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Relativistic theory of the magnetic shielding constant:
a Dirac—Fock finite perturbation study
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Abstract

Four-component relativistic theory of the magnetic shielding constant is presented, based on the matrix Dirac-Fock finite
perturbation method and implemented for numerical calculations with the MOLFDIR program. In contrast to the
non-relativistic and quasi-relativistic formalisms, the shielding constant is written as a single term. Our formulation avoids
explicit use of the positron states, in contrast to the conventional sum-over-states formalism. The magnetic shielding
constants of the noble gas atoms, He through Xe, and those of H.. HF and HCI are calculated and compared with values
obtained in non-relativistic calculations. © 1998 Elsevier Science B.V.

1. Introduction and gallium and indium tetrahalides. Further, replac-
ing the SO operator with an SO effective core poten-
tial [7], this method was applied to Si [8], Al [8], Sn
[10]. Nb and Ti [11] chemical shifts in their tetra-
halides. The normal halogen dependence (NHD) of
the chemical shifts of these compounds were poorly
reproduced in the absence of the SO interaction and
thus the importance of the SO effect was amply
demonstrated.

The spin-free relativistic (SFR), i.e. mass—veloc-
ity (MV) and Darwin (DW), terms have further been
incorporated into a quasi-relativistic two-component
no-pair formalism using the SO—UHF method [12]
and applied to H [12], Hg [13] and W [14] chemical
shifts of hydrogen halides, mercury dihalides and
tungsten hexahalides and tetraoxides. The SFR terms

' Kyoto University—VBL Visiting Professor and JSPS Fellow. were shown to strongly couple with the SO terms,

The importance of relativistic effects on magnetic
shielding was suggested theoretically many years
ago, but almost no actual calculations have been
performed due to the lack of a computationally
systematic method [1-4].

Recently we have presented 4 method for comput-
ing the magnetic shielding constant under the influ-
ence of the spin—-orbit {SO) interaction using unre-
stricted Hartree—Fock (UHF) wavefunctions with the
finite perturbation (FP) method. We call the ap-
proach the SO-UHF method [5]. This method has
been applied to the proton, C [5], Ga and In [6]
chemical shifts in the hydrogen and methyl halides
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affecting significantly the chemical shifts of heavy
elements, Hg in particular. The SFR effects alone
were rather small due to the locality of the effect.

The SO-UHF method is an approximate method,
with incomplete inclusion of the spin—dipolar term,
which is small for light nuclei [5]. To correct this
defect, the generalized UHF (GUHF) method, which
includes the SO interaction and the SFR terms (SO-
GUHF) was developed [15]. The GUHF method is a
quasi-relativistic two-component method in the
mean-field approximation. Recently, Fukui et al. [16]
have presented a gauge-invariant formalism which
includes the magnetic vector potentials in the spin-
orbit operator, but the additional terms were shown
to be numerically quite small in practice. Malkin and
coworkers [17,18] later showed the importance of the
SO effect in density functional studies of nuclear
magnetic shielding constants.

In view of the importance of the relativistic ef-
fects on magnetic shielding constants [5—15], four-
component ‘fully’ relativistic theory should be for-
mulated and applied to heavy atoms and to molecules
which contain heavy atoms. In general, for systems
consisting only of light elements, the non-relativistic
Schrodinger equation satisfies the major postulates in
calculating magnetic shielding constants [19] and
relativistic effects, primarily the SO effect, are well
incorporated by the lowest-order (1/c?) relativistic
perturbation theory [5]. However, for systems con-
taining heavy elements, four-component relativistic
calculations are desirable since the relativistic effects
in these systems are large and essential for describ-
ing their electronic states. However, fully relativistic
calculations of magnetic shielding constants have
never been carried out for polyatomic systems, al-
though the theory itself, employing the sum-over-
states formalism [1-3], has been proposed by several
groups [1-3].

In this Letter, we present a four-component fully
relativistic formulation of magnetic shielding in the
framework of matrix Dirac—Fock finite perturbation
(DF-FP) self-consistent field (SCF) theory. We ex-
plicitly deal with the four-component spinor solu-
tions of the Dirac—Coulomb or Dirac—Coulomb-
Breit many-body Hamiltonian. We investigate by
this method the effects of the Dirac current and the
Breit interaction on the magnetic shielding constants
and calculate the chemical shifts of the noble gas

atoms, He through Xe, and also of H,, HF and HCI.
Further applications of the DF-FP theory to calcula-
tions of magnetic shielding constants will be pre-
vented elsewhere.

2. Theory
2.1. The relativistic Hamiltonian

The relativistic many-body Hamiltonian for atoms
and molecules cannot be expressed in closed form.
The reasons have to do with establishing covariance
in the multiparticle system and with the separation of
the electrons and the particle of interest, from the
positrons, which are ignored. Nevertheless, relativis-
tic mean-field and many-body theories may be de-
veloped by employing an effective Hamiltonian ex-
pressed in terms of an effective electron—electron
interaction derived from QED.

In c-number theory, the starting point for our
development of DF-FP theory is the so-called no-pair
Dirac-Coulomb-Breit (DCB) Hamiltonian pre-
scribed by Sucher [20] and Mittleman [21]. In the
presence of the magnetic vector potential, the effec-
tive many-body Hamiltonian is given by

HP®(B,) = ¥ [ca (P A +BC >n:vn<i>]

1
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where c¢ is the speed of light and « and B’ are the
Dirac matrices. V, is the nuclear attraction term due
to the nucleus n. L, = A, (1)A,(2)... A, (n) with
A, the projection operator onto the space spanned
by the positive-energy eigenfunctions of the matrix
DF equation [20,21]. The projection operator takes
into account the field-theoretic condition that the
negative-energy states are filled. Throughout this
study, atomic units are used and thus the speed of
light is taken to be 137.0359895 au.

In the Coulomb gauge, B, represents the fre-
quency-independent Breit interaction and is given by

B, = =z {e o+ [(ar) (e r) /]

1
i 2r;;

(2)
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The first and second terms are the magnetic part and
the retardation part, respectively. The addition of B;;
to the instantaneous Coulomb operator in the effec-
tive electron—electron interaction introduces the lead-
ing effects of the transverse photon exchange in
QED. It also provides covariance of the effective
many-body Hamiltonian to first order and increases
accuracy in inner-shell binding energies [20-22].

The vector potential A, arising from a uniform
external field B, and the nuclear magnetic moment
of the nth nucleus w, is given by

A1=%B0x(ri_d)+ chzp’nxrnian(rni) (3)

We assume that the nuclei have spherically symmet-
ric shapes and uniform distribution of magnetic mo-
ment [23]. Thus a,(r,;) is a purely radial function
with respect to the center of nucleus n and has the
form [23,24],

1

an( rni) = F lf Fni < Rn (43)
1

an( rm') = _3 lf rm > Rn (4b)
Fai

where R, is the radius of the nucleus n and r,; is
the distance between the electron and the center of
the nucleus n. d denotes the gauge origin. For
r,, <R, the radial function a,(r,) is constant as
shown in Eq. (4a).

In c-number theory, the magnetic field is treated
classically by the interaction of a Dirac particle with
an external classical electromagnetic field character-
ized by its potential A. In the no-pair DCB Hamilto-
nian, there is a single perturbation ca - A which is
linear in A, whereas the perturbation in the non-rela-
tivistic approximation to the Dirac equation is
quadratic in A.

2.2. Magnetic shielding constant
The magnetic shielding constant o, (¢, u=x, y,
z) is given by Ramsey [25] as,
3°E

Ty (5)

aB()taanu By =p,,=0

where E is the total N-electron DF energy. Expand-

ing the no-pair DCB Hamiltonian in powers of B
and u,, we obtain

H?CB(BO) _ HECB(O.())+ Z BolHr“'U)

7

+ 3 Y w, HY (6)
n 1

where HPCBO9 s the DCB Hamiltonian in the
absence of the B, field and the other terms are
defined as

HO = L el(r, - ) xa],, (7

{

H}Etu)z %Zan( rm')(rnix ai)l' (8)

Using the Hellmann—Feynman theorem, Eq. (5) is
modified as

? DF 0.1) DF
O;r,mz Wm' <(p (BOI)’HHU. |(I) (B(n)>] By, =0’
(9)

and this is computed by the finite perturbation
method.

In the present study, both unperturbed and per-
turbed N-electron wavefunctions, ®PF(0) and
® F(B,), are approximated by a single Slater deter-
minant of molecular DF spinors, ¢°F(0) and
¢ F(B,), respectively. The molecular DF spinors
perturbed by the presence of the B, field ¢""(B,)
satisfy the DF—FP SCF equation,

ca-P+Bct+ YV, +J-K

+3cBy{(r —d) X a}, |#7 = £:6"F.  (10)

where J and K are Coulomb and exchange operators,
respectively.

The term H!'? (Eq. (7)) in the DF-FP SCF
equation contains the spin-dependent term which
lifts the spinor degeneracy in the presence of the B,
field. Consequently, one must solve the generalized
unrestricted form of the matrix DF-FP SCF equation
to account for the effects of the B, field on the
Kramers’ spinor pairs.

In terms of the molecular DF spinors obtained by
solving the matrix DF-FP equation, the magnetic
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shielding tensor for the nucleus n can be expressed
explicitly in the form,

oce

el .
T = K{)’[? ; <d)im( B(),)|a,v(rzvl')

X(erxa)ulCﬁIDF(B()r)> (ll)

B,=0

Because we employ a fully relativistic formula-
tion in terms of Dirac four-component spinors, all
the relativistic and non-relativistic contributions to
the magnetic shielding tensors are included in a
single term of Eq. (11). The several contributing
terms in the two-component formulation [1,5,12] arise
from the decoupling of the upper and lower compo-
nents of the Dirac four-spinors.

A major advantage of our theory over previous
ones [1-3] is that the (positron-like) negative energy
states do not appear explicitly in the evaluation of
the magnetic shielding constant. Previous relativistic
theories of NMR chemical shifts have used a sum-
over-states perturbation formulation [1-3]. An unde-
sirable feature of such formulations is that contribu-
tions from the negative-energy states having energies
less than —2¢? were as important as those arising
from positive-energy states and the negative-energy
states are difficult to handle computationally [1]. The
DF-FP method employed in the present study avoids
the explicit appearance of negative-energy states.

3. Computation

The matrix DF-FP procedure has been incorpo-
rated into the MOLFDIR suite of programs [26]. The
bond distances used for H,, HF, and HCI are those
of Ref. [5]. The nuclei are approximated by a finite
spherical model [24]. The atomic mass numbers used
for He, Ne, Ar, Kr, Xe, F, Cl, Br, I and H are
4.0026, 20.179, 39.948, 83.80, 131.29, 18.998,
35.453, 79.904, 126.90 and 1.0079, respectively, and
they are quite insensitive to the magnetic shielding
constant.

The basis sets used in our calculations are as
follows. For the large component molecular DF
spinors, uncontracted gaussian functions, optimized
by the non-relativistic calculations, have been used.

The small component basis sets include the first
derivatives of the large component basis functions so
as to satisfy the condition of ‘kinetic balance’ [26,27].
The large component basis sets for He, Ne, Ar, Kr
and Xe, respectively, were the (10s), (14s9p),
(17s12p), (13s9p5d), and (15s11p5d) basis sets of
Csizmadia et al. [28]. For H, F and ClI in the hydro-
gen halides, (3s), (6s3p) and (9s6p) sets [28], respec-
tively, were used. For H in the hydrogen molecule,
(4s), (4s4p) and (10s5p) sets [28] were employed to
examine basis set dependence.

4. Results and discussion

To test our method, we have computed the mag-
netic shielding constants of the noble gas atoms, He
through Xe. The results are shown in Table 1. The
Dirac-Fock—Coulomb (DFC) calculation always
gives a larger shielding constant than does Dirac—
Fock—Breit (DFB), though their differences are not
significant. In the Xe atom, the difference between
DFC and DCB is 10 ppm. However, the differences
between the DF and non-relativistic results are sig-
nificant. Since the non-relativistic HF calculations
are done in the same basis set to expand the large
component DF spinors, these differences are almost
solely due to relativistic effects. They are about 280
ppm and 1020 ppm in Kr and Xe, although quite
small in He. The shielding constants become larger
in the DF calculations than in the non-relativistic
ones. This trend is also reproduced in calculations by
the relativistic random phase approximation (RRPA)
[29], though the RRPA gives much larger values for

Table 1
Magnetic shielding constants for noble-gas atoms (in ppm)

Atom  DFC DFB Non-relativistic®  RRPA"

He 59.92 59.92 59.90 59.95
Ne 557.04 556.83 552.27 558.6
Ar 1268.60 1267.78 1237.60 1276
Kr 352549 3521.52  3245.61 3598
Xe 6660.91 6050.79  5642.16 7040

“Non-relativistic calculations using the same basis set employed in
the DF calculations.

PRelativistic calculations obtained by the random-phase approxi-
mation; Ref. [29].
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Table 2
Magnetic shielding constants for H,, HF and HCI (in ppm)
Molecule DEC DFB Non-relativistic® Experimental
H,"
H(4s) 26.630 26.630 26.680 26.689
H(4s4p) 26.434 26.434 26.555 26.689
H(10s5p) 26.339 26.339 26.444 26.689
HF*
H 24.11 24.11 3158 29.2
F 409.57 409.46 418.1 410
HCI
H 25.01 25.01 33.36 318
Cl 1028.15 1027.72 961.2 950

“Non-relativistic calculations using the same basis set employed in the DF calculations.

"The gauge center is Jocated at the center of the H-H bond.
‘The gauge center is located at the halogen atom.

the shielding constants than do the DF calculations.
The differences arise from methods and basis sets;
the difference produced by the finite nucleus approx-
imation is small.

Our method has also been applied to diatomic
molecules. The magnetic shielding constants of H, F
and Cl in H,, HF and HCI are listed in Table 2. The
DFC and DCB calculations give essentially the same
results as above. The agreement between experiment
and the DF results is reasonable. The differences
between the DF and non-relativistic calculations are
meaningful even in these molecules for both proton
and halogen nuclei. The trend of the relativistic
effects is not constant, in contrast with the noble-gas
atoms. The basis set dependence in the magnetic
shielding constant of H in H, is moderate, but the
shielding constant gradually departs from the experi-
mental value as the basis set is improved. In compar-
ison with the non-relativistic result, the relativistic
effect becomes large as p-type basis functions are
added.

5. Conclusion

A formulation for fully relativistic calculation of
the magnetic shielding constant is given, based on
four-component no-pair DFC and DFB theory. In
this formalism, the shielding constant is expressed as
a single term, rather than the two to four terms of the
non-relativistic and quasi-relativistic theories [5,11],

i.e. diamagnetic, paramagnetic, spin—dipolar, and
Fermi contact terms. In adopting the finite perturba-
tion method, we have avoided inclusion of the
positron states in the formulation, an advantage over
the sum-over-state formalism.,

The applications to the noble gas atoms, He to Xe
have shown that the relativistic effect is significant
for the heavy atoms Kr and Xe. The Breit term is
shown to be small for the shielding constant. The
results for the small diatomics, H,, HF and HCI
show that the Breit term gives a difference only for
the F and CI shielding constants. However, relativis-
tic effects are important for both hydrogen and the
halogens.
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