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A frozen-orbital analysis (FZOA) is proposed in order to understand the nature and the ordering of the excited
states due to the excitations between degenerate orbitals of metal complexes in high symmetry. The FZOA
method represents a direct application of group theory. In the FZOA approach, only a few two-electron
integrals are considered to explain the ordering and the energy splittings of the excited states, which are
brought about by excitations between two degenerate orbitals. Furthermore, FZOA may be utilized to explain
the intensities of the absorption peaks. Here, we apply FZOA to two series of the excited states of MoFs.
Although there are large discrepancies between the actual excitation energies by FZOA and those derived by
more accurate calculations, the ordering and the energy splittings are comparable. This relative agreement
is sufficient to justify an analysis based on FZOA methods. On the basis of the present results, we suggest
that FZOA methods would yield some general insight into the nature of the excited states for molecules of

high symmetry.

L. Introduction

Transition metal complexes are characterized by a variety of
absorption spectra in the visible and UV regions. Extensive
experimental studies of their electronic spectra have been
undertaken.! These results essentially give us information about
the electronic excited states corresponding to dipole-allowed
transitions. Some of the data on the absorption of metal
complex ions in crystalline fields indicate the existence of
several excited states to which dipole transitions are forbidden
in the absence of perturbation. For example, although the lowest
transition of !T; symmetry is forbidden for the tetrahedral
permanganate ion MnQ,~ in solution,? the corresponding
transitions are observed in the lithium and barium salts,
LiMnO4-3H,0 (C3,) and Ba(MnO4)»*3H,0 (C3).> Most photo-
chemical reactions of metal complexes, which are often
important as homogeneous photocatalytic reactions, involve both
allowed and forbidden excited states.*~¢ Here, a more system-
atic understanding of the nature of all of these excited states is
essential in designing photochemical reactions.

Theoretical studies have played important roles in clarifying
the excited states of metal complexes. Early theoretical
approaches were based on the empirical or semiempirical
method, which used experimental values as parameters. The
ligand field theory (LFT) was developed by combining crystal
field theory with molecular orbital (MO) theory.”~!0 In LFT,
the energy levels of the ligand field absorption bands are
estimated with parameters such as Dg, B, and C, which are
inherent in Orgel diagrams!! or Tanabe—Sugano diagrams.!?
An extension of LFT to strong bands, which are caused by
electron transfer between the metal and its ligands, was
presented by Jgrgensen.!%13 Wolfsberg and Helmholtz applied
a semiempirical MO theory to the inorganic complex ions
CrO4*~, MnOy4~, and ClO4~.!* The group overlap integrals
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obtained with the o and & metal—ligand overlaps were used to
estimate the energy levels of the excited states. However, while
of great historical significance, these pioneering approaches do
not necessarily give reliable results due to the use of many
parameters.

The Xa method and ab initio MO methods, such as
configuration interaction (CI) calculations, have also been used
to examine the assignments for the absorption bands. These
methods do not use parameters. However, without the adequate
inclusion of electron correlations, the calculated excitation
energies do not agree well with experimental values, and as a
consequence, several different assignments are proposed.

On the other hand, the accuracy of the symmetry adapted
cluster (SAC)!%/SAC-CI'® method has been confirmed by
application to many organic and inorganic systems.!” For
example, the agreement between the SAC/SAC-CI and full-CI
methods has been verified for small molecules.’®* The SAC/
SAC-CI calculations for several metal complexes, such as
MO4s~ M = Ru, Os, Mn, Tc, Cr, Mo; g = 0~2),19723
Mo0;-,S,2~ (n = 0~4),8 TiL4 (L = C], Br, I),2*?5 CrO,Cl,,?
and SnL, (L = H and CH3),”” have given reasonable and reliable
assignments for experimental absorption peaks. Also, the range
of systems to which the SAC/SAC-CI method can be applied
now has increased because of improvements both in computa-
tional resources and in the nature of computational algorithms.
We have recently applied the SAC-CI method for studying the
excitation spectra of porphyrins; including free-base porphin,
Mg-porphin,?® oxyheme,3{ tetrazaporphin,?! etc.

Recently, Roos and co-workers presented the CASPT2
method.3233 This is a second-order perturbation theory which
uses complete-active-space self-consistent-field (CASSCF) wave
functions. Their method has given reliable results.3435

We are now at a point where we can develop a general rule
and concept regarding the excited states of metal complexes
based on these accurate results. However, electron correlations,
which are essential for accurate descriptions, as mentioned
above, are different in excited states even for the same
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complexes. Therefore, it is difficult to explain theoretical results
using such correlation effects alone.

In this report, we propose a frozen-orbital analysis (FZOA)
to explain the ordering and the splitting of excited states of
identical term-multiplicity. We report here a preliminary result
of the application of FZOA to two series of the excited states
(7t1y — 3tz and 6t;, — 3tz,) of octahedral MoFs. Despite some
large discrepancies between the excitation energies in FZOA
and SAC-CI calculations, the energy ordering and the splitting
are comparable by the two methods. The origin of the different
orderings of the 7t;, — 3ty and 6t;, — 3ty excited states is
clarified by the present analysis. Furthermore, FZOA may be
used to explain also the strengths of the two peaks due to 7t;,
— 3ty and 6t;, — 3ty excitations. In conclusion, we give a
general rule for the excited states of the two t;, — t; excitations
of octahedral metal complexes.

II. Principle of Frozen-Orbital Analysis (FZOA)

We present here an expression for the excitation energies
between degenerate MOs based on the FZO approximation,
which corresponds to a first-order perturbation treatment with
the use of Hartree—Fock (HF) wave function. In comparison,
we first show the singlet and triplet excitation energies between
nondegenerate MOs by the FZO approximation and discuss them
in terms of Hund’s rule.3® Next, to explain the ordering and
the splitting of the excited states between the same degenerate
MOs, we present the methodology of FZOA, in which the
various two-electron integrals in the energy expressions are
analyzed using the densities and transition densities.

In the first-order perturbation treatment, the singlet and triplet
excitation energies !AE and 3AE of the transitions from a
nondegenerate ith MO ¢; to another nondegenerate ath MO ¢,
are represented by

'"AE=(¢,— €) + (—J, + 2K,) 1)
AE= (e, — €) + (—J,) ¥))

where € is the orbital energy and J and K are Coulomb and
exchange integrals, respectively. On comparing eqs 1 and 2,
one notes that the energy difference between the singlet and
triplet states falls by 2Kj,. Since K > 0, we immediately obtain
the correct sign for the energy splitting. This explains Hund’s
rule of maximum multiplicity in which, for a given electronic
configuration, the state with the highest multiplicity has the
lowest energy.3¢ This explanation for singlet—triplet separation
is generally accepted in many texts on quantum mechanics.
However, in fact, the difference is negative when it is evaluated
with accurate wave functions. Many theoretical studies have
tried to clarify the reasons for this discrepancy.37—48

According to the study on He by Kohl,*® the electron—
electron repulsion energy for the same pair of spatial orbitals,
which is smaller for the triplet than for the singlet, is not the
dominant contribution to the total energy. In the transition from
the first-order perturbation treatment to the exact solution, the
redistribution of charge results in a substantial lowering of the
nuclear attraction term in the triplet, which determines the energy
levels of the singlet and triplet states. Nevertheless, we think
that a discussion of the first-order perturbation treatment is
important.

Next, we discuss systems with higher symmetries, such as
O and T;. We consider O, as an example. The present
discussion can be easily extended to other symmetries. In
general, octahedral metal complexes have six o-character MOs,
ajg, €y, and ty, and 12 s-character MOs, tyg, tog, t1y, and ty,, all
of which consist of the p orbitals of the ligands. The d orbitals
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of the metal are split into t; and e; MOs by the octahedral
ligand field. For d° complexes such as MoFg, the valence
excited states in the UV —visible region have the nature of one-
electron excitations to the t;; MOs of the metal d orbitals. On
the other hand, one-electron excitations from the t;; MOs are
seen in the valence excited states of d® complexes such as Mo-
(CO)s. These statements are verified by SAC/SAC-CI calcula-
tions in the present and separate studies.*®° The symmetries
of the lower excited states, therefore, correspond to the right-
hand side of the following equations of direct-product decom-
position:

Ay X by =y 3

€ X L =t;, + by @)

tig X tzg=a2g+eg+t1g+t2g ®))
by X by = ay, + e, + tig + thy 6)
ty X by =2y, T e, +, T, )
by Xy =a, e+, +, ®)

In the cases of eqs 4—8, which correspond to the excitations
between degenerate MOs and give plural excited states, eqs 1
and 2 are not applicable and do not explain the splittings among
the excited states.

Excitation from t;, to ty; can be considered as an example.
When three ¢;, ¢;, and ¢ MOs of t;, symmetry are assigned to
by (), b (), and bz, (x) elements of D,, symmetry,
respectively, and ¢, ¢, and ¢. MOs of tp; symmetry are
assigned to byg (xy), bag (2x), and bsg (yz) elements, respectively,
single excitations from (¢, ¢;, and ¢x) to (da, P», and ¢.) can
be mapped onto three categories of irreducible representations
of Dzh:

Ay G~ ¢ &b B, ©)
By &—¢., 6~ (10
By &9 00, €3]
By 6~ ¢, 12)

The four distinct states on the right-hand side of eq 7 give rise
to the following wave functions:

Ay WA)=(N3@+ P +0° (13)

E: WA)=1N2)@ - @) (14)
WA = ANV6)N@ + @) — 20,  (15)
T, W(B,) = (1N2)(@ + D)) (16)
W(B,,) = (IIV2)(®@* + ) 17)
W(B,,) = (IV2)(@] + @) (18)
T, W(By) = (IN2)(@ — @) (19)
W(B,,) = INV)@ — ©)) (20)
¥(B,,) = (INV2)@' - @) @1)
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where @/ is the symmetry-adapted configuration state function
of the single excitation from ¢; to ¢,. In the FZO approximation,
the singlet excitation energies are calculated to be

'AE(A,) = (e, — €) + (—J,, + 2K,) +
2{2(ailjb) — (ablij)} (22)

'AEE) = (¢, — €) + (—J,+ 2K,) —
{2(ailjb) — (ablij)} (23)

'AE(T,) = (¢, — €) + (—J,, + 2K;,) +

{2(ajlib) — (ablif)} (24)
'AE(T,,) = (¢, ~ €) + (—J,, + 2K,)) —

{2(ajlib) — (ablij)} (25)

where (ai|jb), (aj|ib), and (ab|ij) are four-center two-electron
integrals. To derive eqs 22—25, we use the symmetric rule for
the integrals; for example, €, = €, = €., Jis = Jjp = Ji, (ablij)
= (bc|jk) = (calki), etc. Note that the values of J;; and Jj; and
also those of K, and Kj, are different, despite the use of the
symmetric rule. As in the singlet case, the triplet excitation
energies are represented by

*AE(Ay) = (e, — €) + (=J;) = 2(abli)  (26)
AEE) = (c,— €) + (—J) +(@bli) @7
AE(T,,) = (e, — €) + (=J;,) = (abli) (28
AE(T,,) = (e, — €) + (—J;) + @bli)  (29)

These energy expressions in eqs 22—29 are derived directly
using group theory, as indicated above. Similar expressions
were presented in a semiempirical MO study by Wolfsberg and
Helmholtz.!* The semiempirical MO method used these
expressions for parametrization, i.e., the integrals in the equa-
tions were estimated from known experimental values and the
excitation energies were calculated using these parameters. On
the other hand, the use of energy expressions here is quite
different from that in the previous study. Now we are able to
obtain accurate solutions by ab initio MO methods that
adequately include the correlation effects. Therefore, we use
eqs 22—29 to understand the ordering and the splitting of the
excited states, as calculated by the more accurate method.

The right-hand sides of eqs 22—29 can be divided into three
parts:

AE=A+B+C (30)

where A is the orbital energy difference, B is the (—J + 2K) or
(—J) term, and C is the remaining term. Figure 1 shows a
schematic illustration of the energy splitting of the four singlet
excited states of t;, — tz;. The energy level on the left-hand
side of Figure 1 is the contribution of the A term, which does
not produce energy splitting for excitations between the
degenerate MOs. The two energy levels in the middle are due
to the B term, which produces energy splitting between (1Az,,
IE,) and ('Tiy, 'T2y). The four energy levels on the right-hand
side are due to the C term, which produces further energy
splittings between !A,, and 'E, and between !T;, and 1T5,.
Analysis of two-electron integrals such as Jis, Jia, Kia, Kjas
(ailjb), (aj|ib), and (ab|ij) is important for an understanding of
the above energy splittings. The spatial distributions of the
electron densities ¢*(r)¢;(r) and ¢.*(r)¢a(r) are associated
with Jj,, i.e., the integral decreases as the distance between the
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1y T +§Kja [tu—t2 excitation |
-Jia+2Kia _&_
{2(ajlib)-(ablij)}

€a8i (Tt {2aiib)-(abli}

N | {2(ailib)(abij)}
Cam'En) T 2{2(ailjb)-(abij)}

A

A A+B  A+B+C
Figure 1. Illustration of the energy splitting of the four singlet excited
states, Ay, 'Ey, 'T1y, and 1Ty, of the ty, — tp, excitation. The splitting
between (*Ay,, 'E,) and (*Tiy, 'T2s) is due to the B term in eq 30. Further
splitting between 'A,, and 'E, and between 'T), and 'Tj, is due to the
C term.

electron densities increases. For both Kj, and (aj|ib), the
transition density or the overlap between the two molecu-
lar orbitals, ¢.*(r)¢;(r), provides a large contribution. The
difference between the maxima of transition densities of
&*(N)gi(r) and ¢*(r)gy(r) is also important for (aj|ib). Of
course, the integrals [¢.*(r)¢;(r) dr and f¢*(r)¢s(r) dr both
vanish due to the orthogonality of the MOs.

The intensities of the absorption bands are calculated by using
the square of the transition dipole moment. The transition dipole
moments for the four states of t;, — t,, are calculated as follows:

(W AP = (VB)(DoIr| @) + (Dolr| D)) +
(@o|r® N =0 (31)

(WCE,)IrI®p) = AIV2)(Dlr| @ — (DlrI @) = 0 (32)

(W(TIr g = AV2)(@IrI D)) + (Dolr| @) =
Vg, Irig) (33)

(W('T,)I71®p) = UV2)( DI D, — (Polr| @) = 0
(34)

Here, the individual terms in the middle of eq 34 are nonzero,
while those in eqs 31 and 32 are zero. Furthermore, since the
integration for the transition dipole (¢,|r|¢;) includes the
transition density term ¢.*(r)¢;(r), this integral is expected to
behave similarly to the above integrals Kj, and (aj|ib).

Energy expressions for the excitations of tjg — tag, tzg — tog,
tau = tzg, €tC., may be derived similar to eqs 22—29 given for
tiu — tzg. The behavior of these splittings is analogous to that
of the excited states of tjy — tzg shown in Figure 1. In the
cases of tjg — tzg and tpg — tag, the elements corresponding to
eqs 31—34 are always zero, and the four states are all dipole-
forbidden. It is noted that these relationships for the energies
and the transition dipole moments hold for octahedral molecules
in general, regardless of the numbers of electrons involved, since
they are derived using only group theory.

III. Application of FZOA to Octahedral MoF¢

In this study, we adopt MoFg as an example of an application
of the FZOA method to octahedral metal complexes. We
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occupied MOs

Mo Mok Fg

Figure 2. Schematic orbital correlation diagram for MoFs valence
occupied MOs are o-character MOs, 7ay,, 7eg, and 7ty,, and sz-character
MOs, 2tyg, 6t1y, 1t, and 2t;4, of the ligands. The unoccupied 3t;; and
8e; MOs are the 4d orbitals of Mo. Inserts show the 7t;, and 6t;, MOs.

calculated the ground and excited states of MoFg by the SAC/
SAC-CI method.!>!¢ The active space of the SAC/SAC-CI
calculations includes the higher 18 occupied MOs and the lower
127 unoccupied MOs obtained by the HF method. For the SAC
and SAC-CI calculations, energy thresholds of 3.0 x 1075 and
4.0 x 1075 hartree were used to select the linked configuration
state functions, respectively.>! The HF calculation was carried
out using the program HONDOS8.52 The program system
SAC85% was used for SAC-CI calculations.

The Gaussian basis set used for the molybdenum atom is the
(43333/433/43)/[433321/4312/421] set of Huzinaga® augmented
with two diffuse s (0.012 01 and 0.005 856) and four diffuse p
(0.081, 0.026, 0.011 04, and 0.005 455) functions. For fluorine,
we use the (73/7)/[721/61] set of Huzinaga’* augmented with
one p anion basis (0.074)°° and two d polarization functions
(3.559 and 0.682).3

Figure 2 shows the schematic orbital correlation diagram for
MoFg. Rydberg 6s, 6p, and higher orbitals are not shown. The
valence occupied MOs consist of three o-character MOs, 7ayg,
Teg, and 7t1,, and four s-character MOs, 2tyg, 6t1y, 1tz,, and
2t1g. The difference between the 7t;, and 6t;, MOs is illustrated
in Figure 2. The b;, element of the 7t;, MOs has large
amplitudes in the two ligands on the z axis, while that of the
6t;y MOs in the four ligands on the xy plane. Since the 3t
and 8eg MOs due to the 4d AOs of Mo are unoccupied, MoFs
is called a d° complex. Strictly speaking, the 4d AOs of Mo
contribute to the 7eg; and 2t;; MOs, the 5s AO contributes to
the 7a;; MOs, and the 5p AOs contribute to the 6t;, and 7t1,
MOs.

We examine here two excitations from t;, to ty; as an
example, i.e., 7t;y — 3ty and 6t;, — 3tye. All of the excited
states of MoFg in the visible and UV regions will be discussed
elsewhere.*® Figure 3 shows the calculated excitation levels of
the 7t;u — 3ty and 6t;, — 3ty excitations of MoFg by the SAC/
SAC-CI method in comparison with the FZO approximation.
Figure 3 also shows the peak position of the UV spectrum of
MoFs. On the basis of the SAC-CI results, we can assign the
experimental peaks to the allowed transitions to the 'T}, states.
The discrepancies between the theoretical and experimental
results are 0.34 and 0.12 eV, respectively. The oscillator
strength for the 6t;, — 3ty excitation is calculated to be 0.428,
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Figure 3. Energy levels of the 7t;, — 3ty and 6t;, — 3ty, excitations
of MoFs calculated by the SAC/SAC-CI method and the FZO
approximation compared with the experimental peak positions of the
UV spectrum.

which is greater than that for the 7t;, — 3ty excitation (0.022).
This trend agrees with the experimental intensities for the two
peaks. We also calculated the 'Aj,, 'E,, and !T,, states
corresponding to the forbidden transitions. The ordering of these
four states differs between the 7t;, — 3tzg and 6t;, — 3ty
excitations, i.e., !Toy < 'T1y < Ey < 'A, and Ay, < 1E, <
Ty, < 1T}y, respectively.

These FZO calculations do not give quantitative results, since
this treatment corresponds to the single-excitation (SE) CI
calculation with a minimum active space [3 x 3]. In fact, the
excitation energies are shifted upward by 1.95—2.59 €V, in
comparison with the SAC-CI results shown in Figure 3.
However, the ordering of the four states from the FZO
approximation agrees with the SAC-CI results. Furthermore,
in the FZO approximation, the energy splittings between the
1T,, and T}, states are greater than those between the !E, and
1A,, states for both excitations, which also agrees with the SAC-
CI results. Thus, the energy orderings and the splittings of the
FZO approximation conserve various features of the accurate
calculations that include the effects of electron correlations.
Since the four states have the same term-multiplicity, the
electron correlations for these states may be similar to each
other. This agreement allows us to use the FZOA method to
explain the complicated excited states of MoFs. We can imagine
that the present results are similar to those associated with the
use of Hund’s rule.

Table 1 shows the numerical data for the orbital energies and
two-electron integrals in eqs 22—25. The absolute values of
the Coulomb integrals are greater than those of the exchange
and four-center integrals. The order of the (ailjb) and (aj|ib)
four-center integrals is the same as that of the exchange integrals.
The relationship between (1A,,, 'E,) and (1Tiy, 'Tay) of the 7ty,
— 3ty excitation is determined by the difference between the
Coulomb integrals. On the other hand, the relationship between
(1A, 'Ey) and (ITyy, !Tau) of the 6ty, — 3ty excitation is
determined by the difference between the exchange integrals,
since the difference between Jj, and Jj, is small. The 3ty; MOs
are the d,y, d, and d,. AOs of Mo, and the 7t;, and 6t;, MOs
are the o- and 7-character MOs of the ligands, as mentioned
above. For the 7t;, and 3tz MOs, the J;; and Jj, electron
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TABLE 1: Numerical Data for the Orbital Energies, Coulomb, Exchange, and Four-Center Two-Electron Integrals in Eqs
22—25 for the 7t'y, — 3ty, and 6tlu — 3t2g Excited States of MoF¢*

A term B term C term
Ji Kia (ailjb)
€ €4 total Jia Kja total (ajlib) (ablij) total
Tt — 3tzg
1Az —18.7537 —3.1640 15.5897 7.5155 0.0260 —7.4635 0.0151 0.0046 0.0512
E, —18.7537 —3.1640 15.5897 7.5155 0.0260 —7.4635 0.0151 0.0046 —0.0257
T —18.7537 —3.1640 15.5897 8.3439 0.2327 —7.8785 0.1464 0.0046 0.2882
Ty —18.7537 —3.1640 15.5897 8.3439 0.2327 —7.8785 0.1464 0.0046 —0.2882
6ty — 3tzg
1A% —19.8194 —3.1640 16.6554 8.0803 0.0517 —7.9769 0.0298 0.0816 0.0440
'E, —19.8194 —3.1640 16.6554 8.0803 0.0517 —7.9769 0.0298 0.0816 —0.0220
T —19.8194 —3.1640 16.6554 8.1323 0.3891 —7.3541 0.3101 0.0816 0.5386
Ty —19.8194 —3.1640 16.6554 8.1323 0.3891 —7.3541 0.3101 0.0816 —0.5386

¢ The terms A, B, and C are defined in eq 30.

(a) Jia

(b) Jja

Figure 4. Analysis of the J;, and J;, electron repulsions. Parts a and
b correspond to Jj, and Jj, between the 7t;, and 3t;; MOs, respectively.
Parts ¢ and d correspond to J;; and Jj, between the 6ty and 3t,, MOs,
respectively. R; (i = 1, 2, 3, 4, and 5) is defined qualitatively as the
distance between the main amplitudes of the relevant electron densities.

repulsions are illustrated in Figure 4, parts a and b, respectively.
The distance R; between the electron densities of 7t;, and 3t
MOs in the J;, integral is much smaller than the distance R, in
the J;, integral, which explains why one finds that Ji; < Jj,.
For the 6t, and 3ty; MOs, the J;; and Jj, repulsions are illustrated
in Figure 4, parts c and d, respectively. Although the relation-
ship R4 > R3 > Rs may exist for the distances in Figure 4, the
differences among these distances are small and do not lead to
any significant difference between J;, and Jj,, as shown in Table
1.

The exchange integrals K, and Kj, include the transition
densities @.*(r)¢i(r) and ¢.*(r)@;(r), respectively. Since the
¢; MO with by, symmetry has a node on the xy plane, while
the ¢, MO is mainly the d,, AO of Mo, the overlap between
the ¢; and ¢, MOs is always zero in the xy, yz, and zx planes
for both the 6t;, — 3ty; and 7t;, — 3ty excited states. On the
other hand, the overlap between the ¢; and ¢, MOs is nonzero,
since the ¢; MO with by, symmetry includes the p, orbitals of
the ligands. This explains why we find K, < Kj,. As illustrated
in Figure 5a,c, the overlaps between the ¢; and ¢, MOs for the
Tt — 3tyg and 6t;, — 3t excited states have main amplitudes
near the y and x axes, respectively. Another difference between
these states is that the signs of the neighboring amplitudes are
different and the same in Figure 5, parts a and c, respectively.
The amplitudes with different signs decrease the value of Kj,
in the integration. Therefore, the value of Kj, for the 7t;, —
3ty excitation is smaller than that for the 6t;, — 3ty, excitation.

Since the phases of the ¢; and ¢, MOs do not match as well
as those of the ¢; and ¢, MOs, the (ai|jb) four-center integrals
are smaller than the (aj|ib) four-center integrals. This difference

7t1u—>3t2g

(a) Pa(r)x5(r)

g lx -

|9 3 - (ajlib)
(b) Pp(r)x¢i(r)
/ L -
///.ﬁé) //X — // o /
A _/ f Lo Hi=
() Pa(r)x¢y(r) |
’_ge ‘ x 8 ; 88 ] F: .. ;! Kja
Bl g B (ajlib)
(d) gp(r)xg;(r)
s
e %

e
Figure 5. Analysis of the Kj, exchange integral and the (aj|ib) four-
center integrals. Parts a and b are the distribution of the transition density
between the ¢; (bz,) and ¢, (b;g) MOs and that between ¢; (b1,) and ¢,
(bzg) MOs, respectively, for the 7t;, — 3ty excited states. Figures ¢
and d show the same distributions for the 6t;, — 3ty excited states.

leads to the larger energy splittings between the T, and Ty,
states compared with the splittings between the 'A,, and 'E,
states. For the 6t;, — 3tyg and 7t;, — 3ty states, the different
orderings of the Ay, and !E, states are due to the different sign
of the C term in eq 30. As illustrated in Figure 5b,d, the
overlaps between the ¢; and ¢, MOs for the 7t;, — 3t;; and
6t1, — 3ty states have their maximal amplitudes near the z and
x axes, respectively. Since the distance between the amplitude
maxima of ¢.*(r)¢i(r) and ¢;*(r)ds(r) is smaller for the 6t;,
— 3ty state than that for the 7t;, — 3ty state, the former has
a larger value of (aj|ib). Therefore, the splitting between the
1T, and Ty, states of the 6t;, — 3ty state is greater than that
of the 7t;, — 3ty state.

Due to the mismatch of the phases of the ¢, and ¢; MOs, the
transition dipole moments of {¢,|r|¢;) are zero. On the other
hand, the transition dipole moments of (¢,|r|¢;) have x elements.
As a consequence, the order of the three integrals {K, Kia},
{(ailjb), (ajlib)}, and {{¢a|r|¢:), {¢alr|$;)} is similar in each case,
since the transition density contributes equally to these integrals.
On account of the different separations between the plus and
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minus amplitudes of ¢,*(r)¢i(r) in the x-axis direction, the
transition dipole moment (@,|x|¢;) of the 6t;, — 3ty state is
greater than that of the 7t;, — 3tp, state. This result shows
that the intensity of the excitation from the 7zz-character MO of
the ligands to the d orbitals of the metal is greater than that
from the o-character MO of the ligands.

The present discussion gives a qualitative explanation for the
ordering and the splitting of the four excited states with the
Ttiw — 3tyg and 6t;, — 3ty excitation nature. The energy
splitting of the excited states calculated by the SAC-CI method
is not determined solely by the simple B and C terms in eq 30.
However, the analysis of these terms can provide a good
explanation of the excited states of metal complexes. Since
the analyses of the two-electron integrals in eqs 22—25 are
mainly based on the symmetries and the bonding characters (o
or i) of the relevant MOs, the results of the present study can
be applied to all octahedral metal complexes. Thus, the
following relationships are established as general rules for the
excited states of octahedral metal complexes:

(i) Ordering
Ty, < 'Ty, < (B, < 'Ay) 1, (0) =3t
(Ag <'B) <'Tp <'Tyy 1, () — 3ty
(i) Splitting
AE('T,) — AE('T,) > |AE('A,,) —

AE(CE)| ty, (0, ) —3t,

(iii) Intensity
10Ty m) > I(T,; 0) by, () — 3ty vs ty, (0) = 3t

where the parentheses in (i) indicate that the ordering of the
IE, and 'A,, states is uncertain because of the small splitting
between them.

Finally, using the FZOA approach, we are able to predict
the ordering and the splitting of triplet states within the ti, (0)
— 3ty and ty, (;r) — 3ty excitations, which are not calculated
for MoFg in the present study. The energy expressions of the
triplet excitations in eqs 26—29 do not include the exchange
integrals Kj, and Kj,, which lead to the difference in the ordering
for the singlet excited states of the two excitation series.
Likewise, they do not include the integrals (ailjb) and (aj|ib),
which produce the difference in splitting for the {!Tyy, Ty}
and {!E,, !A,,} states. Therefore, the following relationships
may be established for triplet states:

(iv) Ordering
3T1u < 3T2u < 3A‘Zu < 3Eu tlu (U’ .7!) - 3t2g
(v) Splitting
AE(CT,) — AECT,) < AECE,) —
AECA,) t, (0, m) —3t,
AECT,) — AECT,)) < AE('T,) —
AE('T,) triplet vs singlet

IV. Conclusion

In this report, we have proposed a frozen-orbital analysis
(FZOA) for examining the excited states of metal complexes.
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This analysis provides an explanation of the ordering and the
splitting of excited states due to the excitations between
degenerate MOs.

We applied FZOA to the two t;, — tp, excitations of the
octahedral MoFg complex. This excitation gives four states:
1Agy, 'Ey, 'T1u, and !Toy. The energy levels of the (1Ag, 'Ey)
and ('Ty,, !T,,) states are determined by the bonding characters
of the t;, MOs, i.e., 0 and 7. The energy splitting between the
IT,, and 'T», states is larger than that between the !A,, and 'E,
states for both excitations. The difference in the transition dipole
moment of the two excitations is explained by FZOA. Fur-
thermore, the energy levels of the triplet states are predicted by
FZOA.

It is noted that the splitting scheme obtained by FZOA does
not depend on the numbers of electrons of molecules. Since
the FZOA approach essentially uses the symmetries and the
bonding characters of the relevant MOs, it can be applied to
any systems of high symmetry and gives a general rule and
concept for the ordering of the excited states. Apart from metal
complexes, the method of FZOA has wider application, e.g., in
understanding the energy levels of the excited states of organic
molecules, metal clusters, or fullerenes. We are currently using
FZOA to study several species under Oy, Ty, and I, symmetries
and also to investigate linear molecules.

Acknowledgment. The calculations were performed using
computers at the Institute for Molecular Science. This study
was supported in part by a Grant-in-Aid for Scientific Research
from the Japanese Ministry of Education, Science, and Culture
of Japan and by the New Energy and Industrial Technology
Development Organization (NEDO).

References and Notes

(1) Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier:
Amsterdam, 1968.

(2) Teltow, J. Z. Phys. Chem. 1938, B40, 397; 1939, 43, 198.

(3) Johnson, L. W.; McGlynn, S. P. J. Chem. Phys. 1971, 55, 2985;
Chem. Phys. Lett. 1971, 10, 595. Johnson, L. W.; Hughes, E.; McGlynn,
S. P. J. Chem. Phys. 1971, 55, 4476.

(4) Balzani, V.; Carasitti, V. Photochemistry of Coordination Com-
pounds; Academic Press: New York, 1970.

(5) Adamson, A. W., Fleischauer, P. D., Eds. Concepts of Inorganic
Photochemistry, Wiley-Interscience: New York, 1975.

(6) Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry;
Academic Press: New York, 1979.

(7) Figgis, B. N. Introduction to Ligand Fields; Interscience: London,

69

(8) Ballhausen, C. J. Introduction to Ligand Field Theory, McGraw-
Hill: New York, 1962.
(9) Jgrgensen, C. K. Modern Aspects of Ligand Field Theory;

North-Holland: Amsterdam, 1970.

(10) Jgrgensen, C. K. Absorption Spectra and Chemical Bonding in
Complexes; Pergamon Press: Oxford, UK., 1962.

(11) Orgel, L. E. J. Chem. Phys. 1955, 23, 1004; J. Chem. Soc. 1952,
4756; Q. Rev., Chem. Soc. 1952, 8, 422.

(12) Tanabe, Y.; Sugano, S. J. Phys. Soc. Jpn. 1954, 9, 753, 766.

(13) Jgrgensen, C. K. Mol. Phys 1959, 2, 309; 1962, 5, 271; Prog. Inorg.
Chem. 1971, 12, 101.

(14) Wolfsberg, M.; Helmholtz, L. J. Chem. Phys. 1952, 20, 837.

(15) Nakatsuji, H.; Hirao, K. J. Chem. Phys. 1978, 68, 2035.

(16) Nakatsuji, H. Chem. Phys. Lett. 1978, 59, 362; 1979, 67, 329, 334.

(17) Nakatsuji, H. Acta Chim. Hung. 1992, 129, 719.

(18) Nakatsuji, H.; Hirao, K. Int. J. Quantum Chem. 1981, 20, 1301.

(19) Nakatsuji, H.; Saito, S. Int. J. Quantum Chem. 1991, 39, 93.

(20) Nakai, H.; Ohmori, Y.; Nakatsuji, H. J. Chem. Phys. 1991, 95,
8287.

(21) Hasegawa, J.; Toyota, K.; Hada, M.; Nakai, H.; Nakatsuji, H. Theor.
Chim. Acta 1995, 92, 351.

(22) Jitsuhiro, S.; Nakai, H.; Hada, M.; Nakatsuji, H. J. Chem. Phys.
1994, 101, 1029.

(23) Nakatsuji, H.; Saito, S. J. Chem. Phys. 1990, 93, 1865.

(24) Nakatsuji, H.; Ehara, M., Palmer, M. H.; Guest, M. F. J. Chem.
Phys. 1992, 87, 2561.

(25) Nakatsuji, H.; Ehara, M. J. Chem. Phys. 1994, 101, 7658.

(26) Yasuda, K.; Nakatsuji, H. J. Chem. Phys. 1993, 99, 1945.



Excited States of Metal Complexes

(27) Yasuda, K.; Kishimoto, N.; Nakatsuji, H. J. Phys. Chem. 1995,
99, 12501.

(28) Nakatsuji, H.; Hasegawa, J.; Hada, M. J. Chem. Phys. 1996, 104,
2321.

(29) Hasegawa, J.; Hada, M.; Nakatsuji, H. Chem. Phys. Lett. 1996,
250, 159.

(30) Nakatsuji, H.; Hasegawa, J.; Hada, M. Chem. Phys. Lett. 1996,
250, 379.

(31) Toyota, K.; Hasegawa, J.; Nakatsuji, H. Chem. Phys. Lett. 1996,
250, 4317.

(32) Andersson, K.; Malmqvist, P.-A.; Roos, B. O.; Sadlej, A. J.;
Wolinski, K. J. Phys. Chem. 1990, 94, 5483.

(33) Andersson, K.; Malmgqyvist, P.-A.; Roos, B. O. J. Chem. Phys. 1992,
96, 1218.

(34) Roos, B. O.; Fiilscher, M. P.; Malmgqvist, P.-A.; Serrano-Andrés,
P.-L.; Merchén, M. Quantum Mechanical Electronic Structure Calculations
with Chemical Accuracy; Langhoff, S. R., Eds.; Kulter: Dordrecht, The
Netherlands, 1994; Chapter 8.

(35) Andersson, K.; Roos, B. O. Modern Electronic Structure Theory;
Yarkony, D. R., Eds.; World Scientific Publishing: New York, 1994; Vol.
1.

(36) Hund, F. Z. Phys. 1925, 33, 345.

(37) Messmer, R. P.; Briss, F. W. J. Phys. Chem. 1969, 73, 2085.

(38) Accad, Y.; Pekeris, C. L.; Schiff, B. Phys. Rev. 1971, A4, 516.

(39) Katriel, J. Theor. Chim. Acta 1972, 23, 309.

(40) Kohl, D. A. J. Chem. Phys. 1972, 56, 4236.

(41) Boyd, R. J.; Coulson, C. A. J. Phys. 1973, B6, 782.

J. Phys. Chem., Vol. 100, No. 39, 1996 15759

(42) Colpa, J. P; Islip, M. F. J. Mol. Phys. 1973, 25, 701. Colpa, J. P.;
Thakkar, A. J.; Smith, V. H,, Jr.; Randle, P. Ibid. 1975, 29, 1861.

(43) Killingbeck, J. Mol. Phys. 1973, 25, 455.

(44) Coulson, E. A. J. Phys. 1973, B6, 2618. Coulson, E. A.; Coulson,
C. A. Ibid. 1974, B7, 1574. Coulson, E. A. Ibid. 1975, BS, 1926.

(45) Shim, L; Dahl, J. P. Theor. Chim. Acta 1978, 48, 165.

(46) Tatewaki, H.; Tanaka, K. J. Chem. Phys. 1974, 60, 601.

(47) Boyd, R. J. Nature 1984, 310, 480.

(48) Warmer, J. W.; Berry, R. S. Nature 1985, 313, 160.

(49) Nakai, H.; Morita, H.; Tomasello, P.; Nakatsuji, H. Unpublished
work.

(50) Nakai, H.; Morita, H.; Hanada, H.; Nakatsuji, H. Unpublished work.

(51) Nakatsuji, H. Chem. Phys. 1983, 75, 425.

(52) Dupuis, M.; Farazdel, A. Program System HONDOS from MO-
TECC-91, 1991.

(53) Nakatsuji, H. Program System for SAC and SAC-CI calculations;
Program Library No. 146 (Y4/SAC), Data Processing Center of Kyoto
University, 1985; Program Library SAC85, No. 1396, Computer Center of
the Institute for Molecular Science, 1981.

(54) Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.;
Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for Molecular Calculations;
Elsevier: New York, 1984.

(55) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry;
Schaeffer, H. F., III, Eds.; Plenum: New York, 1977; Vol. 3.

JP960310X



