 set may suggest a large basis set de-
pendence even for the STO case. Experimentally, the oxygen
hfsc is larger than the hydrogen hfsc.?® This trend is repro-
duced in all the STO results using the BG2 set, but not so in
the corresponding STO-6G results. This shows that the fail-
ure of the GTO results in reproducing the order of the hfsc’s
of oxygen and hydrogen is mainly due to the cuspless nature
of the GTOs, and shows the superiority of the STO over the
GTO for the calculations of the hfsc’s. Further, we note a
rough trend in Table I'V that when the STO sets are used, the
wave function having lower energy, which is better varia-
tionally, gives better hfsc. This is theoretically natural and
very important in contrast to the GTO case shown below.

Table IV also gives the results calculated by the conven-
tional GTO sets. We have used Huzinaga-Dunning
[4s2p/2s] set,'? its primitive and fairly elaborate even-tem-
pered (11s5p1d /9slp) Gaussian primitive sets.'®*® The
quality of the wave function increases in this order, as the
calculated energy indicates. However, what is remarkable is
that the calculated hfsc is not improved. The Dunning
[4s2p/2s] CGTO gives the best agreement, particularly for
the proton hfsc.'® The oxygen hfsc is calculated to be smaller
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TABLE IV. Hyperfine splitting constant (hfsc) (G), cusp value, and energy of H,O* calculated by the SAC-CI method.

STO-6G/GTO STO
hfsc Cusp hfsc Cusp
Energy
Basis set o H o H o H o H (a.u.)
STO
O BG2*
H 1s(1.2) —2191 —21.35 0.00 —0.70 —28.93 —24.03 —16.16 —-2.59 —75.73207
H 1s2p(1.2) —21.19 —23.84 0.00 —0.57 —28.17 —26.99 —16.16 —2.58 — 75.760 14
H No. 6° —19.59 —21.73 0.00 —0.70 —26.17 —24.09 —16.15 —2.50 — 75.732 69
H No. 6 + p(0.5) —20.83 —21.78 0.00 —0.66 —27.64 —24.16 —16.15 —247 — 75.734 37
H No. 6°
O BG1® —1.72 —18.14 0.00 —0.07 —8.13 —24.80 — 16.05 —2.51 — 75.712 60
O BG2* —19.59 —21.73 0.00 —0.70 —26.17 —24.09 —16.15 —2.50 —75.732 69
p(GTO)® —23.45 —23.18 0.00 —0.70 —30.83 —25.73 —16.15 —2.52 — 75.693 80
O Clementi* —22.49 —21.96 0.00 —0.70 —24.10 —24.36 —16.17 —2.50 — 75.736 35
GTO
Dunning [4s2p/2s] —23.10 —26.16 0.00 —0.69 — 75.721 58
Primitive —15.73 —20.35 0.00 —0.73 — 75.765 59
Even-tempered® —19.45 —20.44 —75.850 14
Exptl.f 29.7 26.1 — 16.00 —2.00 29.7 26.1 — 16.00 —2.00

2BG1 and BG2 mean nominal and accurate basis sets of Bagus and Gilbert (Ref. 27).

®No. 6 denotes the No. 6 basis set in Table IIIL.

¢p (GTO) means that the Huzinaga-Dunning (5p)/[2p] set is used for the p functions.

9 Reference 28.
¢ (11s5p1d /9s1p) primitive basis set. See Refs. 10 and 30.
fReference 29. The signs of the hfsc’s could not be determined.

than the proton’s in disagreement with the experiment. This
is so for all the GTO calculations. When the wave function is
improved by giving a larger freedom by the uncontraction,
the energy is certainly lowered, but the hfsc’s become worse.
Even the very elaborate even-tempered basis gives only poor
hfsc’s, in spite of its remarkably low energy. This observa-
tion is critically different from the STO case given above and
so is due to the cuspless nature of the GTO bases. In other
words, as long as the GTO’s are used, the labor for improv-
ing the wave function may end in getting worse results for
the hfsc’s. For a theoretical study, this has caused a dilemma,
as Feller and Davidson pointed out.® However, we may es-
cape from this dilemma by adopting the STO set as in the
present study. This is important in developing a reliable the-
ory for calculating hfsc’s.

On the basis of the above calculations, we choose as
standard STO sets the No. 6 or No. 7 set of Table III for
hydrogen and the BG2 set for the first row atoms. The re-
placement of the p-type STOs with the GTOs (e.g., Dun-
ning’s [2p] set) helps to save computer time without much
affecting the hfsc’s and the cusp values. The same should be
true for the d and f functions by the same reason. The calcu-
lations of organic 7 and o radicals given in the following two
sections are due to this standard STO set modified with the
p-type GTOs.

B. Organic = radicals, CH3,CH3;CH,, CH;NH, CH;0, and
CH3;OCH;

We apply here the present method to the organic 7 radi-
cals, methyl . (CH,), ethyl (CH,CH,), methylamino,
(CH,;NH), methoxy (CH;0), and dimethyl ether cation

(CH,OCH;" ) radicals, which have the unpaired electron in
the 7 orbitals. The basis set is the No. 6 STO for hydrogen
and the BG2 set for the first row atoms. Except for CH,, we
have replaced the p-type STO set by the Huzinaga—Dunning
(5s5)/[2p] GTO set."® This replacement serves to save com-

FIG. 1. Geometries of the organic 7 radicals. The dot in the lobe means an
unpaired electron in an orbital.
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TABLE V. Hyperfine splitting constant (hfsc) (G) and energy of CH,.

6209

hfsc
Energy

Basis set Method C H (a.u.)
Feller and Davidson®

GTO (10s5p1d /8slp)

[8s4pld /6s1p] SD-CI(17819) 16.3 —26.3 —39.7577
Sekino and Bartlett®

GTO [4s2pld /2s1p] CCSD 28 —27 — 39.735 88
Nakatsuji, Ohta, and
Yonezawa®

GTO [4s2p/2s] SAC-CI 28.4 —219 —39.639 76
Present?

STO SAC-CI 25.6 —29.6 — 39.660 88

STO p(GTO) SAC-CI 30.1 —29.8 — 39.629 80
Exptl.© _28.7f —24.7°

2Reference 8.
®Reference 9.
¢Reference 7.

4p(GTO) means that the Huzinaga—Dunning (5p)/[2p] set is used for p functions.

¢ Reference 34.

"The effect of molecular vibration is estimated to be 9.6 G for C and 1.7 G for H from Ref. 35.

puter time. The geometries used in the present calculations
are summarized in Fig. 1. For CH; and CH;O, we have used
the experimental geometries.>'* For the other molecules,
we have used the geometries optimized by the ab initio calcu-
lations, for CH,CH, by Pacansky and Dupuis,** and for
CH,NH and CH,OCH;* by Momose, Nakatsuji, and
Shida.'® The methyl group is assumed to rotate freely. We
have used the SAC/SAC-CI method as in the previous sec-
tion. Tables V-IX show the present results and the compari-
sons with the previous theoretical results obtained by includ-
ing electron correlation. Analysis of spin appearing
mechanisms like spin delocalization, spin polarization, and
electron correlation has been given previously for ethyl radi-
cal.”

TABLE VI. Hyperfine splitting constant (hfsc) (G) and energy of CH,CH,.

Table V gives the results for the methyl radical. We have
examined two basis sets for carbon: one is the accurate STO
basis (BG2 set) of Bagus and Gilbert,?” and the other is the
s-type STO basis of BG2 plus (5p)/[2s] CGTO of Huzin-
aga-Dunning"? for p functions. In Table IV, the former set
was denoted as BG2 and the latter as BG2-p(GTO). By this
replacement, the hfsc of carbon increases by 4.5 G, but that
of hydrogen does not change. The present result shows a
reasonable agreement with experiment. In Table V, the cal-
culations due to Feller and Davidson,® Sekino and Bartlett,®
and Nakatsuji, ef al.” are all based on the GTO bases. The
wave function due to Feller and Davidson should be the best
one, as seen from the energy, from the variational point of
view, but their hfsc’s do not necessarily compare best with

hfsc
Energy

Basis set Method CB Hp Ca Ha (a.u.)
Feller and Davidson

(6-31G** MCSCF geometry)*

GTO (13s7p2d /10s2p)

[8s5p2d /652p] MR-SDCI —11.6 19.7 183 —21.2
Nakatsuji, Ohta, and Yonezawa®

GTO [4s2p/2s] SAC-CI —13.6 227 239 — 18.7 — 78.734 99
Momose, Nakatsuji, and Shida®

GTO [4s2p/2s] SAC-CI — 122 239 222 —23.1 —7875781
Present

STO p(GTO) SAC-CI —12.1 245 240 —259 —78.72078
Exptl.¢ —13.6 269 29.5¢ —22.4

2Reference 8.

°Reference 7.

°Reference 10.

9 Reference 34.

¢ The effect of molecular vibration is estimated to be — 9.6 G for Ca (Ref.

35).
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TABLE VII. Hyperfine splitting constant (hfsc) (G) and energy of CH,NH.

H. Nakatsuji and M. Izawa: Calculation of hyperfine splitting constants

hfsc
Energy

Basis set Method C HpB N Ha (a.u.)
Momose, Nakatsuji,

and Shida*

GTO [4s2p/2s] SAC-CI —11.93 29.01 6.69 —21.47 — 94.755 63

Present

STO p(GTO) SAC-CI — 123 29.6 7.8 —-212 —94.719 48
Exptl.” 34 13 22

#Reference 10.
b Reference 37. The signs could not be determined.

the experimental values,**?’ particularly for carbon. This,

we believe, is due to the cuspless nature of the Gaussian bases
used. Though the other GTO results show better agreement
with experiments, this is essentially a fortunate result; the
fixed contraction of the inner Gaussian functions hasled to a
larger amplitude at the cabon nucleus than that of the freely
variational wave function as that of Feller and Davidson.
Sekino and Bartlett performed finite perturbation calcula-
tions based on the coupled cluster singles and doubles
(CCSD) method and obtained fairly good results. However,
their wave functions are not eigenfunctions of the spin-
squared operator S , since their cluster expansion is symme-
try nonadapted, though for methyl radical, the spin conta-
mination was very small® In our previous SAC-CI
calculations,” we have used Ellinger’s contraction*® for Hu-
zinaga’s GTO set."?

Table VI shows the result for the ethyl radical. Our pre-
vious and present calculations are based on the theoretically
optimized geometry due to Pacansky and Dupuis,*® but
Feller and Davidson® have used the geometry in which the
atoms C—CH, are co-planar. The hfsc’s of Feller and David-
son are all smaller than the present STO results. Our three
sets of calculations differ only in the basis set. The first one is

TABLE VIII. Hyperfine splitting constant (hfsc) (G) and energy of CH,O.

due to Ellinger’s contraction of Huzinaga’s GTO set, the
second one due to Dunning’s contraction of the same set,
and the present one due to the BG2 s-type STOs plus the
Huzinaga-Dunning p-type CGTO. These three calculations
give practically similar results.

The methylamino (CH,;NH) and methoxy (CH,O)
radicals are isoelectronic with the ethyl (CH;CH,) radical.
Their results are shown in Tables VII and VIII, respectively.
Among these radicals, the change in the proton hfsc’s of the
methyl groups is interesting. The observed hfsc’s are 26.9,
34, and 43.7 G for CH,CH,, CH;NH, and CH;0, respec-
tively.3?**37 Historically, the appearance of the a-spin den-
sity on the methyl group neighboring to the radical center
atom has been considered®* as a proof of “hyperconjuga-
tion” proposed by Mulliken.® Later, we have shown that the
spin delocalization (direct hyperconjugation) explains
about 75% of the spin density, the rest (25%) being due to
the spin-polarization mechanism.** Both mechanisms are
functions of the bond distance and the rotational angles
around the axis connecting CH, and the radical center atom.
This bond distance decreases considerably as R(C-C)
= 1.498 A, R(C-N) = 1.4457 A, and R(C-O) = 1.3637
13;, so that the B-proton hfsc increases in this order. In the

hfsc
Energy
Basis set Method C H (6] (a.u.)
Feller and Davidson*
GTO [8s6p2d /6s2p] SDTCI 27.7 — 114.5375
SDCI 23.3 — 114.763 5
Momose, Nakatsuji,
and Shida®
GTO [4s2p/2s] SAC-CI —13.92 3774 —9.04 — 114.597 89
Present
STO p(GTO) SAC-CI —13.7 39.4 —18.3 — 114.564 87
Exptl.© —15.56 43.67

*Reference 8.
° Reference 10. Recalculated using corrected experimental data (Ref. 32).
“Reference 32.
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TABLE IX. Hyperfine splitting constant (hfsc) (G) and energy of CH;OCH;" .

hfsc
Energy

Basis set Method C H o (a.u.)
Momose, Nakatsuji,
and Shida®

GTO [4s2p/2s] SAC-CI —9.29 39.40 — 16.86 — 153.978 54
Present

STO p(GTO) SAC-CI — 85 39.8 —23.9 — 153.928 83
Exptl. 43

*Reference 10.
® Reference 40.

previous paper,” we have shown that the effect of electron
correlation is small (~3 G) for the B-proton hfsc of ethyl
radical. For the B-carbon hfsc, the change among these radi-
cals is relatively small. The experimental values are — 13.6
and — 15.6 G for CH;CH, and CH,0, respectively, in com-
parison with the theoretical values — 12.1 and — 13.7 G,
respectively. For CH;NH, the corresponding experimental
value is not reported, but the theoretical valueis — 12.3 G.

Table IX shows the result for the dimethylether cation
radical. This radical has interestingly large 5-proton hfsc as
43 G.*° The present theoretical value is 40 G. Referring to
Fig. 1, we see that the CO distance of CH,OCHj;" is longer
than that of CH,O, but the B-proton hfsc is larger in
CH,OCH;" than in CH;O. This is due to the positive charge
at the radical center atom of CH;OCH;" . Since the orbital
level of the unpaired electron is lower in the cation than in
the neutral radical, the flowing-in of the S electron from the
adjacent methyl group through the hyperconjugation should
be larger in the cation radical than in the neutral radical.

The STO and GTO results differ considerably for oxy-
gen. From the experience of H,0" shown in Table IV and
since CH,OCH,;" is a substituent of H,O", we predict that
the experimental oxygen hfsc should be close to the present
value — 23.9 G, which is smaller than — 27.9 G for H,O*
because of the delocalization of the unpaired electron into
the methyl groups.

C. Organic o radicals, H,CO*, CH,CH, and HCO

We here give the results for the formaldehyde cation
(H,CO™"), vinyl (CH,CH), and formyl (HCO) radicals,
which have an unpaired electron on the molecular o plane.
The calculational method is the same as that for the organic
m radicals. The geometries are summarized in Fig. 2. For the
HCO radical, it is the experimental geometry, and for
H,CO™" and CH,CH, they are optimized by the ab initio
calculations; for H,CO™ by Feller and Davidson® and for
vinyl radical by Millie, Levy, and Berthier.*'

Table X shows the results for H,CO™* together with the
previous theoretical results. The unpaired electron lies main-
ly on the p,, orbital of oxygen which is perpendicular to the
CO axis. The proton hfsc is extremely large (90-133 G),*
but the direct spin-delocalization contribution estimated
from the RHF result is only about 40 G, so that the rest (50—

93 G) should be due to the effects of the spin polarization
and electron correlation. The pseudo-orbital (PO) theory*
includes the spin-delocalization and spin-polarization con-
tributions, but not the electron correlation effect. We there-
fore estimate the individual contributions as 40 G for spin
delocalization, 31 G for spin polarization, and 48 G for elec-
tron correlation. We see that the spin-polarization and elec-
tron correlation contributions are extremely large. The d-
polarization functions on carbon and oxygen have moderate
effects on the O and H hfsc’s.

Tables XI and XII show the results for vinyl and formyl
radicals. The analysis of the spin appearing mechanism has
been given previously.” For the proton hfsc’s of the vinyl
radical, the present calculation considerably improves the
previous results due to the Gaussian basis set. The hfsc of the
proton trans to the radical lobe is very large (68.5 G) and the
present result explains 75% of the observed value. For the a
carbon, the present result agrees well with the experimental
value, but for the 3 carbon, the present result is small. As
shown previously,’ the 3 carbon hfsc is the canceling result
of large negative spin-polarization contribution, small posi-
tive spin-delocalization contribution, and small positive
electron correlation contribution.

FIG. 2. Geometries of the organic ¢ radicals. The dot in a lobe means an
unpaired electron in an orbital.
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TABLE X. Hyperfine splitting constant (hfsc) (G) and energy of H,CO™.

hfsc
Energy
Basis set Method C H o (a.u.)
Feller and Davidson®
GTO (10s5p1d /8s1p)
[8s4pld /6s1p] MRCI —24 80 — 14 —113.8813
Sekino and Bartlett®
GTO [4s2pld /2s1p] CCSD —-37 100(93)¢ —21 — 113.869 18
Momose, Nakatsuji,
and Shida®
GTO [4s2p/2s] SAC-CI —28.82 117.11 —13.27 — 113.678 62
Present
STO p(GTO) RHF 0.0 40.3 0.0 — 113.446 54
PO —30.5 71.7 —64.9 — 113.456 07
SAC-CI —29.8 119.4 —19.9 — 113.652 10
STO p(GTO) + 14¢ SAC-CI —28.0 111.3 — 140 — 113.787 43
Exptl. —38.8 132.7¢
90.3"
2Reference 8.
®Reference 9.
¢ Reference 10.
9The exponents of the d-polarization functions are 0.600 for carbon 1.154 for oxygen.
¢Reference 42(a).
fReference 42(b).
8 The value in parentheses: [5s3pld /3slp].
TABLE XI. Hyperfine splitting constant (hfsc) (G) and energy of C,H,.
hfsc
Energy
Basis set Method cp H,.. H. Ca Ha (a.u.)

Sekino and Bartlett*

GTO [4s2pld /2s1p] CCSD —8 48 28 121 9 — 77.703 26
Nakatsuji, Ohta,
and Yonezawa®

GTO [4s2p/2s]

RHF 9.5 218 12.9 1194 235 —77.343 84
PO —13.7 393 24.4 142.4 11.1
SAC-C1 —74 475 29.3 113.4 17.4 — 77.525 49
Present
STO p(GTO) SAC-CI — 11 514 34.1 102.2 12.1 — 77.509 75
Exptl.© — 86 685 342 107.6 13.3

2Reference 9.
* Reference 7.
°Reference 34.

TABLE XII. Hyperfine splitting constant (hfsc) (G) and energy of HCO.

hfsc

Energy
Basis set Method C H (o] (a.u.)

Feller and Davidson®

GTO [8s4p2d /6s2p] MRCI 127 127 —13 —113.548 2
Nakatsuji, Ohta,
and Yonezawa®

GTO [4s2p/2s] SAC-CI 134.3 115.3 —9.3 — 113.389 44
Present

STO p(GTO) SAC-CI 119.0 119.0 —16.3 — 113.396 46
Exptl.© 131.0 127.0

* Reference 8.
®Reference 7.
¢ Reference 43.
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For HCO, the result of Feller and Davidson is excellent
in comparison with the experimental value.*> The present
result of oxygen is again larger than the previous GTO result
and we believe that the present result should be closer to the
experimental value.

IV. SUMMARY AND CONCLUSIONS

We have summarized the present results of the hfsc’s in
Table XIII. Figure 3 shows the correlation between the pres-
ent theoretical results and the experimental values. When
the sign of the hfsc is not determined experimentally, we
have adopted the sign of the present theoretical result. Gen-
erally speaking, the agreement between theory and experi-
ment is fairly good, so that the present method may be used,
by experimentalists, for the assignment of the experimental
values. From Fig. 3, we see that the present theoretical val-
ues tend to be smaller, in absolute value, than the experimen-
tal ones for both protons and the first row atoms. The aver-
age discrepancies are 3.6, 8.2, 5.2, and 2.3 G for proton,
carbon, nitrogen, and oxygen, respectively.

Probably, one of the most attractive features of the pres-
ent method lies in its theoretically natural behavior. We have
seen in Tables III and IV that the theoretically better STO
wave function, which gives lower energy, gives generally the
better hfsc’s. This was not so, on the contrary, for the Gaus-
sian wave function. For example, we have seen that the

TABLE XIII. Hyperfine splitting constants (hfsc’s) calculated with STO
basis.

Molecule Nucleus Theoretical Experimental®®

H, H 3274 333.7

H,0* (o) —262 (—)29.7
H —24.1 (—)26.1

CH, C 25.6 28.7
H —29.6 —24.7

CH,CH, cB —12.1 —13.6
Hp 24.5 26.9
Ca 24.0 29.5
Ha — 259 — 245

CH,NH c —123
HB 29.6 34
N 7.8 13
Ha —-21.2 (—)22

CH,0 C —13.7 —15.6
H 39.4 43.7
(0] — 183

CH,0CH;" C — 8.5
H 39.8 43
(0] —239

H,CO* C —29.8 —38.8
H 119.4 132.7,90.3
(0] — 199

CH,CH CcB —1.1 — 8.6
H,uns 51.4 68.5
H,; 34.1 342
Ca 102.2 107.6
Ha 12.1 13.3

HCO C 119.0 131.0
H 119.0 127.0
(¢] —16.3

2The sign( — ) is based on the present theoretical result.
bThe citations of the experimental values are given in the individual tables.
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primitive Gaussian set gives often worse hfsc’s than the con-
tracted basis, though the former gives a lower energy than
the latter. We have also observed that the variationally good
Gaussian wave functions do not necessarily give good results
for the hfsc’s. This certainly causes an undesirable dilemma
in the effort of developing a reliable theory for calculating
hfsc’s.® In the present approach, however, we can believe
that as we improve the wave function by a standard quantum
mechanical method, we will improve the hfsc’s as well. This
feature is very important in developing the theory of the
hfsc’s, particularly, of the heavier atoms.

We note that for the radicals studied here, the present
STO results are similar to the previous GTO results”'° based
on Huzinaga-Dunning CGTOs. The use of the SAC-CI
method is common and has guaranteed the inclusion of the
spin and electron correlation effects. We must note, how-
ever, that this similarity does not mean a general similarity
between the STO and GTO results, but is a special case for
Dunning’s contraction of Huzinaga’s GTOs. In the Dun-
ning contraction, a largest number of GTOs are contracted
for the innermost orbital which results in a larger amplitude
at the position of the nucleus, though the cusp there is zero
because of the functional form of the Gaussians. Actually,
when we use the primitive GTO set, the hfsc’s become worse
though the energy is lowered.

We thus conclude that the present method is promising
as a method of calculating hfsc’s. We use the STO basis,
which has the cusp, and take into account both spin polariza-
tion and electron correlation adequately by using the SAC/
SAC-CI method. The STO-NG method is useful in evaluat-
ingthe  integrals. The use of the GTOs for the p and d
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FIG. 3. Comparison between experimental and theoretical values of the
hfsc’s for hydrogen (O), carbon (A), nitrogen (0), and oxygen ( X ) atoms
of the doublet radicals studied in this paper. The region of small hfsc’s is
enlarged in the figure in order to make the correlation clearer.
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functions, which have nodes at the centers, helps to save the
computer time.

As a result of the present calculation, we found a rela-
tively large dependence on the quality of the STO basis sets.
For example, between the two sets of the STOs given by
Bagus and Gilbert,?” the “accurate” set (the BG1 set in Ta-
ble IV) has given much superior results. Probably, a system-
atic study of such dependence is necessary for achieving the
above goal.

In the present calculations, we have given the results of
only the ground state of doublet radicals. However, in the
present SAC/SAC-CI method, it is very easy to calculate the
excited states of the doublet radicals. Actually, we have such
results additionally in the present calculations, though we
did not summarize such results here. We encourage experi-
mentalists to observe the hfsc’s of the excited states, though a
few results have already been reported,** since it is expected
that they will open a new field for investigating the electronic
structures of excited states.
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