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Abstract

A method for calculating the analytical energy gradient of the ground, excited, ionized, and electron-attached states
calculated by the SAC (symmetry-adapted cluster)/SAC—CI (configuration interaction) method was formulated and
implemented. This method adapts to the selection procedure of the linked and unlinked operators in the current
SAC/SAC-CI code. It was applied to various molecules in various electronic states, and was confirmed to perform well for

genera use. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The SAC (symmetry-adapted cluster) /SAC—CI
(configuration interaction) method [1-3], which was
originally reported in 1978 for studying the ground,
excited, ionized, and electron-attached (anion) states,
has been used in various studies of spectroscopies
and chemical reactions of molecules [4,5], including
surface—molecule interaction systems [6] and bio-
chemical systems [7,8]. It has also been extended to
high-spin states from quartet to septet spin multiplic-
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ities [9]. Based on the accumulated results of these
studies, the SAC/SAC-CI method has been estab-
lished as a powerful, computationally efficient, and
reliable method for calculating ground and excited
states of molecules in singlet to septet spin multiplic-
ities.

The features of the current version of the
SAC/SAC-CI code may be summarized as follows:

(1) The singlet closed-shell state is calculated by
the SAC single-double (SD-S) method.

(2) Using the SAC—-CI SD-R and genera-R [10]
methods, we can calculate the ground and excited
states of singlet, triplet, ionized (doublet), electron-
attached (doublet), quartet (ionized), quintet, sextet
(ionized), and septet spin multiplicities. The SAC—CI
SD-R method is suitable for ordinary one-electron
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processes like excitations and ionizations. The SAC—
Cl generd-R method is useful for studying multi-
electron processes, such asthose involved in shake-up
ionizations and in the excited A, states of linear
polyenes, and up to six-electron excited configura-
tions are included in the linked operators.

(3 A neutral doublet radical, for example, is
calculated by the SAC—CI method as a cationic state
of a closed-shell anion or as an anionic state of a
closed-shell cation. We can use the RHF orbitals of
the neutral radical as reference molecular orbitals
(MO).

(4) The properties of molecules in various €lec-
tronic states are calculated from the SAC/SAC-CI
wave functions: (i) density and spin—density matri-
ces for the above states [11], (ii) one-€lectron proper-
ties for the above states [11], (iii) hyperfine splitting
constants and cusp values of open-shell molecules
[12,13], (iv) transition densities and transition mo-
ments among the above SAC/SAC-CI states [11],
and (v) intensity of the ionization spectra [14,15].

(5) We can directly compare the energies and the
properties of different electronic states calculated by
the SAC/SAC-CI method. This is a very useful
property when one studies the chemistry involving
different electronic states.

Thus, the field of the SAC/SAC-CI method is
certainly very wide: we can study chemistry and
physics involved in many different states of singlet
to septet spin multiplicities.

More recently, equation-of-motion coupled-clus-
ter (EOM—CC) method was published by Bartlett
group [16,17], but this method is essentially the same
as the SAC—CI method, as noted previoudly in more
detail in Ref. [18]. It is not based on the EOM
method, which is an important methodology devel-
oped by Lowe [19], McKoy, Shibuya, and others
[20—22], but is a minor modification of the already
established SAC-CI method. The SAC/SAC-CI
theory is exact. In practical calculations, we have to
introduce some approximations. The differences be-
tween the two theories are only in the approxima-
tions adopted in the current codes.

The derivative of the energy with respect to the
nuclear coordinate of a molecule gives fundamental
information for investigating molecular geometry,
vibration, chemical reaction, dynamics, etc. Further-
more, the derivative of the energy with respect to an

external field, such as an electric or magnetic field,
provides molecular properties, such as dipole mo-
ment, quadrupole moment, magnetic susceptibility,
etc. Thus, the calculations of energy derivatives offer
a useful and powerful tool for studying chemical
reactions, dynamics and properties of molecules.

Two approaches have been developed for the
energy gradient method; one uses the analytical en-
ergy gradient [23,24], and the other uses the Hell-
mann—-Feynman force [25,26]. Though the Héll-
mann—Feynman theorem holds for exact and stable
[27] wave functions, it is not satisfied for most
approximate wave functions due to the linear combi-
nation of atomic orbital (LCAO)—molecular orbital
(MO) approximations. Thus, the error term [28-31],
which should be zero for exact and stable wave
functions, is quite large for approximate wave func-
tions. The Hellmann—Feynman theorem is useful for
the plane wave basis (e.g., Car—Parrinello method
[32,33]). For example, Nakatsuji proposed the Hell-
mann—Feynman force concept (electrostatic force
(ESF) theory) for molecular geometries and chemical
reactions [34-37]. This concept has been shown to
be quite useful for predicting the geometries of
molecules in ground and excited states. This concept
further leads to the concept of electron-cloud preced-
ing and incomplete following in chemical reactions
and molecular vibrations [36]. Nakatsuji and co-
workers [37] also reported a theorem which shows
that there is a unique and systematic approach for
improving the SCF and multi-configuration SCF
(MC-SCF) wave functions so that they satisfy the
Hellmann—Feynman theorem; a sufficient condition
for the Hellmann—Feynman theorem to be satisfied
is that the basis set includes the derivative for any
basis included.

For the SAC—-CI method, the Hellmann—Feynman
theorem is not satisfied. Therefore, the analytical
energy gradient method is necessary for the SAC-CI
method. In this paper, we formulate and implement
an SAC/SAC-CI energy gradient method which
adapts to the perturbation selection scheme [15]. It
would be useful to establish a systematic method for
calculating the energy derivatives of excited states
since molecules in excited states are generally very
short-lived and it is difficult to observe the dynamics
in excited states experimentally. A brief communica
tion on this method has been reported previously
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[38]. To the best of our knowledge, this is the first
time that the energy gradient method has been imple-
mented using the perturbation selection technique.
The EOM—-CC energy gradient [39-43], which is
closely related to the SAC—CI gradient, has been
developed by Stanton and Gauss: the method is
straightforward in their integral-driven algorithm.

In this paper, we first briefly summarize the
SAC/SAC-CI method that is pertinent to the pre-
sent purpose. Next, we formulate the analytical gra-
dients of the SAC and SAC-CI energies and de-
scribe the computational algorithm. We then apply
this method to the various electronic states of several
molecules. Finally, we give our conclusion in Sec-
tion 4.

2. SAC /SAC-CI energy gradient method

2.1. Brief summary of the SAC / SAC—CI method

First, we briefly summarize the SAC/SAC-CI
method. Reviews of the SAC/SAC—CI method have
been published recently [4,5].

The SAC method is based on the spin and space
symmetry-adapted formalism of the cluster expan-
sion method [1]. The SAC wave function is de-
scribed as the cluster expansion around the reference
function |0), which is usually the Hartree—Fock (HF)
single determinant,

|1I’3Ac>: exp( )0y, (1)
where

S= ZQST- (2

The operator S should be spin symmetry-adapted;
otherwise, the wave function is not an eigen function
of S%. Actually, ordinary coupled-cluster (CC) wave
functions are not eigen functions of S?, just like the
unrestricted Hartree—Fock (UHF) wave function. Us-
ing symmetry-adapted operators, the number of inde-
pendent variables included in the cluster expansion is
the same as that in the corresponding (symmetry-
adapted) ClI method. The difference between the
SAC and ordinary CC expansions has been discussed
previously [1].

The non-variational solution of the SAC wave
function is obtained by left-projecting the Schrodi-
nger equation for the SAC wave function onto the
reference and linked excited configurations,

<0| H— ESAC|1PSAC>= 0, (3)
and
<O|S<( H - ESAC)|1PSAC>= 0, (4)

where H is the Hamiltonian and Eg,. is the SAC
energy. The SAC method gives not only the accurate
wave function for the ground state, but also the
complementary functional space which spans the
space for the excited states [2,3,5].

The SAC-CI wave function is described by tak-
ing a linear combination of these complementary
functions [2,3,5], and is written essentially as

N’spAC—m): Rp|q,SAC>v (5)

where p denotes the pth state and
RP= Y dPR!, (6)
K

where Rl represents a set of excitation, ionization
and/or electron-attachment operators, and df is the
SAC-CI coefficient of the pth excited state. By
considering Eq. (5), one notes that the SAC-CI
method is based on the transferability of electron
correlations between the ground and excited states.
Since excitations and ionizations are only one- or
two-electron processes, most of the electron correla
tions in the ground and excited states should be
similar. It has been shown numerically that this
transferability is quite satisfactory for ordinary one-
and two-€electron processes [4,5].

The non-variational SAC-CI (referred to as
SAC-CI-NV) equation is obtained by projecting the
Schrodinger equation for the SAC—CI wave function
onto the space of the linked excited configurations,

<0| RK( H-— EspAC—C|)|Ws’?AC—C|>= 0, (7)

where E& . . is the SAC-CI energy of the pth
state. Since Eq. (7) involves the diagonalization of
non-symmetric matrices, we prepared an agorithm
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for the iterative diagonalization of non-symmetric
matrices [44], extending Davidson's procedure for
symmetric matrices [45]. The left- and right-eigen-
vectors are denoted by d“P and dRP, respectively.
The SAC-CI wave function is described by the right
eigenvectors, as seen in the definition given by Egs.
(5) and (6).

We can aso use the approximately variational
procedure for the SAC—CI method (referred to as the
SAC-CI-V). In the SAC-CI-V method, the final
matrices to be diagonalized are the symmetrized
matrices of the SAC-CI-NV method. This method
has also been shown to give satisfactory results
[3,11], and has been used as a standard method.

2.2. Analytical gradients of the SAC energy

Our SAC/SAC-CI program code is Hamiltonian
matrix-driven, as in the MR—CI codes, whereas al-
most all of the CC codes are integral-driven [46-53].
Therefore, we formulate the analytical gradients of
the SAC and SAC-CI energies to be suitable for
such an algorithm.

The approximations adopted in the following
derivation are as follows; the linked terms in the
SAC calculations include al single- (S) and se-
lected double- (S,) excitation operators, and the
unlinked terms include quadruple-excitation opera-
tors as products of further selected double-excitation
operators (S,S,) (referred to as SAC-A). The
unlinked double SS and triple SS, excitation
operators are also included optionally. The SAC-Q
and SAC-C [54] approximations are obtained by
considering the (0[S HS/S![0) term, and the
(0|s,HS'S!|0) and (0|S,HS/S!|0) terms, respec-
tively. Under this approximation, the SAC equation
is represented in Hamiltonian matrix form as

ABgpc= Z C <O| HST|0>

+

N P

Z Y. C,C0IHS's]l0)
|

1
EZC|H0|+EZZC|CJH0,|J1 (8)
I L

and

HK0+ ch( HKI _AESACSH)
I

%Z ZC CJ( HK 1 AESACS(,IJ) =0
(9)

where A Eg,c = Egac — Ey. Throughout this paper,
we represent the Hamiltonian matrices (0| § HS}|0)
and (0| S HS!S}[0) as H,, and H, ., respectively,
and the overlap matrices between the configurations
(0|ssi|o) and (0|5 S[SL[0) as S, and S, re-
spectively. The unlinked H, ,; and S, ,; terms do
not practically appear in Egs. (8) and (9), respec-
tively, since the digoint S S} excitation operator can
be represented by the linked operator S| if S, is
non-zero.

The first derivative of the SAC correlation energy
is derived by differentiating Eq. (8) with respect to
the external parameter a, and is given as

0A Equ ¢ _ =
Ja = ;Q Hgl + ;ClaHm ) (10)
where
_ oH,, 1 oHy |5
2 = —-) C —, 11
KI™ da 2; v da (11)
HKI HKI—’_ZC HK 13 (12)
J
and
a= a—C' (13)
' %a

In this equation, we need information about the
first derivative of the SAC coefficient 0C, /0a since
the SAC coefficients are not determined variation-
aly, and this is determined by the coupled-perturbed
SAC (CPSAC) equation which is obtained by differ-
entiating the SAC equation (Eq. (9)) with respect to
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a. The CPSAC equation is linear and is written in
matrix form as

YCa=X, (14)

where the matrix Y and the vector X are given by

YKlzﬁm_AESAcém_(ZCJékJ)ﬁm- (15)
J

—(;clék,)(;c,ﬁo,)}, (16)
where
Si=Sats ZCSKIJV (17)
and

My,
HG=——. (18)

Here and hereafter, the derivative of the overlap
matrix between configurations disappears because it
is zero at the configuration level; molecular orbital
orthonormality is guaranteed by the following rela
tionship,

which is obtained by differentiating the MO overlap
matrix, s;, where

oo plv)

s§ = 2c iCyj , (20)
e 0a

and c,; is the coefficient of the uth atomic orbital

X, inthe ith MO. The MO coefficient derivative,
US, is determined by the coupled-perturbed
Hartree—Fock (CPHF) equation [23,24,55-57].

Explicit solution of the CPSAC equation is com-
putationally costly, since 3N sets of unknowns, with
N being the number of atoms, are required. How-
ever, this can be circumvented by using the inter-
change technique of Dalgarno and Stewart [58] (or

the so-called Z-vector method of Handy and Schae-

fer [59]). In the interchange technique, we introduce
a new vector ZSAC (called the Z-vector) defined by

YTZSAC = H,, (21)
and the second term in Eq. (10) can then be rewritten
in matrix form as

HICa = HJY " 1X =(Z%°)"X. (22)

Thus, the first derivative of the SAC correlation
energy given by Eq. (10) is rewritten as

0A Egnc
oa

= ZC| ﬁgl + ZX| Z|SAC- (23)
| |

An advantage of representing the first derivative
of the SAC energy in Hamiltonian matrix form is
that this derivative can be calculated even if we
adopt the selection scheme for the operators S and
S'S!. If we represent the energy in the integral-driven
form at the beginning, we have to give up this
selection scheme.

The Hamiltonian matrix element H, ; is written as

MO MO

Zv.'ﬁf” + L L (ijlk), (24)

ijkl

where v}’ and I}, are one- and two-electron cou-
pling constants between the configuration functions
&, and P,, f,. is the Fock matrix element, and
(ij|kl) is the two-electron MO integral. Since the
coupling constants are independent of the parameter
a, the derivative of the Hamiltonian matrix is written
as

oH, 0 0Fii MO a(ljlkl)
Ja = |Z ij a Z 1_;:|‘<]| Ja (25)
j ijkl
By using Eq. (25), Eq. (23) is rewritten as
0 o ii
0A Eac _ MZ SAcafi‘ MZF_SACa(”lkI) (26)
da da UK 9a

ijkl

in a MO representation, where AE is the SAC or
SAC-CI correlation energy, f;; is the Fock matrix
element, and (ij|kl) is the two-electron MO integral.
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¥;; and I}, ae the SAC or SAC-CI one- and
two-electron (1e and 2e) effective density matrices
(EDM), respectively, in the MO representation, and
are given by

%?AC: Z{(1+ by ZZEACCJSU C
J K

—ZSAC} -TrzeeH. @)

and

E%CEZ(HZZZ °Cy5, |G TS,
| J K

- Y Z¥T N - X X2 T,
I Ko
(28)
where
—ki_ ok, L K13
Yii = Y] +EZCJVU' , (29)
3
and
Skl ekl L K13
ijk|=rijk|+§ZCJFijk'| , (30)
J

Eq. (26) gives the first derivative of the SAC energy
in the MO representation. As will be shown in
Section 2.3, the first derivative of the SAC-CI en-
ergy has the same form as that of the SAC one, that
is, the sum of the one- and two-electron parts. Before
we rewrite the first derivative of the SAC energy in
the AO representation, we derive the MO representa-
tion of the first derivative of the SAC—CI energy in
Section 2.3.

2.3. Analytical gradients of the SAC—-CI energy

As mentioned above, the EOM—CC method is
theoretically similar to the SAC—CI method, a-
though an integral-driven form is used in the actual
calculations. The present SAC-CI gradient method
uses a Hamiltonian matrix-driven agorithm in con-

trast to the EOM—CC gradient method presented by
Stanton [39—43].

Using Eq. (7), the SAC—CI-NV energy is written
as

Z ZdL AP (31)

SAC Cl

where AEL ¢ = E&ic_¢ — Eyp, and diP and dRP
are, respectively, left- and right-vector coefficients of
the pth solution the SAC—CI Eg. (7). We adopt the
convention that the subscripts 1, J, K, and L refer
to the SAC excitation operators, while M and N
refer to the SAC—CI excitation operators. Further-
more, the eigenvector biorthonormalization condition
is given by

Z Zdllx_llpdspS\/lN = 5pq ) (32)
M N
where

SWNESF\AN+ZCISW,NI' (33)
I

Hereafter, we are interested only in the pth state
of the SAC—CI solutions, and therefore do not give
the superscript p in the following equations. By
differentiating Eq. (31), the first derivative of the
SAC-CI correlation energy with respect to the exter-
nal parameter a is written as

Hy i
+ ZQ—a . (35)
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The derivative of the SAC-CI coefficient is elimi-
nated by using the SAC-CI equation, Eq. (7), and
the biorthonormalization condition, Eq. (32), and we
obtain,

A Egac_cy L NRga
a ~ L LdudiHi - YO, (g5
M N |
where
Hy= Y > dysi(Hyn —AEsac_ciSun) - (37)
M N

We note that information regarding the derivative
of the SAC coefficient is necessary in the last term
of Eqg. (36), and may be calculated using the CPSAC
equation. However, this again can be avoided by
using the interchange technique for the SAC—CI
case. Introducing the SAC-Cl Z-vector ZSAC-C!
defined by

yTZSAC-Cl _ ﬁ, (38)
the first derivative of the SAC-CI energy can be
written as

0A ESAC Cl

- + Y xzee,

= 2 L dydiHay
M N
(39)

As in the case of the SAC energy gradient, we
rewrite Eq. (39) in the MO integral form as

aA ESAC—C| - Z SAC C| afI
oa aa
SAC Cl a( IJ|k )

ki (40)
Ijk| Il da

where the SAC-CI 1e and 2e MO-EDMs are repre-
sented as

weo= (L Ezrereso)s
J K
~2e-0 g+ X T ef5™
M N

- Z ZZSAC “C¥a (41)

and

ngeo=S{(LTzretes)e
| J K

~2#e-0 g+ T Yol Tl

- Z ZZSAC “C L (42)

respectively, and where

7|'JV|N: 7|1 N+ chyl';ﬂ N ’ (43)
|

and

L =T DO (44)

We aso implement the first derivative of the
approximately variational SAC—CI (SAC—CI-V) en-
ergy. This implementation is straightforward since
the SAC—CI-V method is obtained simply by sym-
metrizing the SAC—CI-NV matrices.

2.4. Evaluation of SAC / SAC—CI energy gradient

In Sections 2.2 and 2.3, we derived the MO
representations of the first derivatives of the SAC
and SAC—CI energies, which involve the derivatives
of the MO Fock matrices and the 2e MO integrals.
We know that the 2e AO derivative integras are
mostly zero since only such derivative integrals that
include the AOs whose centers are involved in the
derivative calculation are non-zero, while the MO
derivative integrals are generally non-zero. There-
fore, the MO representation of the derivative inte-
grals is not effective or practical. Thus, instead of
transforming the derivative integrals, we back-trans-
form the effective density matrix from MO to AO
representation [60]. In this section, we rewrite the
first derivatives of the SAC and SAC-CI energies
from MO to AO representation.

The first derivatives of the Fock matrix and the
two-electron integrals included in Egs. (26) and (40)
are rewritten as

a _fa Z( mi +Umjf|m) (45)
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and

a(IJI 1)

= (ijIK) "+ Z{Um.(mllkl)

+Umj(|m|kl) + U3 (ijlml)
+U2 (ijlkm)}, (46)

respectively, where f3 and (ij|kl)? are the skeleton
derivatives [23] defined by

d.o.

fa=he+ X {2(iilk0) " = (ikljk) %}, (47)
k

and

(ijlk)" = Z CokCor
mrpo
respectively, where hfj is the core Hamiltonian

derivative,
A0 o( wlhlv
ha — Z WC”M .
uv
The MO coefficient derivative, U?, is obtained by
solving the CPHF equation [23,24,55-57].
Using Egs. (45) and (46), the first derivative of
the SAC or SAC—CI energy given by Eq. (26) or Eq.
(40) is written as

JAE Mo
Y Z: 7” _F 2:

ijkl

o( uvl po)

0a ' (48)

Ja (49)

jkl(lj“(l)

MO MO

+2) ZUm.{Zv.J mi

+22 ]kl(rn”kl)} (50)

The first two terms of Eg. (50) are rewritten by
back-transforming the effective density matrix from
MO representation to AO representation as,

0AE 29 of, A9 A puvlpao)

—— = Z Yy + X Livpr ™2

nvpo

MO MO

+2) ZUm.{Zv.J mi

+22 jkl(m”kl)} (51)

The explicit solution of the derivative of the MO
coefficient, U3, can be avoided by using the inter-
change technique [58,59], as explained for the SAC
coefficient.

2.5. Algorithm

The SAC/SAC-CI energy gradient code has been
implemented into the SAC85 [61] and SAC-CI96
[62] program systems in the SD-R approximation. In
addition, the gradients of the CIS (singles), CISD
(singles and doubles), MP2 (second-order Mgller—
Plesset perturbation), and SACD (SAC doubles)
energies have also been implemented. The basic
algorithm is as follows:

(1) The SCF calculation is performed and the
derivatives of the one- and two-€electron AQO integrals
are cdculated using the GAUSSIAN94 [63] or
HONDOS [64] program package.

(2) The SAC and SAC-CI cadculations are car-
ried out, and the information on the configurations
selected is stored to be used in a later step.

(3) The CPSAC Z-vector equations (Eq. (21) or
Eq. (38) and the CPHF Z-vector equations are
solved using Pulay’s direct inversion in the iterative
subspace (DIIS) method [65]. The DIIS method is
also useful for solving the SAC equation.

(4) The SAC and SAC-CI MO effective density
matrices given, respectively, by Egs. (27) and (28)
and by Egs. (41) and (42) are constructed and stored.

(5) The SAC and SAC-CI energy gradients are
calculated using Eq. (51). The explicit solution of the
derivative of the MO coefficient, as well as the SAC
coefficient, is avoided by using the interchange tech-
nique [58,59]. In this step, we perform the back-
transformation of the effective density matrix from
the MO basis to the AO basis.

The linked terms in the SAC calculations include
al single- (S)) and selected double- (S,) excitation
operators. The unlinked terms are included in differ-
ent ways in the SAC-CI96 program [62]. In the
standard applications, we use the SAC-A approxima:
tion (see Section 2.2), in which selected quadruple-
excitation operators which are the products of the
double-excitation operators (S,S,) are included as
the unlinked terms. In the standard SAC—CI calcula
tions, the linked term includes al of the single- (R,)
and selected double- (R,) excitation operators, and
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the unlinked term includes the digjoint triple-excita-
tion operators (R;S,).

A numerical check of the implemented program
was carried out by comparing the present results
with those obtained by numerical differentiations.

2.6. GSUM method

A feature of the present SAC/SAC-CI energy
gradient code is that it adapts to the perturbation
selection scheme used in the SAC /SAC-CI calcula
tions. This will make the calculation of truly large
molecules possible. However, for example in the
geometry optimization, the independent selection of
operators at independent geometries may lead to a
discontinuity of the potential surface. To avoid this
discontinuity, we adopt the GSUM method [66],
which was previously applied to calculations of the
potential energy curves of Li, [66].

The geometry optimization using the GSUM
method is summarized as follows. Before optimiza:
tion, we choose representative points which cover
the reaction coordinate under consideration and take
the group sum of the linked and unlinked operators
selected by the ordinary method [15] for al the
representative points in the nuclear configuration
space. Geometry optimization is performed within
this configuration space. The usefulness of this
method has been confirmed by previous applications
[38,66].

3. Applications

3.1. Diatomic molecules — without selection

As an application of the present SAC/SAC—CI
energy gradient method, we first calculate the spec-
troscopic constants of the ground and excited states
of the diatomic molecules LiH, BH, BeH, and CH
without the perturbation selection scheme. The ex-
perimental data for the equilibrium internuclear dis-
tance r,, harmonic vibrational frequency w,, and
adiabatic transition energy T, of these diatomic
molecules have been reported previously [67]. We
calculate the equilibrium internuclear distances and

harmonic vibrational frequencies using the SAC/
SAC-CI energy gradient method, and evaluate the
adiabatic transition energies. The singlet and triplet
states are calculated for LiH and BH, and the doublet
states are calculated for BeH and CH. The singlet
ground states are determined by the SAC energy
gradient method, and the other excited states are
determined by the SAC-CI energy gradient method.
The doublet states are obtained by the ionizations of
the corresponding anionic closed-shell molecules or
by electron attachment of the corresponding cationic
closed-shell molecules. The SAC-CI calculations
are performed using both the non-variational and
approximate variational methods (SAC-CI-NV and
SAC—CI-V, respectively).

The basis sets used for LiH, BeH, and CH are the
6-311+ + G** sets [68,69], and that for BH is the
Huzinaga—Dunning (9s5p /4s) /[4s2p/2s] set [70,71]
augmented with polarization and diffuse functions;
for boron, the orbital exponent of the sp diffuse
function is 0.0315 and the exponent of the d polar-
ization function is 0.7. For hydrogen, the exponent
of the s diffuse function is 0.036 and the exponent of
the p polarization function is 1.0.

The calculated results for these diatomic molecules
are shown in Table 1, and are compared with experi-
mental findings [67]. The results calculated by the
SAC/SAC-CI energy gradient method are generaly
consistent with the experimental findings. The differ-
ences in the equilibrium distances between the
SAC/SAC-CI and experimenta results are within
0.015 A, and those in the harmonic vibrational fre-
quencies are within about 60 cm™. The adiabatic
transition energies fall within about 0.25 eV of the
experimental values.

The results obtained by the SAC—CI-V method
are very close to those obtained by the SAC-CI-NV
method. The adiabatic transition energies calculated
by the SAC-CI-V method are generally a little
smaller than those calculated by the SAC-CI-NV
method. The differences in the equilibrium distances
between SAC-CI-NV and SAC-CI-V are within a
few 107* A. Thus, the SAC—CI-V method is useful
for calculating excited states.

In Table 1, we compare r, and w, of the ground
state of BeH calculated by the SAC—CI ionization
and electron-attachment methods applied to the
BeH™ and BeH™' closed-shell states, respectively.
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Table 1
Equilibrium internuclear distances, harmonic vibrational frequencies, and adiabatic transition energies
Molecule State Method Equilibrium Harmonic Adiabatic
internuclear vibrational transition
distance r,, frequency w, energy T,
A) em™) (V)
LiH X3+ SAC 1.5948 1394 0.0
experimental® 1.5957 1406 0.0
B'II SAC-CI-NV 2.3788 261 4.2193
SAC-CI-V 2.3788 263 4.2192
experimental® 2.378 - 4.3285
b°IT SAC-CI-NV 1.9895 592 4.0242
SAC-CI-V 1.9895 592 4.0241
BH X'zt SAC 1.2397 2376 0.0
experimental® 1.2324 2367 0.0
a1 SAC-CI-NV 1.1933 2660 1.2322
SAC-CI-V 1.1940 2654 1.2305
Al SAC-CI-NV 1.2321 2263 3.1252
SAC-CI-V 1.2330 2249 3.1224
experimental® 1.2186 2251 6.2848
SAC-CI-V 1.2435 1655 6.2820
B'S* SAC-CI-NV 12178 2423 6.4742
SAC-CI-V 1.2181 2425 6.4710
experimental® 1.2164 2400 6.4888
BeH X235+ SAC-CI-NV® 1.3389 2096 0.0
SAC-CI-VP 1.3390 2107 0.0
SAC-CI-NV ¢ 1.3470 2075 0.0
SAC-CI-V¢ 1.3470 2069 0.0
experimental® 1.3426 2061 0.0
AT, SAC-CI-NVP 1.3344 2099 2.5609
SAC-CI-VP 1.3346 2095 2.5598
experimental® 1.3336 2089 2.4838
B2II SAC-CI-NV® 1.3120 2255 6.4597
SAC-CI-V® 1.3179 2194 6.4590
experimental® 1.3092 2266 6.3086
CH X211, SAC-CI-NV® 1.1218 2923
SAC-CI-VP 1.1222 2921
experimental® 1.1199 2859
®Ref. [67].

PObtained by electron attachment from BeH™ or CH*.
“Obtained by ionization from BeH ™.

The SCF orbitals used are those for an anion or
cation instead of a neutral radical, since the CPHF
method we have coded is currently limited to closed
shells. Nevertheless, the two results agree well with
each other. The equilibrium distance calculated by
the electron-attached SAC-CI method is smaller by
about 0.008 A than that calculated by the ionized
SAC-CI method, while the harmonic vibrational
frequency calculated by the electron-attached SAC—
Cl method is larger by 20-40 cm™!. The main

reason for these differences lies in the difference in
the HF orbitals used.

3.2. Diatomic molecules — with the GSUM method

To demonstrate the performance of the GSUM
method in the selection scheme, we calculate the
equilibrium internuclear distance r, and adiabatic
transition energy T, of the diatomic molecules BF
and NO. For NO, we previoudly studied the excita
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tion and ionization spectra by the SAC/SAC-CI
method [72].

The basis set for BF is the 6-311 + + G** set
[68,69]. The basis set for NO is the Huzinaga—Dun-
ning (9s5p) /[4s2p] set [70,71] augmented with polar-
ization and diffuse functions; for oxygen, the expo-
nents of the s and p diffuse functions are 0.032 and
0.028, respectively, and the exponent of the d polar-
ization function is 0.85. For nitrogen, the exponents
of the s and p diffuse functions are 0.023 and 0.021,
respectively, and the exponent of the d polarization
function is 0.8.

The singlet ground state of BF is calculated by the
SAC energy gradient method. The excited singlet
and triplet states of BF and the ground and excited
doublet states of NO are calculated by the SAC-CI
energy gradient method. The doublet states of NO
are obtained by electron attachment of the corre-
sponding closed-shell cation NO*. The SAC-CI cal-
culations for BF are performed by the SAC-CI-NV

method, and those for NO are performed by the
SAC-CI-V method.

Energy thresholds of 1x107° and 1x 10~/
hartree are used for the ground and excited states,
respectively, in the perturbation selection scheme.
Geometry optimization is performed as follows: per-
turbation selection is performed with the experimen-
tal geometry and geometry optimization is performed
while maintaining this selected space. Although the
experimental geometries are used for perturbation
selection, other choices, such as the optimized ge-
ometries at the HF/CIS level, may also be used,
since we have found that the dependence on this
choice is small. For the E2°2+ state of NO, selection
was performed a 1.08 A since the experimental
value could not be found.

The calculated results for BF and NO in Table 2
are comparable to experimental findings [67]. The
results calculated by the SAC/SAC-CI energy gra-
dient method are generally consistent with the exper-

Table 2
Equilibrium internuclear distances and adiabatic transition energies
Molecule State Method Equilibrium Adiabatic
transition transition
dlstance le energy T,
A) (eVv)
BF xis* SAC-CI 1.265 0.0
experimental® 1.263 0.0
all SAC-CI 1.319 3.547
experimental® 1.308 3.613
A'll SAC—CI 1.315 6.643
experimental® 1.304 6.343
pis+ SAC-CI 1.213 7.778
experimental® 1.215 7.567
B'>* SAC—CI 1.204 8.539
experimental® 1.207 8.103
NO X211 SAC-CI 1.165 0.0
experimental® 1151 0.0
A%3* SAC-CI 1.077 5.054
experimental® 1.063 5.451
c’n SAC-CI 1.074 6.094
experimental® 1.062 6.463
D?3* SAC-CI 1.077 6.144
experimental® 1.062 6.582
E°S* SAC-CI 1.085 7.425
experimental® - 7.517
H211 SAC—CI 1.075 7.654
experimental® 1.059 7.747

*Ref. [67].
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imental values. This shows that the SAC/SAC-CI
energy gradient method is also effective and useful
when the perturbation selection scheme is used.

3.3. CH, and SH,

We next studied the singlet—triplet energy separa-
tions of CH, and SiH, molecules. It is well known
that the ground state of CH, is °B, and the first
excited state is 'A ;, while this is reversed for SiH,,.
Many theoretical and experimental studies have been
published for CH, [73-80] and SiH, [77,81,82].

Two basis sets are used for CH,. The first basis
set (Basis 1) is the Huzinaga-Dunning (9s5p/
4s) /[4s2p /2s] set [70,71] augmented with the car-
bon d ({=0.74 for °B, and 0.51 for 'A,) and
hydrogen p (¢ = 1.0) polarization functions, which
has often been used to calculate the singlet—triplet
energy separation of CH, [75,78]. Using this basis
set and the experimental geometries, we previously
calculated the singlet—triplet energy separation for
the ground and excited states by the SAC method,
and obtained a reasonable value of 11.8 kca /mol
[75]. The second basis set (Basis I1) is the same as
that used by Bedrda et al. [80], and is larger than
Basis I. The basis set for SiH, is the same as the f

Table 3

basis referred to by Balasubramanian and McLean
[81].

For CH,, the results for Basis | and I are shown
in Table 3. No perturbation selection was performed
in these calculations. For Basis |, we perform the
SAC-A, SAC-Q and SAC-C cdculations and the
corresponding SAC—CI-NV calculations. The differ-
ent SAC/SAC-CI caculations give similar geome-
tries, dipole moments, and singlet—triplet energy sep-
arations. The SAC—CI-V and -NV results based on
SAC-A are again very close to each other.

Here, we want to see how well-balanced the
SAC/SAC-CI results for the singlet and triplet
states are in comparison with the results of the
UHF-based CC method. The UHF-based CC result is
spin-contaminated, while the SAC /SAC—CI result is
spin-pure. Comparable QCISD calculations [83] were
performed, using the same basis sets, by the
GAUSSIAN 94 program [63] as a UHF-based CC
method. For the geometric parameters, the results
obtained by the SAC/SAC-CI method are similar to
those obtained by the UHF-based QCISD method.
However, the singlet—triplet energy separation dif-
fers by more than 1 kcal /mol, and the SAC/SAC-
Cl result is closer than the UHF-based QCISD result

Total energies, geometries, singlet—triplet energy separation, and dipole moments of CH, (Basis | and I1)

State Method Tota energy CH HCH Separation Dipole moment
(au) A (deg.) (kcal /mol) (D)
Basis|
1’A 1 SAC-A —39.038193 1.118 101.66 0.0 —1.858
SAC-Q —39.038267 1.118 101.55 0.0 —1.856
SAC-C —39.038244 1.118 101.66 0.0 —1.856
1°B 1 SAC-CI-NV(SAC-A) —39.057491 1.082 132.21 —-1211 —0.660
SAC-CI-V(SAC-A) —39.057620 1.082 132.25 —-12.19 —0.659
SAC-CI-NV(SAC-Q) —39.057500 1.082 132.24 —12.07 —0.660
SAC-CI-V(SAC-O) —39.057492 1.082 132.24 —12.08 —0.660
QCIsb? —39.059454 1.082 132.42 —13.30 —0.669
experimental® 1.0766 + 0.0014 134.037 + 0.045 —9.272 4 0.03
Basis ||
1'A 1 SAC-A —39.048908 1112 101.36 0.0 —1.689
SAC-Q —39.049002 1112 101.28 0.0 —1.686
1°B 1 SAC-CI-NV —39.065057 1.082 132.21 —10.13 —0.587
SAC-CI-V —39.065212 1.082 132.21 —10.23 —0.586
QCISD? —39.067297 1.082 132.29 —11.48 —0.593
experimental® 1.0766 + 0.0014 134.037 + 0.045 —9.272+ 0.03

#Present UHF-based calculation by GAUSSIAN 94. (S?) = 2.015 for both Basis | and II.

PRef. [82].
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Table 4
Total energies, geometries, singlet—triplet energy separation, and dipole moments of SiH,
State Method Total energy SiH HSIH Separation Dipole moment
(au.) A) (deg.) (kcal /mol) (D)
1°B 1 SAC-CI-NV —290.2 26602 1.489 117.43 0.0 +0.007
1'A, SAC-A —290.2 62293 1513 93.83 —22.40 -0.384
experi mental® 15164 92.8 —-21.0+ 07, -180+ 0.7
®Ref. [82].

to the experimental value [73,74]. This result is
common to both basis sets and shows that the
SAC/SAC—-CI method gives well-balanced descrip-
tions for different spin—multiplet states because it is
free from spin-contamination.

Theresult for SiH, is shown in Table 4. Perturba-
tion selections with energy thresholds of 1x 107°
and 1 X 10~ hartree were performed for the ground
and excited states, respectively. The configuration
spaces throughout the geometry optimization were
fixed to those selected at the 'A, and °B, HF
optimized geometries. The results for the geometric
parameters agree well with the experimental find-
ings. The singlet—triplet energy separation calculated
by the SAC/SAC—CI method is —22.40 kcal /moal,
which is consistent with the experimental value of
—21.0 (+£0.7) kcal /mol [82] as well as with previ-
ous theoretical results [78,81].

throughout the geometry optimization. For compari-
son, optimization was performed for the 'B,, state
using the GSUM space of those selected at the
experimental [90] and CIS optimized geometries.
Table 5 shows the result for the optimized geome-
tries in the ground and excited states of ethylene.
Although the differences between the HF/CIS and
SAC/SAC—CI methods are small, the results ob-
tained by the SAC/SAC-CI method are closer to
the experimental findings[90,91]. For the 'B,,, state,
which is the 3s Rydberg state, both the CIS [86] and
SAC—-CI methods predict a planar D,, geometry,
while a D, structure (azimuthal angle of 37.0°) has
been reported experimentally [90]. The MR (multi-

Table 5
Equilibrium geometries in the ground and excited states of ethy-

34.C,H, lene
State Method Poitt CC CH  CCH
Molecular ethyleng in the ground and egcited goup (A (A (deg)
states has been e_xtensuvely studied bo_th experimen- Ground _HF D, 1321 1076 12173
tally and theoretically [84]. We previously [84,85] SAC D, 1334 1083 12181
calculated the electronic spectrum of ethylene by the . experimental® D,  1.337 1084 121.25
SAC/SAC-CI method, and the results agreed very By, (V) SASZ o gm i-ggﬁ 1-282 gi-zg
. ; N _ o _ _ _
v;:ell Wl.tlf.'l experi mental 'f|n<fj| ngs.h I—||ere, _Wehcalculate B, T as Do 1461 1076 12130
the equi !brlum geometries for ethylene in the ground SAC_CI D, 1462 1085 12116
and excited states by the SAC/SAC-CI energy B, (39 CIs° D,, 1413 1071 12036
gradient method. SAC-CI® D,, 1411 1082 12052
Foresman et al. [86] calculated the CIS optimized SAC-CI* Dy 1413 1083 12058

geometries at the 6-31 + G* basis [87—89] for the
'B,,, °B,,, and 'B,, states. We used the same basis

experimental® D), 141 108 1178

®Ref. [91].

set for the sake of comparison. Energy thresholds of PRef. [86].

1%x107° and 1X 10”7 hartree are used for the “Configuration selection was performed with the CIS optimized
geometry.

ground and excited states, respectively, in the pertur-
bation selection scheme. Selection is performed at
the CIS optimized geometries reported by Foresman
et a. [86], and these selected spaces are fixed

dConfigurati on selection was performed by the GSUM method for
the CIS optimized and experimental geometries.

°Ref. [90].

"The azimuthal angle is 37.0°.
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Ca
Fig. 1.

reference) D—CI result reported by Petrongolo et al.
[92], which was obtained by optimizing only the
azimuthal angle, predicted a non-planar D, geome-
try. This implies that further examination is neces-
sary from both theoretical and experimenta perspec-
tives. Furthermore, we see for this state that the
difference due to the difference in the selection
procedure is very small. This confirms the usefulness
of the GSUM method.

3.5. Methylenecyclopropene

In the ultraviolet (UV) spectrum of methylenecy-
clopropene (Fig. 1), Staley and Norden [93] observed
three peaks which they assigned using the semi-em-
pirica INDO/S-CI method [94]. The first peak at
206 nm, which shows strong solvent-dependence,
was assigned to the 'B,, transition, and the second (at
242 nm) and third (at 309 nm) peaks were assigned
to the "B, and A, transitions, respectively. The CIS
calculation [95] also supports these assignments.
Norden et al. [96] also reported the experimental and
theoretical structures and dipole moment for the
ground state. We calculate here the equilibrium ge-

ometries and the dipole moments of methylenecyclo-
propene in the ground and excited states using the
SAC/SAC-CI energy gradient method.

The 6-31G* basis [68,69] used in the previous
MP2 calculation [96] is adopted for the sake of
comparison. Energy thresholds of 1 x 107° and 1 X
107 hartree were used for the ground and excited
states, respectively, in the perturbation selection
scheme. Perturbation selections were performed at
the following geometries: the MP2 optimized geome-
try [96] for the ground state, the CIS optimized
geometries for the singlet and triplet excited states,
and the UHF optimized geometries for the cationic
and anionic states. These CIS and UHF geometries
are shown for comparison in Table 6. The vertica
excitation energies and dipole moments were calcu-
lated using the SAC optimized geometries in the
ground state with a better-quality 6-31 + + G** ba
sis [87-89].

Table 6 shows the SAC/SAC-CI optimized ge-
ometries for the ground, singlet and triplet excited,
ionized, and electron-attached states. The previous
theoretically optimized and experimental geometries
[96] are dso shown for comparison. The SAC result
for the ground state is very similar to the MP2 and
experimental results [96]. All of the excited, ionized
and electron-attached states calculated in Table 6
mainly involve the highest-occupied (HO) and low-
est-unoccupied (LU) MOs. The HOMO hasits largest
amplitude at C, and shows C,C, w-bonding and
C,C, w-bonding nature, and a node exists between

Table 6
Equilibrium geometries in the ground, excited, ionized, and anionized states of methylenecyclopropene

Ground Singlet Triplet Cation Anion

SAC Mp22 Experimental®® SAC-CI CIS SAC-CI CIS SAC-ClI UHF SAC-ClI UHF
C.C, 1.320 1.326 1.323 1.501 1481 1511 1.501 1.352 1.341 1434 1418
C,C, 1.445 1.445 1.441 1.352 1.350 1.405 1.416 1.381 1.364 1421 1.407
C,C, 1.329 1.330 1.332 1.426 1.397 1.354 1.325 1.413 1421 1.365 1.363
CH 1.077 1.080 (1.080) 1.071 1.062 1.070 1.063 1.073 1.071 1.068 1.067
C,H 1.076 1.083 (1.085) 1.081 1.071 1.075 1.074 1.075 1.072 1.078 1.078
C,C;H 14820 1481 (147.5) 152.18 151.66  151.07 151.00 149.47 149.45 15151 151.21
HC,H 11886 1180 (118.0) 116.98 118.73  117.39 117.60 120.44 12054 117.61 117.91
*Ref. [96].

b Experimental geometries were obtained under the assumption that the geometric parameters involving the hydrogen atoms were fixed at the

values given in parentheses.
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Table 7
Excitation energies and dipole moments of methylenecyclopropene
State Excitation energy(eV) Dipole moment (D)
HF/CIS? SAC/SAC-CI Experimental® HF/CIS? SAC/SAC-CI Experimental ©
Ground 0.0 0.0 0.0 —2.391 —1.988 —-190+0.2
! B, 5.508 4.810 4.01 +2.598 +2.344 -
'B 1 5.462 5.365 5.12 —3.155 —0.957 -
A, 6.031 5.924 - —-1.205 +1.916 -
'B 1 6.128 5.957 - +3.858 +0.175 -
A, 6.416 6.311 6.02 —1.369 —1.506 -
#Present calculation.
°Ref. [93].
°Ref. [96].

these bonds. The LUMO has C,C, w-antibonding
nature. The structural changesin all of the calculated
states are well interpreted by these natures of the
HOMO and LUMO.

The excitation energies and dipole moments cal-
culated by the SAC/SAC—CI method are listed in
Table 7, and are compared with those obtained by
the HF /CIS method and experimentally. The excita-
tion energies caculated by the SAC/SAC-CI
method are closer to the experimental values. For the
lowest ‘B, excited state, the deviation is still as large
as 0.8 eV. The reason for this may lie in the strong
solvent-dependence mentioned above, which is cer-
tainly caused by a large change in the dipole moment
between the ground and excited states. The dipole
moment of the ground state calculated by the SAC
method is improved, and close to the experimental
value. Furthermore, we note that the dipole moments
of the two 'B, and 'A, excited states are quite
different between the SAC-CI and CIS calculations,
in comparison with those in the B, and A, states.

4, Conclusions

An analytical energy gradient method for the
ground, excited, ionized, and electron-attached states
calculated by the SAC/SAC—-CI method was formu-
lated and implemented in the SAC85 [61] and SAC—
Cl196 [62] programs. This method adapts to the per-
turbation selection technique used in our
SAC/SAC-CI code. This is the first such imple-

mentation for the excited states and is easily applied
to the MR—CI code. The reliability and usefulness of
the present method were confirmed, based on its
application to various molecules in the ground and
excited states. We are currently combining the pre-
sent code with the HF SCF program to make it more
efficient for studying the dynamics and properties of
molecules in the ground, excited, ionized, and elec-
tron-attached states.

The present SAC/SAC-Cl energy gradient
method can be easily extended to the high-spin
SAC-CI [6] and general-R SAC—CI [10] methods,
and we are currently performing such implementa-
tions.
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