

Ionization spectrum of CO₂ studied by the SAC-CI general-*R* method

Masahiro Ehara a, Hiroshi Nakatsuji a,b,*

^a Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, 606-8501, Kyoto, Japan

^b Institute for Fundamental Chemistry, 34-4, Takano-Nishihiraki-cho, Sakyou-ku, 606, Kyoto, Japan

Received 28 April 1998; received in revised form 24 June 1998; accepted 24 June 1998

Abstract

The SAC-CI (symmetry-adapted-cluster configuration-interaction) general-R method was used to assign the satellite peaks of the ionization spectrum of CO_2 . Outer-valence satellite peaks were assigned to the ${}^2\Pi_u$ and ${}^2\Pi_g$ states and inner-valence satellite peaks were assigned to the ${}^2\Sigma_u^+$ and ${}^2\Sigma_g^+$ states. The SAC-CI general-R method reproduces well the experimental spectrum in both the outer and inner-valence regions. On the other hand, while the SAC-CI SD-R method calculates the main peaks quite well, the shake-up states are by about 3 eV higher than those of the general-R method. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Ionization spectrum; Outer and inner-valence regions; SAC-CI general-R method

1. Introduction

The inner-valence region of the ionization spectrum contains many satellite peaks which directly reflect the correlation effects of the molecule. Experimentally, inner-valence ionization peaks have been studied by high-resolution synchrotron radiation photoelectron spectroscopy (PES), X-ray PES (ESCA), and electron momentum spectroscopy (EMS). For the CO₂ molecule, the satellite peaks in the outer and inner-valence regions have been reported using several experimental techniques [1–5]. In particular, Roy et al. [5] performed high-res-

olution angle-resolved PES and gave detailed assignments of the peaks using the photon energydependent relative intensities and asymmetry parameters. These satellite peaks in the CO₂ ionization spectrum have also been investigated theoretically in some detail by the Green's function method [3,6], by the SAC (symmetry-adapted-cluster)-CI (configuration interaction) method [7], and by the CIPSI method [5]. However, since these shake-up peaks are numerous and congested, their assignments are still difficult, especially in the inner-valence region. The satellite peaks of CO₂ are of particular interest since some have a considerable amount of 3h2p character, i.e. simultaneous ionization and two-electron excitation (three-electron) processes, as pointed out by Roy et al. [5].

1386-1425/99/\$ - see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: \$1386-1425(98)00257-1

^{*} Corresponding author. Tel.: +81-75-753-5653; Fax: +81-75-753-5910; e-mail: hiroshi@sbchem.kyoto-u.ac.jp.

In this study, we applied the SAC-CI general-R method to the ionization spectrum of CO2 and assigned the satellite peaks in the outer- and inner-valence regions. The SAC-CI method [8–13] has been successfully applied to several molecular spectroscopic problems including ionization spectroscopy [7,14-19]. There are two standards in the SAC-CI method with respect to choice of the linked operators (R): in the SAC-CI SD(single double)-R method, single and double excitation operators are adopted for R operators, while the SAC-CI general-R method [20–23] further involves triple and higher excitation operators. The SAC-CI general-R method [20–23] was proposed to describe multiple-electron processes with high accuracy. This method has been shown to be useful for studying large numbers of states in the ionization spectrum [24,25]. We also performed a SAC-CI SD-R calculation for comparison and to examine the effect of including the higher excitation operators in the linked excitation operators.

2. Computational details

The basis set should be flexible to describe the shake-up states. We used the [6s4p] GTOs of Huzinaga and Dunning [26,27] augmented with two polarization d-functions of $\zeta_d = 2.314$ and 0.645 for O and $\zeta_d = 1.097$ and 0.318 for C [28]; at least VQZ2P quality. The geometry is fixed to that of the experimental ground state and the vertical ionization is studied.

Both the SAC-CI general-R and SD-R calculations are performed for the outer and inner-valence regions. In the SAC-CI SD-R method, unlinked terms of the forms $R_{ij}S_{jk}^{ab}|0\rangle$ and $R_{ij}^{ab}S_{kl}^{bc}|0\rangle$, where R and S are the ionization and singlet-type excitation operators, respectively, are included; namely the '3,4-excited' calculation [7] is performed. The active space consists of eight occupied MOs and 79 unoccupied MOs, and only the 1s orbitals of C and O are frozen as cores.

To reduce the computational effort, perturbation selection is carried out for the linked operators higher than double excitations [7,18]. For the ground state, the threshold for the linked double is $\lambda_{\rm g} = 3 \times 10^{-5}$ au and the unlinked terms are writ-

ten as the products of the important linked terms whose SDCI coefficients are larger than 0.005. For ionized states, the threshold for the linked doubles is $\lambda_e = 1 \times 10^{-5}$ au. In the SAC-CI general-R calculation, higher-order excitation operators up to sextuples are generated by the exponential-generation (EG) algorithm [20-23]. The thresholds in the exponential generation are set to (λ_{AA}) λ_{AAA}) = (0.01, 0.4) [20] and the generated higherorder excitation operators are further selected by the perturbation selection scheme: the operators whose perturbation energy contribution to the primary states is larger than $\lambda_e = 5 \times 10^{-5}$ are adopted. The primary states are determined by a preliminary EGCI calculation using a small active space. The thresholds for this preliminary EGCI are $(\lambda_{AA}, \lambda_{AAA}) = (0.01, 1.0)$, and up to quadruple excitation operators are included.

The HONDO8 program [29] is used for HF SCF calculations and the SAC-CI96 program [30] is used for SAC-CI calculations.

3. Results and discussion

The outer and inner-valence regions up to 42 eV were studied by the SAC-CI general-R and SD-R methods. With SAC-CI SD-R, about 90 electronic states were calculated, while about 130 ones were solved with the general-R calculation. Table 1 summarizes the number of primary configurations for the selection and the dimensions of linked operators in the SAC-CI general-R calculations. About 300 primary configurations were selected for each symmetry of the D_{2h} point group. Since three-electron processes exist in the primary states, up to quintuple excitation operators were included in the linked operators of the general-R calculations.

In a previous SAC-CI SD-R study of the ionization spectrum of CO₂ [7], polarization functions were important, and including the unlinked terms of $R^a_{ij}S^{bc}_{kl}|0\rangle$ had a large effect on the inner-valence spectrum. The resultant SAC-CI spectrum [7] reproduced the overall structure of the experimental PES. In this paper, we discuss the details of the spectrum with a refined basis set, and compare the results of the general-R and SD-R methods.

First, we compare the ionization spectra calculated by the SAC-CI general-R and SD-R methods with the photoelectron spectrum of CO₂ [1,5] in Fig. 1. We corrected the intensity according to the branching ratio of the outer valence bands of Ref. [1] for each symmetry: branching ratios are 0.13, 0.11, 0.40, 0.58, 0.78, and 1.0 for $1\pi_g$, $1\pi_u$, $3\sigma_{\rm u}$, $4\sigma_{\rm g}$, $2\sigma_{\rm u}$, and $3\sigma_{\rm g}$, respectively. For the main peaks in the outer-valence region, both the SAC-CI general-R and SD-R methods give almost the same spectrum, which agrees with the experimental spectrum. The inner-valence range of 25-45 eV contains broad bands due to many shake-up states. There are remarkable differences between the SAC-CI general-R and SD-R spectra in this energy region. The SAC-CI general-R method reproduces the positions and the shapes of the satellite bands, while the SAC-CI SD-R method does not produce acceptable results in this region. This shows the importance of including higher excitation operators in the linked excitation operators of the SAC-CI calculation to describe the inner-valence ionization spectrum, which is consistent with previous results [20,24].

Table 2 summarizes the detailed results of the SAC-CI general-*R* and SD-*R* calculations for the ionized states of CO₂. The experimental values are due to synchrotron radiation PES in Refs. [4,5]. The ionization potential (IP), monopole intensity,

and excitation level are shown for states of up to 42 eV with calculated intensities greater than 0.005, except for some low-lying shake-up states.

The IPs of the main peaks are reproduced well by both the SAC-CI general-R and SD-R methods. The calculated values of 13.77, 17.72, 18.28, and 19.48 eV by the general-R method are consistent with the experimental values of 13.78, 17.59, 18.08, and 19.40 eV [31]. Inclusion of the higher excitation operators in the R operators does not greatly affect the main-peak positions as described by the one-electron process.

In the energy region of 22–30 eV, five outer-valence shake-up peaks were observed [4,5]. The three peaks observed at 22.7, 25.0, and 27.3 eV were assigned to the ${}^2\Pi_n$ states. The SAC-CI general-R method gives four ${}^2\Pi_{\rm u}$ shake-up states in this energy region at 24.19, 25.63, 25.04, and 28.45 eV. The IPs calculated by the general-R method are about 3 eV lower than those calculated by the SD-R method. As a consequence, more shake-up states are calculated by the general-R method than by the SD-R method. These ${}^{2}\Pi_{n}$ shake-up states correspond to the states that were assigned experimentally using the asymmetry parameter β [5]. The 2ph-TDA [3] and CIPSI calculations [5] also gave some ${}^{2}\Pi_{n}$ states in this energy region, although their spectra were slightly different from the present one.

Table 1 Numbers of the reference configurations and the dimensions of the linked operators in the SAC-CI general-R calculations for the ionized states of CO_2

State	Singles	Doubles	Triples	Quadruples	Quintuples	Total
Numbers o	of reference config	urations				
$^2\Sigma_{\sigma}^+$	2	89	217	6 2 –		314
$^{2}\Sigma_{g}^{+}$ $^{2}\Sigma_{g}^{-}$ $^{2}\Pi_{g}$ $^{2}\Sigma_{u}^{-}$ $^{2}\Sigma_{u}^{-}$	0	32	45			79 292 57 276
!П _о	1 84 0 32 2 75		197	10	- - -	
$\sum_{n=1}^{\frac{n}{2}}$			25	_		
Σ_{n}^{+}			187	12		
?П _и	1	87	231	39	_	358
Dimension	s of SAC-CI gene	ral-R calculations				
Σ_{σ}^{+}	2	772	7041	13 020	121	20 956
Σ_{σ}^{Ξ}	0	492	2885	3565 1		6943
П,	1	632	6746	11 204	88	18 671
$\frac{2\Sigma_{g}^{+}}{2\Sigma_{g}^{-}}$ $\frac{2\Gamma_{g}}{2\Gamma_{g}}$	0	492 2760		3072	_	6324
Σ_{u}^{+}	2	772	6742	10 770	189	18 475
$^{2}\Pi_{\mathrm{u}}^{\mathrm{u}}$	1	632	6697	14 329	174	21 833

Fig. 1. (a) Experimental photoelectron spectrum [1,5] of CO_2 and the ionization spectra calculated by the (b) SAC-CI general-R and (c) SD-R methods.

The two peaks observed experimentally at 29.7 and 30.5 eV were assigned to the $^2\Pi_{\rm g}$ and $^2\Pi_{\rm u}$ states, respectively [5]. In this region, the SAC-CI general-R method calculates one $^2\Pi_{\rm g}$ state at 30.64 eV and two $^2\Pi_{\rm u}$ states at 32.02 and 33.09 eV. Some of the states have a three-electron-pro-

cess character. In the SAC-CI general-R calculation, the $^2\Sigma_{\rm u}^+$ states are also obtained in this energy region, although their monopole intensities are small.

In the inner-valence region of 30–45 eV, five [5] or seven [4] satellite peaks were observed. These

Table 2 Excitation level, ionizization potential (in eV), and monopole intensity for the ionized states of CO_2 calculated by the SAC-CI general-R and SD-R methods

State	Experimental		SAC-CI general-R	SAC-CI SD-R			
	FKS ^a	RNMMR ^b	Excitation level	I.P.	Intensity	I.P.	Intensity
Π_{g}	_	13.78	1	13.77	0.85	13.35	0.92
$egin{array}{l} \Pi_{\mathrm{u}} \ \Sigma_{\mathrm{u}}^{+} \ \Sigma_{\mathrm{g}}^{+} \ \Pi_{\mathrm{u}} \end{array}$	_	17.59	1	17.72	0.78	17.48	0.88
Σ_{n}^{+}	_	18.08	1	18.28	0.83	17.77	0.91
+	_	19.40	1	19.48	0.81	18.99	0.89
Ĭ,	22.8	22.7	2	24.19	0.008	27.19	0.008
	25.1	25.0	2	25.04	0.002	_	_
	_	_	2	25.63	0.002	_	_
	26.9	27.3	2	28.45	0.055	32.37	0.035
	30.7	30.5	2	32.02	0.012	35.51	0.005
	_	_	2 + 3	33.09	0.012	35.86	0.016
П	29.8	29.7	2	30.64	0.002	33.71	0.005
Б	_	_	2 + 3	34.40	0.018	_	_
$\Sigma_{ m u}^+$	_	_	2	29.26	0.003	32.13	0.025
u	32.2	31.9	2	29.89	0.005	35.79	0.659
	33.4	33.7	2	33.98	0.079	36.97	0.097
	_	_	2	34.23	0.041	38.38	0.014
	_	_	2 + 3	34.61	0.024	39.92	0.009
	35.0	34.9	2 + 3	34.70	0.119	40.57	0.012
	35.5	_	2+3	36.62	0.100	41.15	0.036
	_	_	2 + 3	36.75	0.178	41.87	0.008
	_	_	2	37.32	0.023	42.10	0.043
	_	_	2	37.82	0.011	_	_
	_	_	2	38.61	0.047	_	_
	_	_	2 + 3	40.20	0.112	_	_
	_	_	2	40.63	0.023	_	_
	_	_	2	40.67	0.040	_	_
	_	_	2	40.79	0.023	_	_
Σ_{g}^{+}	_	_	2	27.29	0.005	30.17	0.015
	_	_	2	34.04	0.024	31.34	0.005
	_	_	2	34.78	0.188	36.52	0.447
	36.9	36.5	2	36.41	0.054	37.14	0.212
	_	_	2 + 3	36.47	0.005	39.56	0.105
	_	_	2	37.00	0.008	40.15	0.005
	_	_	2	37.13	0.015	41.02	0.007
	38.0	38.0	2+3	38.20	0.071	42.45	0.098
	_	_	2	38.43	0.064	42.96	0.026
	_	_	2+3	38.90	0.129	_	_
	40.6	_	2+3	40.90	0.284	_	_

a [4]

ь [5]

peaks consist of the shake-up states whose intensities are due to the $(2\sigma_u)^{-1}$ and $(3\sigma_g)^{-1}$ single-hole states. In a previous SAC-CI study [7], many shake-up states originated from these states. Roy et al. [5] assigned the three lower peaks at 31.9, 33.7, and 34.9 eV to the ${}^{2}\Sigma_{\rm u}^{+}$ states and the two higher peaks at 36.5 and 38 eV to the ${}^{2}\Sigma_{g}^{+}$ states using the photon energy-dependent behavior of the relative intensities. Freund et al. [4] observed the corresponding states and the two additional peaks at 35.5 and 40.6 eV. The SAC-CI general-R results show that there are many ${}^2\Sigma_{\rm u}^+$ and ${}^2\Sigma_{\rm g}^+$ shake-up states with considerable intensities in the energy region of 34–40 eV. Prominent ${}^{2}\Sigma_{n}^{+}$ states are calculated at 33.98, 34.23, 34.70, 36.62, 36.75, and 40.20 eV, and $^2\Sigma_g^{\,+}$ states with certain intensities are calculated at 34.78, 36.41, 38.20, 38.43, 38.90, and 40.90 eV. While these states are attributed to the peaks in the inner-valence region, a one-to-one assignment would appear to be meaningless. Some of shake-up states have the nature of three-electron processes and have considerable intensities around 40 eV. In Table 2, the excitation level 2 + 3 means that these states have more than 10% three-electron-process character. These shake-up states were also obtained by the CIPSI method [5], although the pattern of the calculated peaks was different from that presented here.

4. Conclusion

The SAC-CI general-R and SD-R methods were applied to the ionization spectrum of CO₂. The main peaks were well described by both the SAC-CI general-R and SD-R methods. However, there are remarkable differences between the results of the SAC-CI general-R and SD-R methods for the inner-valence region. The SAC-CI general-R method reproduces well the structures of the satellite peaks observed by PES, while the results of the SD-R method are inadequate for describing these peaks. With the SAC-CI general-R method, the IPs of the shake-up states are about 3 eV lower than those obtained by the SD-R method. The outer-valence satellite peaks were assigned to the $^2\Pi_u$ and $^2\Pi_g$ states and the inner-valence

satellite peaks were assigned to numerous $^2\Sigma_u^+$ and $^2\Sigma_g^+$ states. The present results support, in general, the assignments of Roy et al. [5], but the pattern of the calculated peaks is different, especially for the inner-valence shake-up states.

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan, and by a grant from the Kyoto University VBL Project.

References

- C.J. Allan, U. Gelius, D.A. Allison, G. Johansson, H. Siegbahn, K. Siegbahn, J. Electron Spectrosc. Relat. Phenom. 1 (1972) 131.
- [2] C.E. Brion, K.H. Tan, Chem. Phys. 34 (1978) 141.
- [3] W. Domcke, L.S. Cederbaum, J. Schirmer, W. von Niessen, C.E. Brion, K.H. Tan, Chem. Phys. 40 (1979) 171.
- [4] H.J. Freund, H. Kossmann, V. Schmidt, Chem. Phys. Lett. 123 (1986) 463.
- [5] P. Roy, I. Nenner, P. Millie, P. Morin, J. Chem. Phys. 84 (1986) 2050.
- [6] L.S. Cederbaum, J. Schirmer, W. Domcke, W. von Niessen, J. Phys. B. 10 (1977) 549.
- [7] H. Nakatsuji, Chem. Phys. 75 (1983) 425.
- [8] H. Nakatsuji, K. Hirao, J. Chem. Phys. 68 (1978) 2053.
- [9] H. Nakatsuji, Chem. Phys. Lett. 59 (1978) 362.
- [10] H. Nakatsuji, Chem. Phys. Lett. 67 (1979) 329.
- [11] H. Nakatsuji, Chem. Phys. Lett. 67 (1979) 334.
- [12] H. Nakatsuji, in: Computational chemistry-review of current trends, World Scientific, New Jersey, Vol. 2, 1997, pp. 62–124.
- [13] H. Nakatsuji, Acta Chim. Hungarica 129 (1992) 719.
- [14] H. Nakatsuji, O. Kitao, T. Yonezawa, J. Chem. Phys. 83 (1985) 723.
- [15] H. Nakatsuji, S. Saito, J. Chem. Phys. 91 (1989) 6205.
- [16] H. Nakatsuji, M. Ehara, M.H. Palmer, M.F. Guest, J. Chem. Phys. 97 (1992) 2561.
- [17] H. Nakatsuji, M. Ehara, J. Chem. Phys. 101 (1994) 7658.
- [18] H. Nakatsuji, J. Hasegawa, M. Hada, J. Chem. Phys. 104 (1996) 2321.
- [19] M. Ehara, Y. Ohtsuka, H. Nakatsuji, Chem. Phys. 226 (1998) 113.
- [20] H. Nakatsuji, Chem. Phys. Lett. 177 (1991) 331.
- [21] H. Nakatsuji, J. Chem. Phys. 83 (1985) 731.
- [22] H. Nakatsuji, J. Chem. Phys. 83 (1985) 5743.
- [23] H. Nakatsuji, J. Chem. Phys. 94 (1991) 6716.

- [24] M. Ehara, H. Nakatsuji, Chem. Phys. Lett. 282 (1998) 347.
- [25] J. Hasegawa, M. Ehara, H. Nakatsuji, Chem. Phys. 230 (1998) 23.
- [26] S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
- [27] T.H. Dunning, J. Chem. Phys. 53 (1970) 2823.
- [28] T.H. Dunning, J. Chem. Phys. 90 (1989) 1007.
- [29] M. Dupuis, J.D. Watts, H.O. Viller, G.J.B. Hurst, Program System HONDO8.
- [30] H. Nakatsuji, M. Hada, M. Ehara, J. Hasegawa, T. Nakajima, H. Nakai, O. Kitao, K. Toyota, SAC/SAC-CI program system (SAC-CI96) for calculating ground, excited, ionized, and electron-attached states having singlet to septet spin multiplicities, 1996.
- [31] K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of HeI photoelectron spectra of fundamental organic molecules, Halstead Press, NY, 1981.