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Hyperfine splitting constants of the ground ?B, and excited 24, states of NH, radical are
calculated by the symmetry adapted cluster-configuration interaction method with the use of
the basis set which satisfies the cusp condition at the position of the nucleus. The calculated
values compare well with the experimental values when the vibrational effects are considered
for the 24, state. The nature of the vibrational wave functions for the double well >4, potential

is discussed in some detail.

I. INTRODUCTION

Fermi contact hyperfine splitting constants (hfsc’s) ob-
served by electron-spin resonance (ESR) and microwave
spectroscopy give information on the spin densities at the
nuclei of an open shell molecule. Some experimental data of
the hfsc’s of short-lived electronic excited states have ap-
peared with recent development of spectroscopic tech-
niques. However, up to this time, most theoretical studies of
Fermi contact hfsc’s have been carried out only for the
ground states.

The hfsc’s of NH, and PH, in the electronic excited
states have been observed by microwave spectroscopy.'?
For NH,, the hfsc’s were reported for both ground 2B, and
first excited 24, states, and those in the excited state were
observed for high vibrational states (n = 9,10).! Theoreti-
cal investigation for the vibrational states were reported by
Buenker ez al.® In this paper, we study the Fermi contact
hfsc’s of NH, doublet radical in both 2B, and 24, states.

As written in our previous paper,* three important fac-
tors must be considered for adequate descriptions of hfsc’s:
(1) spin polarization correction,*’ (2) electron correlation
correction,®'! and (3) cusp condition'? at the position of
nuclei.*'>!* These factors are rather poorly described by the
conventional ab initio molecular orbital methods.®'> Sym-
metry adapted cluster-configuration interaction (SAC-CI)
theory'®!” has been shown to be effective for describing both
spin polarization and electron correlation corrections.®
Since this method is very efficient, we can avoid configura-
tion selection. Further, we have shown that the cusp condi-
tion is easily taken into account using the idea of the STO
(Slater-type orbital)-GTO (Gaussian-type orbital) expan-
sion.* Namely, the self-consistent field theory (SCF) and
SAC-CI wave functions are calculated by using the GTO
expansion of the STO’s and the hfsc’s and the cusp values are
calculated using the original STO’s. In the present paper, we
use this method for calculating the potential energy and the
nitrogen and proton hfsc’s for the ground 2B, and excited
24, states of NH, radical. We calculate the vibrational wave
functions for the double well potential of the 24, state and
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show the importance of the vibrational effect for the hfsc’s of
the higher vibrational states of the 4, state.

il. METHOD

We have examined, in our previous paper,* the quality
of several STO basis sets for calculating hfsc’s. We use here
the basis sets which were recommended previously: for ni-
trogen, we use the (5s) STO set of Bagus and Gilbert'® and
(5p)/[2p] contracted GTO for nitrogen'® and for hydro-
gen, two 1s STO’s (£ = 1.0, 0.5), 25 STO (£ =0.5) plus p
type GTO (¢ = 1.0) polarization function. We use the
STO’s only for the s type AO’s, since the cusp values are
dependent essentially only on the s type AO’s. We replace
the above STO’s by the GTO’s using the STO 6G expansion
of Stewart?® when we calculate the integrals necessary for
the SCF and SAC-CI wave functions. After obtaining the
wave functions, we calculate the hfsc’s and the cusp values
using the original STO’s. The computer programs which we
have used are GAMESs?! and sAC85?? for the SCF and SAC-
CI calculations, respectively.

In order to construct the electronic wave function of
NH,, we first calculate the SAC wave function using the
SCF orbitals for the closed-shell anion NH, . Then we con-
struct the doublet B, and 4, wave functions of NH, using
ionization operators in the SAC-CI formalism. In the SAC
step, we have performed configuration selection using the
threshold Ag = 10 ~° a.u., (Ref. 23) but in the SAC-ClI step,
we have avoided it because spin densities are rather sensitive
to this procedure.®

We use the geometry given by Jungen, Hallin, and
Merer.?* The N-H distance and the HNH angle are 1.034 A
and 102.4 deg for the 2B, state and 1.007 A and 144.2 deg for
the 24, state. For the 4, state, the effect of molecular vibra-
tion is taken into account using the following simple method.
We calculate the bending vibrational wave function ¥, (),
n being the vibrational quantum number, as a function of the
valence angle 6 alone, with fixing the N-H distance. We use
the Fourier grid Hamiltonian method of Marston and Ba-
lint-Kurti** for solving the one-dimensional Schrédinger
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TABLE I. Hyperfine splitting constants (Gauss), cusp values, and excitation energies (eV) at the equilibrium
geometries of the 2B, (ground) and 24, (first excited) states of NH, radical calculated by the SAC-CI meth-

od.
Cusp Value hfsc Excitation energy®
State Nucleus  Calc. Exact Calc. Expt.* Calc. Expt.©
2B, (ground) N — 1412 -140 7.27 9.95
H —-232 -20 -2012 —24.12
24, (excited) N — 1412 —-14.0 40.05 55.17 (n=9), 54.59 (n=10) 1.360 1.379
H -239 =20 8.72 17.63 (n=19), 18.63 (n = 10) (2.200)

* Reference 1, the experimental hfsc’s for the 24, excited state are for the vibrational states with the quantum

number n = 9 and 10.

®Nonvertical excitation energy. Value in parentheses shows vertical excitation energy.

 Reference 24.

equation. The potential function in the vibrational Hamilto-

nian is calculated by the SAC-CI method. Although the vi- -

brational coupling effect between the 24, and 2B, states has
some importance for the description of this system, as re-
ported by Dixon?® and Buenker e al.,> we neglect the con-
tribution of the 2B, state and calculate the vibrational wave
functions from the potential energy curve of the 4, state
alone. The reduced mass of NH, is fixed to that at
6 = 145.15 deg, which is the SAC-CI optimized angle, at
any valence angle of NH,, since its dependence on 8 is very
small. Then the expectation value of the hfsc of the nucleus B
for the vibrational level n, az (n), is given by*’

ag(n) =(¥,(0)|az(6)|¥,(0)), (1N

where a, () is the dependence of the hfsc of the >4, state on
the valence angle 6 and is calculated by the SAC-CI method.

11l. RESULTS AND DISCUSSIONS

Table I gives the results for the >B; and 4, states of
NH, at their equilibrium geometries. The cusp values are
slightly larger than the exact values, but the agreement is
good. If we use the GTO’s, these cusp values are essentially
zero in quite a large disagreement with the exact values. The
calculated hfsc’s of the 2B, ground state compare well with
the experimental values. However, those of the 24, excited
state are in disagreement, especially, for proton; the calculat-
ed value is less than a half of the experimental value. A rea-
son for this disagreement is that the experimental values for
the 24, state were observed for the high vibrational states
(n=9,10)." Ifthe hfsc’s of the 24, state are strongly depen-
dent on the bending angle, the vibrational averaging for the
high vibrational states may give values different from those
at the equilibrium geometry. The (nonvertical) excitation
energy calculated by the SAC-CI method fairly agrees with
the experimental value,* in accordance with our experi-
ences.”®

We next calculate the hfsc’s of the first excited 24, state,
considering the effect of the molecular vibration. We first
calculate the potential energy curve and the vibrational wave
functions. Figure 1 shows the potential curve for the valence
angle 6. It is a typical double well potential and is fitted by

the 16th degree polynomial. The minimum is obtained at the
valence angle of 145 deg which compares well with the ex-
perimental value 144 deg.2*?° The barrier height is calculat-
ed to be 569 cm ~ ' which is smaller by about 160 cm ~ ' than
the empirically fitted value 730 cm ~' (Ref. 24). The Ren-
ner-Teller effect is described well by the present electronic
wave function.

The vibrational wave functions are calculated by nu-
merically solving the one-dimensional Schrodinger equation
for the potential given by Fig. 1. The calculated vibrational
energy levels are given in Table II for the vibrational levels
below n = 20, n being the vibrational quantum number. The
first twelve levels are drown in Fig. 1. Reflecting the shallow
double minimum shape of the potential curve, the level spac-
ing is very small for the lower states, but increases as the state
number increases. Since the calculated barrier is 569 cm ~ !,
only the first two states are below the barrier. This is in ac-
cordance with the result of Jungen ef al.**

The energy levels for the £(0,9,0) and I1(0,10,0) states
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FIG. 1. Potential energy curve and the vibrational energy levels for the °4,
state of NH, radical. The energy levels are shown by the broken line.
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TABLE II. Energy and hyperfine splitting constant (hfsc) for the vibra-
tional state of the 24, state of NH,.*

Energy (cm™') hfsc(Gauss)
State
n E, E,—E,_, N H
1 0 E 30.08 —-373
2 110 110 36.73 3.67
3 639 530 32.40 —1.94
4 1120 481 39.32 5.34
5 1723 602 42.05 7.73
6 2386 663 45.03 10.37
7 3106 720 47.58 12.50
8 3874 768 49.93 14.38
9 4 684 810 52.12 16.07
10 5532 848 54.18 17.60
11 6414 882 56.14 19.01
12 7327 913 58.02 20.32
13 8268 941 59.84 21.55
14 9236 968 61.61 22.72
15 10 228 992 63.34 23.84
16 11242 1014 65.04 24.91
17 12 277 1035 66.71 25.94
18 13332 1055 68.36 26.94
19 14 406 1073 69.99 27.91
20 15 496 1090 71.61 28.85

 The barrier of the double well potential is calculated to be 569 cm™".

are calculated as 4684 cm ' and 5532 cm ™!, respectively,
relative to the lowest vibrational level of the 24, state. The
values obtained from the empirical potential curve are 5627
and 6451 cm ™!, respectively.?*

Figure 2 shows the square of the vibrational wave func-
tion calculated for the potential curve shown in Fig. 1. Re-
flecting the double minimum nature of the potential curve,
the lowest two states, which are below the barrier, have two
peaks at near the minimum of the double wells. Interest-
ingly, the lowest state, which is a X state, has a considerable
amplitude at @ = 180 deg, which is just due to the quantum
effect: There is no chance of existence in the classical me-
chanics. The second level is a [1 state so that it has a node at
6 = 180 deg. The third level, which is the first state over the
barrier by 70 cm ', has a maximum peak at § = 180 deg.
The number of peaks is equal to the vibrational quantum
number n. The odd state is £ and the even one II. For the
states n = 4 and 5, the peaks around 6 = 180 deg are still the
highest, but for the states higher than n = 6, the highest
peaks are the outermost peaks. For the states n = 9 and 10,
for which the hfsc’s are observed, the outermost peaks are
considerably larger than the inner ones; as n increases, the
picture approaches to the classical one. In comparison with
the case of the harmonic osscilator,*® the vibrational wave
functions are quite different for the lower levels, but becomes
similar as n increases. However, referring to Fig. 2, we see
that the effect of the double well potential is seen even for the
levels n =9 and 10 as the peaks around 6 = 180 deg being
larger than the neighboring peaks.

We next calculate the vibrational average of the hfsc’s
for the excited 24, state using Eq. (1). Figures 3 and 4 show
the hfsc’s of the N and H nuclei, respectively, vs the valence
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FIG. 2. Squares of the vibrational wave functions for the quantum numbers

of n = 1,2,3,4,5,6,9,10 for the *4, excited state of NH,. They are normal-

ized to unity.
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FIG. 3. Dependence of the calculated hyperfine splitting constant of the
nitrogen atom on the valence HNH angle ¢ for the *4, state of NH, radical.
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FIG. 4. Dependence of the calculated hyperfine splitting constant of the
hydrogen atom on the valence HNH angle 6 for the 24, state of NH, radi-
cal.

angle @ for the 24, state of NH, . They are calculated by the
SAC-CI method. Both of the nitrogen and proton hfsc’s in-
crease as the bending angle increases. The nitrogen hfsc is
positive for all valence angles, but the proton hfsc is negative
for the HNH angle larger than 150 deg, because at linear
geometry the ’4, state becomes a 7 radical. We have fitted
the hfsc curves shown in Figs. 3 and 4 by the 12th degree
polynomials. .

Table II gives the vibrational average of the hfsc’s for the
N and H nuclei for each vibrational level below n = 20. For
the first three levels, the average values of a and a;, show
interesting dependence on n. From n = 1 to 2, both a, and
a,, increase because of the increase of the outerside contribu-
tion, but from n = 2 to 3, the contribution around 6 = 180
deg increases as seen from Fig. 2, so that both a, and aj
decrease. For the levels n = 1 and 3, g, is negative because
in these levels, there are considerable contributions of linear
geometry. For the levels higher than n = 3, the hfsc’s of both
N and H monotonously increase. In comparison with the
hfsc’s calculated at the equilibrium geometry, a, = 40.05 G
and a; = 8.72 G, the vibrational averages are smaller for the
levels lower than n =4 or 5. As the vibrational level in-
creases, the probability amplitude increases in the outer re-
gion within the potential curve as shown in Fig. 2, so that as
seen from Fig. 3 for a, (6) and Fig. 4 for a, (8), the vibra-
tional averages of a, and a increase.

Experimentally, the hfsc’s of the first excited 24, state of
NH, were observed for the vibrational energy levelsof n = 9
and 10. In Table III the calculated values of @y and a for
the vibrational levels n = 9 and 10 are compared with the
experimental values. The agreement is excellent. For the
proton hfsc, the ordering a, (n =9) <ay (n = 10) is ob-
tained from both theory and experiment, but for a,, the or-
dering of the experimental values is ay(n=9)
> ay(n = 10). This ordering of a,, is the one which is diffi-
cult for understanding from the present result alone. As seen
from Table 11, the vibrational averages of both a, and a,
monotonously increase as n increases for the levels higher

TABLE III. Energy levels and the hyperfine splitting constants (hfsc’s)
including the vibrational effects for the excited ?4, state of NH,.

ay ay Energy (cm™")
Vibrational
level n Calc. Expt® Calc. Expt* Calc. Empirical®
9 5212 5517 16.07 17.63 4684 5627
10 54.18 5459 17.60 18.63 5532 6451

? Reference 1.
b Reference 24.

than n = 4, and this is a very reasonable result of the nature
of the vibrational wave functions shown in Fig. 2 and the
dependence of ay and a,; shown in Figs. 3 and 4. The calcu-
lated energies for the vibrational levels n =9 and 10 are
smaller by about 1000 cm ~! than the values obtained from
the empirical potential curve.*

A reason of the failure of reproducing the ordering
ay(n=9)>ay(n=10) may be the neglect of the orbit-
rotation interaction. Hills ez al.! suggested that the orbit—
rotation interaction is larger for the state n = 10 which has
I1 symmetry than for the state n = 9 which has ¥ symmetry.
Since the orbit-rotation effect causes a mixing of the 2B,
state into the 24, state, the hfsc may decrease as a result.
However, this argument does not explain why such ordering
is observed only for a,. Furthermore this effect should be
larger for a,, than for ay, since a,, of the 2B, state is a large
negative as seen from Table I. Due to Hills ez al.,' the experi-
mental values are more reliable for the IT (n = 10) state than
for the 2 (n = 9) state.

IV. CONCLUSION

The hfsc’s for the ground 2B, and excited 4, states of
NH, are calculated by the SAC-CI method using the basis
set which satisfies the cusp condition. For the ground state
the SAC-CI results for the equilibrium geometry are in good
agreement with the experimental values. For the hfsc’s of the
A4, excited state, the observed values are for the high vibra-
tional states, so that a reasonable agreement with the experi-
mental values is obtained only after the inclusion of the vi-
brational effects which are fairly large for the hfsc’s. The
nature of the vibrational wave functions for the double well
?4, potential is discussed in some detail.
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