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Cluster modeling of metal oxides: how to cut out a cluster?
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Abstract

Three principles have been proposed for the cluster modeling of metal oxides, i.e. the neutrality principle, stoichiometry
principle and coordination principle. A stoichiometric cluster model is recommended, for it possesses the correct atomic ratio
of bulk solid and it automatically meets the requirement of neutrality. Particular attention has been focused on how to cut out
a stoichiometric cluster which has as few dangling bonds as possible so as to fulfill the requirement of the coordination
principle. A case study for the applications of these three principles to the modeling of ZnO solid has shown their efficiency
in setting up a better cluster model of a given size. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Solids or solid surfaces have been analyzed in
terms of cluster models for more than 30 years
w x1–7 . However, the situation is not so satisfactory.
For the modeling of metal oxides, the models go into

w xthree groups 5–7 , i.e. bare cluster model, embed-
ded cluster model and saturated cluster model. Bare
clusters are simply parts of the bulk. This procedure
reduces the problem of an infinite solid to the com-
mon problem of molecules, and hence standard and
well-documented ab initio computational methods
for molecules can be used to explore the properties
of solids and the chemistry on surfaces. It is clear,
however, that the simulation with a bare cluster can
only be justified if the structures of stable clusters
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and of the bulk are similar. For more delicate calcu-
lations, it should be advantageous to embed the bare
cluster into the potential produced by the rest of the

Ž .bulk i.e., embedded cluster model or to saturate the
free valencies at those sites of the bare cluster, which

Žare not supposed to represent the real solid i.e.,
.saturated cluster model . It is clear, however, that a

crude procedure of cutting out a cluster from the
solid will create spurious electronic states at the
border of the cluster, which are hard to correct in the
subsequent embedding or saturation. Cutting-out a
cluster suitably is a prerequisite for a good cluster
modeling of a solid. It has been concluded that the

w x Ž .cutout should be made as follows 6 : 1 a fixed
number of electrons can uniquely be assigned to it;
Ž . Ž2 a subset of CGTF contracted Gaussian-type

. Ž .functions can be attributed to it; 3 differential
overlap and resonance integrals between its orbitals
and those of the surroundings should be negligible.

0009-2614r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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In this Letter, three practical rules, namely the
neutrality principle, stoichiometry principle and co-
ordination principle, are presented for a better, yet
simple choice of a cluster model of a given size. The
efficiency of these three principles is demonstrated
by a case study of the cluster modeling of ZnO solid.

2. Three principles for cluster modeling

The ways of modeling depend largely on the
properties of the particular system in question. Metal
oxides differ significantly from each other in the
properties, such as crystal structure, electronic struc-
ture, etc. This fact makes it difficult to set up unified
principles for the cluster modeling of metal oxides.
Fortunately, there do exist some basic rules which all
metal oxides should obey. These are the neutrality
principle, stoichiometry principle and coordination
principle. Chemically, the coordination principle
would be the most important, especially for covalent
crystals. Thereby, clusters are frequently built by
shells of ions around the central ion which represents

w x6ythe binding site. For example, ZnO was used as4
w xa model in the simulation of bulk ZnO 8–10 and

w x8yMgO was used as a model for the 5-fold-coor-5
Ž . w xdinated Mg site on the MgO 001 surface 11,12 . In

this way, the coordination principle will inevitably
result in a charged cluster, which is not an adequate
model to study chemisorption, for the unrealistic
electric properties of such a charged cluster will shift
artificially the energies of the frontier orbitals of the
cluster and will create spurious static interactions
with the adsorbate. The neutrality principle will be
fulfilled with the help of hydrogen-saturation or em-
bedding with a point charge cluster of the opposite
total charge, whereas the stoichiometry principle can
never be fulfilled in such a charged cluster model.
The breaking-down of the stoichiometry principle

Žwill bring about some artificial DOS density of
. w xstates of the excess atoms 13 . Thereby, we recom-

mend choosing a stoichiometric cluster. In this way,
the neutrality requirement is reached automatically.
The remainder is how to minimize the edge effect of
a cluster of a given size so as to fulfill the require-
ment of the coordination principle. In principle, the
fewer dangling bonds a cluster has, the smaller the
edge effect is. Consequently, a cutout cluster should

possess as few dangling bonds as possible and should
maintain the strongest bonds within it. In the follow-
ing section, we will take ZnO solid as an example to
verify the three principles introduced above. The
reason we choose ZnO solid for the case study lies in
the fact that ZnO is such a partially ionic solid that
the cutting-out procedure should be more severe here
than when applied to a highly ionic solid in which
electrons are highly localized around the nuclei.
Therefore conclusions reached here would be more
general.

3. Case study: cluster modeling of ZnO

[ ]3q y (3.1. Charged cluster models: ZnO 3qs6, 4,4
)3, 2, 0

ZnO crystallizes in the hexagonal structure of the
wurtzite type, in the bulk of which all Zn and O ions

w xare coordinated with four counter-ions 14 . There-
w x6y 2qfore, the ZnO cluster, in which the Zn site is4

surrounded by its four nearest-neighbor O2y anions
with a local symmetry of C , is a model frequently3V

w xemployed to simulate bulk ZnO 8–10 . Though the
w xionicity of ZnO remains unanswered 15 , it is gener-

ally agreed that the real charge of Zn in bulk ZnO
should be smaller than 2. Therefore, it would be
inadequate to assume the full ionicity of ZnO as in
w x6yZnO . Suppose that the valency of a Zn atom in4

bulk ZnO is qq, while keeping the absolute charges
< <on Zn and O equal, i.e. Zn:O s1:1, as demanded

by the stoichiometry and neutrality of the solid, the
w x3qyZnO cut-out cluster should be charged as ZnO .4 4

Since a different choice of q will result in a different
amount of electrons in the cluster, one has to face the
problem of how to determine the value of q. More-
over, in an ab initio calculation, one can only define
the total amount of electrons of the whole system.
There is no guarantee that the stoichiometric require-

< <ment, Zn:O s1:1, is really satisfied in such a case.
Table 1 presents the results of ROHF calculations for

w x3qythe ZnO cluster with a charge of 3qs6, 4, 3,4

2 and 0, respectively. The outcomes of these calcula-
tions could be summarized as follows:

Ž .1 A charged, non-stoichiometric cluster is unsta-
ble as indicated by the positive value of the HOMO
Ž .highest occupied molecular orbital level. There is a
tendency to ionize.
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Table 1
w x3 qyROHF calculations for ZnO clusters4

a b c d eŽ . Ž . Ž . Ž . Ž .3q ROHF au HODO eV HOMO eV LUMO eV DG eV Mulliken charges

< <Zn O Zn:O

6 y122.51742 17.42 25.15 37.70 12.55 0.28 y1.57 1:5.61
4 y124.14690 2.49 14.26 19.18 4.92 0.52 y1.13 1:2.17
3 y124.53428 y4.00 8.51 14.11 5.6 0.68 y0.92 1:1.35
2 y125.01254 y11.31 2.13 8.82 6.68 0.56 y0.64 1:1.14
0 y124.99618 y26.02 y11.08 y2.77 8.31 0.76 y0.19 1:0.25

a w xROHF calculations are performed using the GAUSSIAN94 package 16 . The geometries for these clusters are taken from bulk
w x Ž . w x w x w xexperimental data 11 ; basis set: Zn, Ar coreq 3s 2p 5d r 1s 1p 1d 17 ; O, CEP-31G 18 .

b HODO refers to the highest occupied d orbital of Zn.
c Highest occupied molecular orbital.
d Lowest unoccupied molecular orbital.
e < <DGs LUMOyHOMO .

Ž .2 The simple way of reducing q to zero so as to
reach neutrality does not lead to a realistic model of

w x0bulk ZnO. The ZnO cluster possesses an over-4
Žstabilized 3d band of the Zn atom HODO, highest

Ž ..occupied d orbital of Zn, y26.02 eV calc. with
Žrespect to the bulk one central of d band, y15.4 eV

Ž .. w xexptl. 19 .
Ž .3 As shown by the Mulliken charges, those

clusters with qs2 or 0 encounter a serious draw-
< <back in reproducing the fact, Zn:O s1:1; while

< <those clusters with q being around 1 have a Zn:O
ratio close to 1, but their HOMOs are unreasonably
positive owing to their unrealistic electric properties
for the breaking-down of the neutrality principle.

( ) ( )3.2. ZnO xs3, 4, 5, 6, 10, 13x

Ž .Fig. 1 presents a set of stoichiometric ZnO x
Ž .xs3, 4, 5, 6, 10, 13 clusters, which adopt the

w xgeometry of bulk oxide 11 . As such, the clusters
are simply segments of the bulk. For those larger

Ž . Ž .clusters such as ZnO o , there are four layers.13

Since the third-layer atoms are directly below the
second layer, and the fourth-layer ones directly be-
low those of the first, only the first and second layers

Ž .are shown in Fig. 1. The notation, ‘Zn 7:0:6:0 ;
Ž . Ž . Ž .O 0:6:0:7 ’, for ZnO o indicates the numbers of13

Zn and O atoms in each layer, i.e. seven Zn atoms in
the first layer, six O atoms in the second layer, and
so on. For a given x, there are a number of different
choices for cutting out a cluster. The model should
work best if the edge effect is the smallest. In a

perfect ZnO solid, every Zn or O is 4-fold coordi-
nated. Cutting out a cluster will result in dangling
bonds of 3, 2 or 1 on the border atoms of the cluster.
Defining N as the total amount of dangling bondsd

of a cutout cluster, then we have bsN r2 x, whichd

is the average dangling bonds on each in-cluster
atom. It is expected that for a given x, the cluster
with the minimum N should have the smallest edged

effect and should be the most stable. Along with the
increase of x, there are more and more inner atoms,
the corresponding b should decrease and the cluster
should be getting more and more close to the solid.
Ab initio calculations for the cluster models in Fig. 1
are in good agreement with the above expectations.
The calculation results are summarized in Table 2, in
which there is the RHF total energy, ZnO-unit RHF

Ž .energy i.e., RHFrx , energy level of the HOMO
and the energy gap between the HOMO and LUMO
Ž .i.e., DG . The Mulliken charges are labeled on the
respective atoms of clusters in Fig. 1.

From Table 2, it is quite clear that the topologic
parameter N is well connected with the calculatedd

total energy of the cluster of the same size and b

associates well with the calculated ZnO-unit energy,
which measures the relative stability of the clusters
of different size. As shown by the data in Table 2,

Žthe cluster with the least dangling bonds smallest
. Ž .N is the most stable lowest total energy amongd

those of the same size. The largest b corresponds to
the highest ZnO-unit energy, thereby the least stable
cluster; and the smallest b corresponds to the lowest
ZnO-unit energy, as such, the most stable cluster.
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Ž . Ž .Fig. 1. Geometries of ZnO cluster models open circles, oxygen atoms; shaded circles, zinc atoms . Mulliken charges are shown on thex

atoms.
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Table 2
a Ž .Ab initio RHF calculations for ZnO clustersx

b ex N bsN r2 x RHF RHFrx E HOMO DGd d coh
Ž . Ž . Ž . Ž . Ž .au au eV eV eV

3 a 14 2.33 y236.8208106 y78.9402702 1.591 y7.03 4.70
b 12 2.00 y237.0258259 y79.0086086 y0.269 y9.42 9.06
c 12 2.00 y237.0305163 y79.0101721 y0.311 y8.72 8.21

4 d 16 2.00 y315.9310569 y78.9827642 0.435 y6.44 3.89
e 14 1.75 y316.0772598 y79.0193150 y0.560 y8.86 7.74

5 f 18 1.80 y395.0835573 y79.0167115 y0.489 y8.54 5.82
g 18 1.80 y395.1207196 y79.0241439 y0.691 y8.45 7.17
h 18 1.80 y395.1222968 y79.0244594 y0.700 y8.71 7.62

6 i 24 2.00 y473.9766610 y78.9961102 0.072 y6.45 4.71
j 22 1.83 y474.1927842 y79.0321307 y0.909 y9.19 8.72
k 18 1.50 y474.2448721 y79.0408120 y1.145 y7.29 5.36

10 l 38 1.90 y789.8244796 y78.9824480 0.443 y6.20 3.85
m 30 1.50 y790.3876660 y79.0387666 y1.089 y8.50 6.73
n 26 1.30 y790.6178681 y79.0617868 y1.716 y6.48 4.02

13 o 32 1.23 y1027.4239008 y79.0326077 y0.922 y6.47 3.52
p 24 0.92 y1027.9996935 y79.0768995 y2.127 y7.61 y5.96

dBulk y4.68 3.3

a w x w x w xZn basis set: HWrECP Arq 1s 1p 1d 17 ; O basis set: CEP-31G 18 .
b a a a Ž1 . a Ž3 . Ž .E sRHFrnyE ; E sE S qE P sy78.9987410 au .coh ZnO ZnO Zn O
c < <DGs HOMOyLUMO .
d w xSee Refs. 20–23 .

Associating b with the ZnO-unit energy reveals that
the well-known edge effect would be further divided

Žinto two effects, i.e. the size effect dependence on
. Žthe size of the cluster and the shape effect depen-

.dence on the shape of the cluster . The fact that the
three clusters with xs5 have the same amount of
dangling bonds but differ substantially with respect
to their RHF energy should be attributed to the fine
shape effect.

Taking the summation of the HF energies of
Ž1 . Ž3 . aatomic Zn S and O P , denoted as E , as aZnO

reference, we may have the cohesive energy of a
cluster defined as E sRHFrxyEa . The fourcoh ZnO

Ž . Ž . Ž . Ž . Ž . Ž .clusters, ZnO a , ZnO d , ZnO i and3 4 6
Ž . Ž .ZnO l , have ZnO-unit RHF energies higher than10

Ea , indicating that these clusters are thermodynam-ZnO

ically unstable. Inspection of the geometries of these
clusters in Fig. 1 reveals that there exist 1-fold
coordinated atoms in all of them. We ascribe the
unstableness of these clusters to the existence of the

1-fold coordinated atoms. Mulliken charges provide
another simple, yet useful tool of measuring the
reliability of a cluster model. In contrast to the

w x3qyresults from the charged cluster models ZnO ,4
Ž .the Mulliken charges from the stoichiometric ZnO x

are reasonable. The calculated absolute charges on
Zn and O are approximately equal, with q close to
1.0. The fact that the Mulliken charges on the 1-fold
coordinated atoms are significantly lower than those
of the other atoms suggests that a cutting-out proce-
dure, which will produce this kind of extremely low
coordinated atoms, should be avoided.

The experimental value of the band gap of ZnO
w xsolid, i.e. 3.3 eV 24 , could be taken as a criterion to

judge the suitability of a cluster to model the solid.
We notice, however, that for the clusters of a given

Ž .size, the calculated energy gap DG for the cluster
with the largest N is closer to the experimentald

value than that for the one with the smallest N .d

Detailed analysis reveals that the dangling bonds
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greatly destabilize these clusters, which results in
smaller DGs. Therefore, the seeming agreement be-
tween the computed DGs from the clusters, with
lower-coordinated atoms and the experimental gap
should be an artifact. In fact, the LUMO is always
destabilized by the HF method, a larger DG should
be anticipated within Koopman’s approximation.

It is of particular importance to examine the
stability of the calculated data with respect to changes
in the cluster size, so as to judge the reliability of the
cluster models. For the cluster modeling of a metal
surface, this has been a subject of intensive investi-

w xgations 1,25–27 . The computed properties of clus-
ters have been found to oscillatingly approach to

w xthose of bulk 1,25–27 . For the cluster modeling of
metal oxides, there are only a few papers devoted to

w xthis problem 28,29,20 . Owing to the localized na-
ture of electronic structures of metal oxides, it is
generally assumed that converged calculation results
can economically be reached with a medium-size
cluster. However, Martins et al. have examined the

Ž . Žsize dependence with bare clusters of ZnO xs3,x
. w x4, 5, 6 20 and found that the HOMOyLUMO gap

and the HOMO energy oscillate with the cluster size
w x20 . In fact, it is hard to draw a clear conclusion
from the data in Table 2, if the shapes of the clusters
were chosen arbitrarily.

On the other hand, we now have a set of clusters,
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .ZnO c , ZnO e , ZnO h , ZnO k and3 4 5 6
Ž . Ž .ZnO n , which are the most stable ones of each10

given size. We believe that this set of clusters pro-
vide a more suitable starting-point to study the clus-
ter-size dependence of the computed properties, since
the shape effects are now under control. It is interest-
ing to compare our results with those found by

w x Ž .Martins et al. 20 . Their cluster models ZnO x
Ž .xs3, 4, 5, 6 are in the same geometrics as those

Ž . Ž . Ž . Ž .labeled c , d , f and i in Fig. 1, which are not all
the most stable clusters of a given size. Therefore,
the quite strong oscillation observed by them should
be regarded as a mixture of size effect and shape
effect. Our calculated electronic properties of bare
Ž . Ž .ZnO xs3–13 are summarized in Table 2. As itx

is expected, the electronic properties, such as band
gap and work function values, calculated for small
clusters are larger than the experimental bulk values
w x21–23 . Examining the data for the most stable
clusters of different sizes, however, we only see a

mild size dependence for the calculated the HOMO
yLUMO energy gap and the HOMO energy. These
properties tend to approach smoothly to the corre-

w xsponding bulk values, i.e. band-gap of 3.3 eV 24
w xand work function of 4.68 eV 23 , with increasing

cluster size.
Finding a cluster which has the minimal value of

b would be nontrivial. We suspect that for the case
Ž . Ž .of xs13, the cluster ZnO p may not have the13

minimal b and that is why the behavior of cluster
Ž . Ž .ZnO p is somewhat out of the expectation. A13

program which makes use of graph theory to search
for a cluster with the minimal b in a given size is in

w xconstruction 30 . Furthermore, it should be noted
that a good cluster model should preserve the local
symmetry of the active sites and should maintain the
strongest bonds within it.

Fig. 2 presents the DOS of these most stable

Ž .Fig. 2. Comparison between DOS of ZnO clusters and UPSx
Ž . w xdata of ZnO solid: a overview of the experimental UPS 20,21

Ž . Ž . Ž .E s0 eV ; b–d DOS of ZnO clusters. The orbital energy isf x

relative to y4.0 eV.
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clusters, which are obtained by performing a Lorentz
expansion for the distinctively discrete MOs of the
molecular clusters. An overview of the UPS spectra
for the ZnO solid is also included for comparison
Ž .assuming Koopman’s theorem . The experimental

w xspectra 21 can be divided into three main peaks: the
first peak between 0.0 and ; y8.5 eV below the

Ž .valence-band edge is due to emission from the Zn 4s
Ž .and O 2p derived orbitals; the second, the most

intense peak from ; y8.5 to ; y11.5 eV is due
Ž .to the Zn 3d levels; and the third peak at around

Ž . w xy20.0 eV is due to the O 2s band 22 . Fig. 2
schematically demonstrates that the electronic struc-
tures of those molecular clusters are in qualitative
accordance with that of the bulk solid. The differ-
ence in the fine structures of the DOS represent the
more or less edge effects while small bare clusters
are employed to simulate the solid. Saturation or
embedding is important for a partially covalent oxide
like ZnO. In fact, in the cluster model study of

Ž .heterolytic adsorption of H on the ZnO 1010 sur-2

face, the bare clusters chosen in this way are found
to be able to qualitatively predict the surface reactiv-
ity. Embedding is vital for a quantitative description

w xof the reaction energy 31 .
Similar investigation has been performed on the

Ž . Žcluster modeling of MgO solid with MgO xs2–x
. w x16 32 . The calculation results are in much better

agreement with the expectation from N or b thand

those in the ZnO case. The electronic as well as the
adsorptive properties which emerged from the cluster
models with minimal b in the MgO case are much
less size dependent than those in the ZnO case. The
reasons should be that MgO solid is more ionic and
symmetric than bulk ZnO, thereby the cutting out is
less severe in the MgO case.

We believe that the outcomes derived from cluster
modeling of metal oxides bulk solid should hold true
for the modeling of surfaces, only one should take
into consideration the intrinsic dangling bonds on the
surface atoms. Moreover, in the case that two clus-
ters of a given size have the same amount of dan-
gling bonds, the one possessing more surface atoms
should be preferred. One may even go into the
details to count dangling bonds on metal cation or
oxygen separately. Indeed dangling bonds on O
would influence the properties of the clusters to a
greater extent than dangling bonds on metal cation,

since O is negatively charged with orbitals lying
higher. We believe that the topologic parameters Nd

and b provide meaningful criteria to cut out a better
cluster model, without paying for the high cost of
detailed preliminary calculations. A good cut-out
cluster is not only itself a good bare cluster model,
but also a suitable starting-point for embedding or
saturation.

4. Conclusions

In the cluster modeling of metal oxides, there
exist three principles which we should consciously
follow. They are the neutrality principle, stoichio-
metric principle and coordination principle. Owing to
the infinite structure of a solid, it is impossible to cut
out a cluster which fulfills the requirements of all
these three principles. We have to sacrifice one for
the other according to the nature of solid. We recom-
mend choosing a stoichiometric cluster which offers
a correct ratio of anion vs. cation and meets the
requirement of neutrality. In this Letter, attention has
been focused on how to cut out a stoichiometric
cluster which has a few dangling bonds as possible.
We have shown the good correlation between the
topologic parameters N and b with the stability ofd

clusters and provide an efficient way to set up a
better cluster model of a given size.
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