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Abstract

A method for calculating the analytical energy gradient of the ground, excited, ionized, and electron-attached states
Ž . Ž .calculated by the SAC symmetry-adapted cluster rSAC–CI configuration interaction method was formulated and

implemented. This method adapts to the selection procedure of the linked and unlinked operators in the current
SACrSAC–CI code. It was applied to various molecules in various electronic states, and was confirmed to perform well for
general use. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .The SAC symmetry-adapted cluster rSAC–CI
Ž . w xconfiguration interaction method 1–3 , which was
originally reported in 1978 for studying the ground,

Ž .excited, ionized, and electron-attached anion states,
has been used in various studies of spectroscopies

w xand chemical reactions of molecules 4,5 , including
w xsurface–molecule interaction systems 6 and bio-

w xchemical systems 7,8 . It has also been extended to
high-spin states from quartet to septet spin multiplic-
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w xities 9 . Based on the accumulated results of these
studies, the SACrSAC–CI method has been estab-
lished as a powerful, computationally efficient, and
reliable method for calculating ground and excited
states of molecules in singlet to septet spin multiplic-
ities.

The features of the current version of the
SACrSAC–CI code may be summarized as follows:

Ž .1 The singlet closed-shell state is calculated by
Ž .the SAC single-double SD-S method.

Ž . w x2 Using the SAC–CI SD-R and general-R 10
methods, we can calculate the ground and excited

Ž .states of singlet, triplet, ionized doublet , electron-
Ž . Ž .attached doublet , quartet ionized , quintet, sextet

Ž .ionized , and septet spin multiplicities. The SAC–CI
SD-R method is suitable for ordinary one-electron
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processes like excitations and ionizations. The SAC–
CI general-R method is useful for studying multi-
electron processes, such as those involved in shake-up
ionizations and in the excited A states of linearg

polyenes, and up to six-electron excited configura-
tions are included in the linked operators.

Ž .3 A neutral doublet radical, for example, is
calculated by the SAC–CI method as a cationic state
of a closed-shell anion or as an anionic state of a
closed-shell cation. We can use the RHF orbitals of
the neutral radical as reference molecular orbitals
Ž .MO .

Ž .4 The properties of molecules in various elec-
tronic states are calculated from the SACrSAC–CI

Ž .wave functions: i density and spin–density matri-
w x Ž .ces for the above states 11 , ii one-electron proper-
w x Ž .ties for the above states 11 , iii hyperfine splitting

constants and cusp values of open-shell molecules
w x Ž .12,13 , iv transition densities and transition mo-

w xments among the above SACrSAC–CI states 11 ,
Ž . w xand v intensity of the ionization spectra 14,15 .

Ž .5 We can directly compare the energies and the
properties of different electronic states calculated by
the SACrSAC–CI method. This is a very useful
property when one studies the chemistry involving
different electronic states.

Thus, the field of the SACrSAC–CI method is
certainly very wide: we can study chemistry and
physics involved in many different states of singlet
to septet spin multiplicities.

More recently, equation-of-motion coupled-clus-
Ž .ter EOM–CC method was published by Bartlett

w xgroup 16,17 , but this method is essentially the same
as the SAC–CI method, as noted previously in more

w xdetail in Ref. 18 . It is not based on the EOM
method, which is an important methodology devel-

w xoped by Lowe 19 , McKoy, Shibuya, and others
w x20–22 , but is a minor modification of the already
established SAC–CI method. The SACrSAC–CI
theory is exact. In practical calculations, we have to
introduce some approximations. The differences be-
tween the two theories are only in the approxima-
tions adopted in the current codes.

The derivative of the energy with respect to the
nuclear coordinate of a molecule gives fundamental
information for investigating molecular geometry,
vibration, chemical reaction, dynamics, etc. Further-
more, the derivative of the energy with respect to an

external field, such as an electric or magnetic field,
provides molecular properties, such as dipole mo-
ment, quadrupole moment, magnetic susceptibility,
etc. Thus, the calculations of energy derivatives offer
a useful and powerful tool for studying chemical
reactions, dynamics and properties of molecules.

Two approaches have been developed for the
energy gradient method; one uses the analytical en-

w xergy gradient 23,24 , and the other uses the Hell-
w xmann–Feynman force 25,26 . Though the Hell-

mann–Feynman theorem holds for exact and stable
w x27 wave functions, it is not satisfied for most
approximate wave functions due to the linear combi-

Ž .nation of atomic orbital LCAO –molecular orbital
Ž . w xMO approximations. Thus, the error term 28–31 ,
which should be zero for exact and stable wave
functions, is quite large for approximate wave func-
tions. The Hellmann–Feynman theorem is useful for

Žthe plane wave basis e.g., Car–Parrinello method
w x.32,33 . For example, Nakatsuji proposed the Hell-

Žmann–Feynman force concept electrostatic force
Ž . .ESF theory for molecular geometries and chemical

w xreactions 34–37 . This concept has been shown to
be quite useful for predicting the geometries of
molecules in ground and excited states. This concept
further leads to the concept of electron-cloud preced-
ing and incomplete following in chemical reactions

w xand molecular vibrations 36 . Nakatsuji and co-
w xworkers 37 also reported a theorem which shows

that there is a unique and systematic approach for
improving the SCF and multi-configuration SCF
Ž .MC–SCF wave functions so that they satisfy the
Hellmann–Feynman theorem; a sufficient condition
for the Hellmann–Feynman theorem to be satisfied
is that the basis set includes the derivative for any
basis included.

For the SAC–CI method, the Hellmann–Feynman
theorem is not satisfied. Therefore, the analytical
energy gradient method is necessary for the SAC–CI
method. In this paper, we formulate and implement
an SACrSAC–CI energy gradient method which

w xadapts to the perturbation selection scheme 15 . It
would be useful to establish a systematic method for
calculating the energy derivatives of excited states
since molecules in excited states are generally very
short-lived and it is difficult to observe the dynamics
in excited states experimentally. A brief communica-
tion on this method has been reported previously



( )T. Nakajima, H. NakatsujirChemical Physics 242 1999 177–193 179

w x38 . To the best of our knowledge, this is the first
time that the energy gradient method has been imple-
mented using the perturbation selection technique.

w xThe EOM–CC energy gradient 39–43 , which is
closely related to the SAC–CI gradient, has been
developed by Stanton and Gauss: the method is
straightforward in their integral-driven algorithm.

In this paper, we first briefly summarize the
SACrSAC–CI method that is pertinent to the pre-
sent purpose. Next, we formulate the analytical gra-
dients of the SAC and SAC–CI energies and de-
scribe the computational algorithm. We then apply
this method to the various electronic states of several
molecules. Finally, we give our conclusion in Sec-
tion 4.

2. SACrrrrrSAC–CI energy gradient method

2.1. Brief summary of the SACrSAC–CI method

First, we briefly summarize the SACrSAC–CI
method. Reviews of the SACrSAC–CI method have

w xbeen published recently 4,5 .
The SAC method is based on the spin and space

symmetry-adapted formalism of the cluster expan-
w xsion method 1 . The SAC wave function is de-

scribed as the cluster expansion around the reference
< : Ž .function 0 , which is usually the Hartree–Fock HF

single determinant,

< < ::C sexp S 0 , 1Ž . Ž .SAC

where

Ss C S† . 2Ž .Ý I I
I

The operator S† should be spin symmetry-adapted;I

otherwise, the wave function is not an eigen function
2 Ž .of S . Actually, ordinary coupled-cluster CC wave

functions are not eigen functions of S2, just like the
Ž .unrestricted Hartree–Fock UHF wave function. Us-

ing symmetry-adapted operators, the number of inde-
pendent variables included in the cluster expansion is

Žthe same as that in the corresponding symmetry-
.adapted CI method. The difference between the

SAC and ordinary CC expansions has been discussed
w xpreviously 1 .

The non-variational solution of the SAC wave
function is obtained by left-projecting the Schrodi-¨
nger equation for the SAC wave function onto the
reference and linked excited configurations,

< <² :0 HyE C s0 , 3Ž .SAC SAC

and

< <² :0 S HyE C s0, 4Ž . Ž .K SAC SAC

where H is the Hamiltonian and E is the SACSAC

energy. The SAC method gives not only the accurate
wave function for the ground state, but also the
complementary functional space which spans the

w xspace for the excited states 2,3,5 .
The SAC–CI wave function is described by tak-

ing a linear combination of these complementary
w xfunctions 2,3,5 , and is written essentially as

< p p <: :C sR C , 5Ž .SAC – CI SAC

where p denotes the pth state and

R p s d p R† , 6Ž .Ý K K
K

where R† represents a set of excitation, ionizationK

andror electron-attachment operators, and d p is theK

SAC–CI coefficient of the pth excited state. By
Ž .considering Eq. 5 , one notes that the SAC–CI

method is based on the transferability of electron
correlations between the ground and excited states.
Since excitations and ionizations are only one- or
two-electron processes, most of the electron correla-
tions in the ground and excited states should be
similar. It has been shown numerically that this
transferability is quite satisfactory for ordinary one-

w xand two-electron processes 4,5 .
ŽThe non-variational SAC–CI referred to as

.SAC–CI-NV equation is obtained by projecting the
Schrodinger equation for the SAC–CI wave function¨
onto the space of the linked excited configurations,

< p < p² :0 R HyE C s0 , 7Ž .Ž .K SAC – CI SAC – CI

where E p is the SAC–CI energy of the pthSAC – CI
Ž .state. Since Eq. 7 involves the diagonalization of

non-symmetric matrices, we prepared an algorithm
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for the iterative diagonalization of non-symmetric
w xmatrices 44 , extending Davidson’s procedure for

w xsymmetric matrices 45 . The left- and right-eigen-
vectors are denoted by dL p and dR p, respectively.
The SAC–CI wave function is described by the right
eigenvectors, as seen in the definition given by Eqs.
Ž . Ž .5 and 6 .

We can also use the approximately variational
Žprocedure for the SAC–CI method referred to as the

.SAC–CI-V . In the SAC–CI-V method, the final
matrices to be diagonalized are the symmetrized
matrices of the SAC–CI-NV method. This method
has also been shown to give satisfactory results
w x3,11 , and has been used as a standard method.

2.2. Analytical gradients of the SAC energy

Our SACrSAC–CI program code is Hamiltonian
matrix-driven, as in the MR–CI codes, whereas al-

w xmost all of the CC codes are integral-driven 46–53 .
Therefore, we formulate the analytical gradients of
the SAC and SAC–CI energies to be suitable for
such an algorithm.

The approximations adopted in the following
derivation are as follows; the linked terms in the

Ž .SAC calculations include all single- S and se-1
Ž .lected double- S excitation operators, and the2

unlinked terms include quadruple-excitation opera-
tors as products of further selected double-excitation

Ž . Ž .operators S S referred to as SAC-A . The2 2

unlinked double S S and triple S S excitation1 1 1 2

operators are also included optionally. The SAC-Q
w xand SAC-C 54 approximations are obtained by

† †considering the 0 S HS S 0 term, and the² :1 1 2
† † † †0 S HS S 0 and 0 S HS S 0 terms, respec-² : ² :1 1 2 2 1 2

tively. Under this approximation, the SAC equation
is represented in Hamiltonian matrix form as

< † <D E s C 0 HS 0² :ÝSAC I I
I

1
† †< <q C C 0 HS S 0² :Ý Ý I J I J2 I J

1
' C H q C C H , 8Ž .Ý Ý ÝI 0 I I J 0, I J2I I J

and

H q C H yD E SŽ .ÝK 0 I K I SAC K I
I

1
q C C H yD E S s0 ,Ž .Ý Ý I J K , I J SAC K , I J2 I J

9Ž .

where D E sE yE . Throughout this paper,SAC SAC HF
†we represent the Hamiltonian matrices 0 S HS 0² :I J

† †and 0 S HS S 0 as H and H , respectively,² :I J K I J I JK

and the overlap matrices between the configurations
† † †0 S S 0 and 0 S S S 0 as S and S , re-² : ² :I J I J K I J I JK

spectively. The unlinked H and S terms do0 .I J K .I J
Ž . Ž .not practically appear in Eqs. 8 and 9 , respec-

tively, since the disjoint S S† excitation operator canI J

be represented by the linked operator S† if S isK K .I J

non-zero.
The first derivative of the SAC correlation energy

Ž .is derived by differentiating Eq. 8 with respect to
the external parameter a, and is given as

ED ESAC a as C H q C H , 10Ž .Ý ÝI 0 I I 0 I
Ea I I

where

EH 1 EHK I K , I JaH ' q C , 11Ž .ÝK I J
Ea 2 EaJ

H 'H q C H , 12Ž .ÝK I K I J K , I J
J

and

ECIaC ' . 13Ž .I
Ea

In this equation, we need information about the
first derivative of the SAC coefficient EC rEa sinceI

the SAC coefficients are not determined variation-
ally, and this is determined by the coupled-perturbed

Ž .SAC CPSAC equation which is obtained by differ-
Ž Ž ..entiating the SAC equation Eq. 9 with respect to
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a. The CPSAC equation is linear and is written in
matrix form as

YC a sX , 14Ž .
where the matrix Y and the vector X are given by

Y 'H yD E S y C S H , 15Ž .ÝK I K I SAC K I J K J 0 Iž /
J

and

a aX 'y H q C HÝK K 0 I K I½
I

y C S C H , 16Ž .Ý ÝI K I I 0 I 5ž / ž /
I I

where

1
S 'S q C S , 17Ž .ÝK I K I J K , I J2 J

and

EHK IaH ' . 18Ž .K I
Ea

Here and hereafter, the derivative of the overlap
matrix between configurations disappears because it
is zero at the configuration level; molecular orbital
orthonormality is guaranteed by the following rela-
tionship,

U a qsa qU a s0 , 19Ž .i j i j ji

which is obtained by differentiating the MO overlap
matrix, s , wherei j

AO <E m nŽ .
as s c c , 20Ž .Ýi j m i n j

Ea
mn

and c is the coefficient of the mth atomic orbitalm i

x in the ith MO. The MO coefficient derivative,m

U a, is determined by the coupled-perturbedi j
Ž . w xHartree–Fock CPHF equation 23,24,55–57 .

Explicit solution of the CPSAC equation is com-
putationally costly, since 3N sets of unknowns, with
N being the number of atoms, are required. How-
ever, this can be circumvented by using the inter-

w x Žchange technique of Dalgarno and Stewart 58 or
the so-called Z-vector method of Handy and Schae-

w x.fer 59 . In the interchange technique, we introduce
SAC Ž .a new vector Z called the Z-vector defined by

T SACY Z sH , 21Ž .0

Ž .and the second term in Eq. 10 can then be rewritten
in matrix form as

TT a T y1 SACH C sH Y Xs Z X . 22Ž . Ž .0 0

Thus, the first derivative of the SAC correlation
Ž .energy given by Eq. 10 is rewritten as

ED ESAC a SACs C H q X Z . 23Ž .Ý ÝI 0 I I I
Ea I I

An advantage of representing the first derivative
of the SAC energy in Hamiltonian matrix form is
that this derivative can be calculated even if we
adopt the selection scheme for the operators S† andI

S†S†. If we represent the energy in the integral-drivenI J

form at the beginning, we have to give up this
selection scheme.

The Hamiltonian matrix element H is written asI J

MO MO
I J J J <H s g f q G ij kl , 24Ž .Ž .Ý ÝI J i j i j i jk l

ij ijkl

where g I J and G I J are one- and two-electron cou-i j i jk l

pling constants between the configuration functions
F and F , f is the Fock matrix element, andI J i j
Ž < .ij kl is the two-electron MO integral. Since the
coupling constants are independent of the parameter
a, the derivative of the Hamiltonian matrix is written
as

MO MO <EH E f E ij klŽ .I J i jI J I Js g q G , 25Ž .Ý Ýi j i jk l
Ea Ea Eaij ijkl

Ž . Ž .By using Eq. 25 , Eq. 23 is rewritten as

MO MO <ED E E f E ij klŽ .SAC i jSAC SACs g q G 26Ž .Ý Ýi j i jk l
Ea Ea Eaij ijkl

in a MO representation, where D E is the SAC or
SAC–CI correlation energy, f is the Fock matrixi j

Ž < .element, and ij kl is the two-electron MO integral.
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g and G are the SAC or SAC–CI one- andi j i jk l
Ž .two-electron 1e and 2e effective density matrices

Ž .EDM , respectively, in the MO representation, and
are given by

SAC SACg ' 1q Z C S CÝ ÝÝi j K J K J I½ ž /
I J K

SAC 0 I SAC K IyZ g y Z C g , 27Ž .Ý ÝI i j K I i j5
K I

and

SAC SAC 0 IG ' 1q Z C S C GÝ ÝÝi jk l K J K J I i jk lž /
I J K

SAC 0 I SAC K Iy Z G y Z C G ,Ý ÝÝI i jk l K I i jk l
I K I

28Ž .

where

1
K I K I K , I Jg 'g q C g , 29Ž .Ýi j i j J i j2 J

and

1
K I K I K , I JG 'G q C G , 30Ž .Ýi jk l i jk l J i jk l2 J

Ž .Eq. 26 gives the first derivative of the SAC energy
in the MO representation. As will be shown in
Section 2.3, the first derivative of the SAC–CI en-
ergy has the same form as that of the SAC one, that
is, the sum of the one- and two-electron parts. Before
we rewrite the first derivative of the SAC energy in
the AO representation, we derive the MO representa-
tion of the first derivative of the SAC–CI energy in
Section 2.3.

2.3. Analytical gradients of the SAC–CI energy

As mentioned above, the EOM–CC method is
theoretically similar to the SAC–CI method, al-
though an integral-driven form is used in the actual
calculations. The present SAC–CI gradient method
uses a Hamiltonian matrix-driven algorithm in con-

trast to the EOM–CC gradient method presented by
w xStanton 39–43 .

Ž .Using Eq. 7 , the SAC–CI-NV energy is written
as

p L p R p
D E s d d H , 31Ž .Ý ÝSAC – CI M N M N

M N

where D E p sE p yE , and dL p and dR p
SAC – CI SAC – CI HF M N

are, respectively, left- and right-vector coefficients of
Ž .the pth solution the SAC–CI Eq. 7 . We adopt the

convention that the subscripts I, J, K , and L refer
to the SAC excitation operators, while M and N
refer to the SAC–CI excitation operators. Further-
more, the eigenvector biorthonormalization condition
is given by

L p R pd d S sd , 32Ž .Ý Ý M N M N p q
M N

where

S 'S q C S . 33Ž .ÝM N M N I M , NI
I

Hereafter, we are interested only in the pth state
of the SAC–CI solutions, and therefore do not give
the superscript p in the following equations. By

Ž .differentiating Eq. 31 , the first derivative of the
SAC–CI correlation energy with respect to the exter-
nal parameter a is written as

LED E EdSAC – CI M Rs d HÝÝ N M N
Ea EaM N

REdNLq d HÝÝ M M N
EaM N

L R aq d d HÝÝ M N M N
M N

ECIL Rq d d H , 34Ž .Ý Ý Ý M N M , NI
EaM N I

where

EH EHM N M , NIaH ' q C . 35Ž .ÝM N I
Ea EaI
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The derivative of the SAC–CI coefficient is elimi-
Ž .nated by using the SAC–CI equation, Eq. 7 , and

Ž .the biorthonormalization condition, Eq. 32 , and we
obtain,

ED ESAC – CI L R a as d d H q C ,ÝÝ ÝM N M N I
Ea M N I

Ž .36

where

' dL sR H yD E S .Ž .Ý ÝI M N M , NI SAC – CI M , NI
M N

Ž .37

We note that information regarding the derivative
of the SAC coefficient is necessary in the last term

Ž .of Eq. 36 , and may be calculated using the CPSAC
equation. However, this again can be avoided by
using the interchange technique for the SAC–CI
case. Introducing the SAC–CI Z-vector ZSAC – CI

defined by

Y TZSAC – CI s , Ž .38

the first derivative of the SAC–CI energy can be
written as

ED ESAC – CI L R a SAC – CIs d d H q X Z .ÝÝ ÝM N M N I I
Ea M N I

39Ž .

As in the case of the SAC energy gradient, we
Ž .rewrite Eq. 39 in the MO integral form as

MOED E E fSAC – CI i jSAC – CIs gÝ i j
Ea Eaij

MO <E ij klŽ .
SAC – CIq G , 40Ž .Ý i jk l

Eaijkl

where the SAC–CI 1e and 2e MO–EDMs are repre-
sented as

SAC – CI SAC – CIg ' Z C S CÝ ÝÝi j K J K J I½ ž /
I J K

SAC – CI 0 I L R M NyZ g q d d gÝÝI i j M N5
M N

SAC – CI K Iy Z C g , 41Ž .Ý Ý K I i jk l
K I

and

SAC – CI SAC – CIG ' Z C S CÝ ÝÝi jk l K J K J I½ ž /
I J K

SAC – CI 0 I L R M NyZ G q d d GÝÝI i jk l M N i jk l5
M N

SAC – CI K Iy Z C G , 42Ž .Ý Ý K I i jk l
K I

respectively, and where

M N M N M , NIg 'g q C g , 43Ž .Ýi j i j I i j
I

and

M N M N M , NIG 'G q C G . 44Ž .Ýi jk l i jk l I i jk l
I

We also implement the first derivative of the
Ž .approximately variational SAC–CI SAC–CI-V en-

ergy. This implementation is straightforward since
the SAC–CI-V method is obtained simply by sym-
metrizing the SAC–CI-NV matrices.

2.4. EÕaluation of SACrSAC–CI energy gradient

In Sections 2.2 and 2.3, we derived the MO
representations of the first derivatives of the SAC
and SAC–CI energies, which involve the derivatives
of the MO Fock matrices and the 2e MO integrals.
We know that the 2e AO derivative integrals are
mostly zero since only such derivative integrals that
include the AOs whose centers are involved in the
derivative calculation are non-zero, while the MO
derivative integrals are generally non-zero. There-
fore, the MO representation of the derivative inte-
grals is not effective or practical. Thus, instead of
transforming the derivative integrals, we back-trans-
form the effective density matrix from MO to AO

w xrepresentation 60 . In this section, we rewrite the
first derivatives of the SAC and SAC–CI energies
from MO to AO representation.

The first derivatives of the Fock matrix and the
Ž . Ž .two-electron integrals included in Eqs. 26 and 40

are rewritten as

MOE fi j a a as f q U f qU f , 45Ž .Ž .Ýi j m i m j m j im
Ea m
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and
MO<E ij klŽ . a a< <s ij kl q U mj klŽ . Ž .�Ý mi

Ea m

a < a <qU im kl qU ij mlŽ . Ž .m j m k

a <qU ij km , 46Ž .Ž . 4m I

a Ž < .arespectively, where f and ij kl are the skeletoni j
w xderivatives 23 defined by

d.o .
a aa a < <f sh q 2 ij kk y ik jk , 47Ž .Ž . Ž .� 4Ýi j i j

k

and
AO <E mn rsŽ .a

<ij kl s c c c c , 48Ž .Ž . Ý m i n j r k s l
Ea

mnrs

respectively, where ha is the core Hamiltoniani j

derivative,
AO < <E m h nŽ .

ah s c c . 49Ž .Ýi j m i n j
Ea

mn

The MO coefficient derivative, U a , is obtained bymi
w xsolving the CPHF equation 23,24,55–57 .

Ž . Ž .Using Eqs. 45 and 46 , the first derivative of
Ž .the SAC or SAC–CI energy given by Eq. 26 or Eq.

Ž .40 is written as
MO MOED E aa <s g f q G ij klŽ .Ý Ýi j i j i jk l

Ea ij ijkl

MO MO MO
aq2 U g fÝ Ý Ými i j m j½

m i j

MO

<q2 G mj kl . 50Ž .Ž .Ý i jk l 5
jkl

Ž .The first two terms of Eq. 50 are rewritten by
back-transforming the effective density matrix from
MO representation to AO representation as,

AO AO <ED E E f E mn rsŽ .mn
s g q GÝ Ýmn mnrs

Ea Ea Ea
mn mnrs

MO MO MO
aq2 U g fÝ Ý Ými i j m j½

m i i

MO

<q2 G mj kl . 51Ž .Ž .Ý i jk l 5
jkl

The explicit solution of the derivative of the MO
coefficient, U a , can be avoided by using the inter-mi

w xchange technique 58,59 , as explained for the SAC
coefficient.

2.5. Algorithm

The SACrSAC–CI energy gradient code has been
w ximplemented into the SAC85 61 and SAC–CI96

w x62 program systems in the SD-R approximation. In
Ž .addition, the gradients of the CIS singles , CISD

Ž . Žsingles and doubles , MP2 second-order Møller–
. Ž .Plesset perturbation , and SACD SAC doubles

energies have also been implemented. The basic
algorithm is as follows:

Ž .1 The SCF calculation is performed and the
derivatives of the one- and two-electron AO integrals

w xare calculated using the GAUSSIAN 94 63 or
w xHONDO8 64 program package.

Ž .2 The SAC and SAC–CI calculations are car-
ried out, and the information on the configurations
selected is stored to be used in a later step.

Ž . Ž Ž .3 The CPSAC Z-vector equations Eq. 21 or
Ž ..Eq. 38 and the CPHF Z-vector equations are

solved using Pulay’s direct inversion in the iterative
Ž . w xsubspace DIIS method 65 . The DIIS method is

also useful for solving the SAC equation.
Ž .4 The SAC and SAC–CI MO effective density

Ž . Ž .matrices given, respectively, by Eqs. 27 and 28
Ž . Ž .and by Eqs. 41 and 42 are constructed and stored.

Ž .5 The SAC and SAC–CI energy gradients are
Ž .calculated using Eq. 51 . The explicit solution of the

derivative of the MO coefficient, as well as the SAC
coefficient, is avoided by using the interchange tech-

w xnique 58,59 . In this step, we perform the back-
transformation of the effective density matrix from
the MO basis to the AO basis.

The linked terms in the SAC calculations include
Ž . Ž .all single- S and selected double- S excitation1 2

operators. The unlinked terms are included in differ-
w xent ways in the SAC–CI96 program 62 . In the

standard applications, we use the SAC-A approxima-
Ž .tion see Section 2.2 , in which selected quadruple-

excitation operators which are the products of the
Ž .double-excitation operators S S are included as2 2

the unlinked terms. In the standard SAC–CI calcula-
Ž .tions, the linked term includes all of the single- R1

Ž .and selected double- R excitation operators, and2
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the unlinked term includes the disjoint triple-excita-
Ž .tion operators R S .1 2

A numerical check of the implemented program
was carried out by comparing the present results
with those obtained by numerical differentiations.

2.6. GSUM method

A feature of the present SACrSAC–CI energy
gradient code is that it adapts to the perturbation
selection scheme used in the SACrSAC–CI calcula-
tions. This will make the calculation of truly large
molecules possible. However, for example in the
geometry optimization, the independent selection of
operators at independent geometries may lead to a
discontinuity of the potential surface. To avoid this

w xdiscontinuity, we adopt the GSUM method 66 ,
which was previously applied to calculations of the

w xpotential energy curves of Li 66 .2

The geometry optimization using the GSUM
method is summarized as follows. Before optimiza-
tion, we choose representative points which cover
the reaction coordinate under consideration and take
the group sum of the linked and unlinked operators

w xselected by the ordinary method 15 for all the
representative points in the nuclear configuration
space. Geometry optimization is performed within
this configuration space. The usefulness of this
method has been confirmed by previous applications
w x38,66 .

3. Applications

3.1. Diatomic molecules – without selection

As an application of the present SACrSAC–CI
energy gradient method, we first calculate the spec-
troscopic constants of the ground and excited states
of the diatomic molecules LiH, BH, BeH, and CH
without the perturbation selection scheme. The ex-
perimental data for the equilibrium internuclear dis-
tance r , harmonic vibrational frequency v , ande e

adiabatic transition energy T of these diatomice
w xmolecules have been reported previously 67 . We

calculate the equilibrium internuclear distances and

harmonic vibrational frequencies using the SACr
SAC–CI energy gradient method, and evaluate the
adiabatic transition energies. The singlet and triplet
states are calculated for LiH and BH, and the doublet
states are calculated for BeH and CH. The singlet
ground states are determined by the SAC energy
gradient method, and the other excited states are
determined by the SAC–CI energy gradient method.
The doublet states are obtained by the ionizations of
the corresponding anionic closed-shell molecules or
by electron attachment of the corresponding cationic
closed-shell molecules. The SAC–CI calculations
are performed using both the non-variational and

Žapproximate variational methods SAC–CI-NV and
.SAC–CI-V, respectively .

The basis sets used for LiH, BeH, and CH are the
UU w x6-311qqG sets 68,69 , and that for BH is the

Ž . w x w xHuzinaga–Dunning 9s5pr4s r 4s2pr2s set 70,71
augmented with polarization and diffuse functions;
for boron, the orbital exponent of the sp diffuse
function is 0.0315 and the exponent of the d polar-
ization function is 0.7. For hydrogen, the exponent
of the s diffuse function is 0.036 and the exponent of
the p polarization function is 1.0.

The calculated results for these diatomic molecules
are shown in Table 1, and are compared with experi-

w xmental findings 67 . The results calculated by the
SACrSAC–CI energy gradient method are generally
consistent with the experimental findings. The differ-
ences in the equilibrium distances between the
SACrSAC–CI and experimental results are within

˚0.015 A, and those in the harmonic vibrational fre-
quencies are within about 60 cmy1. The adiabatic
transition energies fall within about 0.25 eV of the
experimental values.

The results obtained by the SAC–CI-V method
are very close to those obtained by the SAC–CI-NV
method. The adiabatic transition energies calculated
by the SAC–CI-V method are generally a little
smaller than those calculated by the SAC–CI-NV
method. The differences in the equilibrium distances
between SAC–CI-NV and SAC–CI-V are within a

y4 ˚few 10 A. Thus, the SAC–CI-V method is useful
for calculating excited states.

In Table 1, we compare r and v of the grounde e

state of BeH calculated by the SAC–CI ionization
and electron-attachment methods applied to the
BeHy and BeHq closed-shell states, respectively.
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Table 1
Equilibrium internuclear distances, harmonic vibrational frequencies, and adiabatic transition energies

Molecule State Method Equilibrium Harmonic Adiabatic
internuclear vibrational transition
distance r frequency v energy Te e e

y1˚Ž . Ž . Ž .A cm eV
1 qLiH X S SAC 1.5948 1394 0.0

aexperimental 1.5957 1406 0.0
1B P SAC–CI-NV 2.3788 261 4.2193

SAC–CI-V 2.3788 263 4.2192
aexperimental 2.378 – 4.3285

3b P SAC–CI-NV 1.9895 592 4.0242
SAC–CI-V 1.9895 592 4.0241

1 qBH X S SAC 1.2397 2376 0.0
aexperimental 1.2324 2367 0.0

3a P SAC–CI-NV 1.1933 2660 1.2322
SAC–CI-V 1.1940 2654 1.2305

1A P SAC–CI-NV 1.2321 2263 3.1252
SAC–CI-V 1.2330 2249 3.1224

aexperimental 1.2186 2251 6.2848
SAC–CI-V 1.2435 1655 6.2820

1 qB S SAC–CI-NV 1.2178 2423 6.4742
SAC–CI-V 1.2181 2425 6.4710

aexperimental 1.2164 2400 6.4888
2 q bBeH X S SAC–CI-NV 1.3389 2096 0.0

bSAC–CI-V 1.3390 2107 0.0
cSAC–CI-NV 1.3470 2075 0.0

SAC–CI-Vc 1.3470 2069 0.0
aexperimental 1.3426 2061 0.0

2 bA P SAC–CI-NV 1.3344 2099 2.5609r
bSAC–CI-V 1.3346 2095 2.5598

aexperimental 1.3336 2089 2.4838
2 bB P SAC–CI-NV 1.3120 2255 6.4597

bSAC–CI-V 1.3179 2194 6.4590
aexperimental 1.3092 2266 6.3086

2 bCH X P SAC–CI-NV 1.1218 2923r
bSAC–CI-V 1.1222 2921

aexperimental 1.1199 2859

a w xRef. 67 .
bObtained by electron attachment from BeHq or CHq.
cObtained by ionization from BeHy.

The SCF orbitals used are those for an anion or
cation instead of a neutral radical, since the CPHF
method we have coded is currently limited to closed
shells. Nevertheless, the two results agree well with
each other. The equilibrium distance calculated by
the electron-attached SAC–CI method is smaller by

˚about 0.008 A than that calculated by the ionized
SAC–CI method, while the harmonic vibrational
frequency calculated by the electron-attached SAC–
CI method is larger by 20–40 cmy1. The main

reason for these differences lies in the difference in
the HF orbitals used.

3.2. Diatomic molecules – with the GSUM method

To demonstrate the performance of the GSUM
method in the selection scheme, we calculate the
equilibrium internuclear distance r and adiabatice

transition energy T of the diatomic molecules BFe

and NO. For NO, we previously studied the excita-
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tion and ionization spectra by the SACrSAC–CI
w xmethod 72 .

The basis set for BF is the 6-311qqGUU set
w x68,69 . The basis set for NO is the Huzinaga–Dun-

Ž . w x w xning 9s5p r 4s2p set 70,71 augmented with polar-
ization and diffuse functions; for oxygen, the expo-
nents of the s and p diffuse functions are 0.032 and
0.028, respectively, and the exponent of the d polar-
ization function is 0.85. For nitrogen, the exponents
of the s and p diffuse functions are 0.023 and 0.021,
respectively, and the exponent of the d polarization
function is 0.8.

The singlet ground state of BF is calculated by the
SAC energy gradient method. The excited singlet
and triplet states of BF and the ground and excited
doublet states of NO are calculated by the SAC–CI
energy gradient method. The doublet states of NO
are obtained by electron attachment of the corre-
sponding closed-shell cation NOq. The SAC–CI cal-
culations for BF are performed by the SAC–CI-NV

method, and those for NO are performed by the
SAC–CI-V method.

Energy thresholds of 1=10y5 and 1=10y7

hartree are used for the ground and excited states,
respectively, in the perturbation selection scheme.
Geometry optimization is performed as follows: per-
turbation selection is performed with the experimen-
tal geometry and geometry optimization is performed
while maintaining this selected space. Although the
experimental geometries are used for perturbation
selection, other choices, such as the optimized ge-
ometries at the HFrCIS level, may also be used,
since we have found that the dependence on this
choice is small. For the E2

S
q state of NO, selection

˚was performed at 1.08 A since the experimental
value could not be found.

The calculated results for BF and NO in Table 2
w xare comparable to experimental findings 67 . The

results calculated by the SACrSAC–CI energy gra-
dient method are generally consistent with the exper-

Table 2
Equilibrium internuclear distances and adiabatic transition energies

Molecule State Method Equilibrium Adiabatic
transition transition
distance r energy Te e

˚Ž . Ž .A eV
1 qBF X S SAC–CI 1.265 0.0

aexperimental 1.263 0.0
3a P SAC–CI 1.319 3.547

aexperimental 1.308 3.613
1A P SAC–CI 1.315 6.643

aexperimental 1.304 6.343
3 qb S SAC–CI 1.213 7.778

aexperimental 1.215 7.567
1 qB S SAC–CI 1.204 8.539

aexperimental 1.207 8.103
2NO X P SAC–CI 1.165 0.0

aexperimental 1.151 0.0
2 qA S SAC–CI 1.077 5.054

aexperimental 1.063 5.451
2C P SAC–CI 1.074 6.094

aexperimental 1.062 6.463
2 qD S SAC–CI 1.077 6.144

aexperimental 1.062 6.582
2 qE S SAC–CI 1.085 7.425

aexperimental – 7.517
X2H P SAC–CI 1.075 7.654

aexperimental 1.059 7.747

a w xRef. 67 .
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imental values. This shows that the SACrSAC–CI
energy gradient method is also effective and useful
when the perturbation selection scheme is used.

3.3. CH and SiH2 2

We next studied the singlet–triplet energy separa-
tions of CH and SiH molecules. It is well known2 2

that the ground state of CH is 3B and the first2 1

excited state is 1A , while this is reversed for SiH .1 2

Many theoretical and experimental studies have been
w x w xpublished for CH 73–80 and SiH 77,81,82 .2 2

Two basis sets are used for CH . The first basis2
Ž . Žset Basis I is the Huzinaga–Dunning 9s5pr

. w x w x4s r 4s2pr2s set 70,71 augmented with the car-
Ž 3 1 .bon d zs0.74 for B and 0.51 for A and1 1

Ž .hydrogen p zs1.0 polarization functions, which
has often been used to calculate the singlet–triplet

w xenergy separation of CH 75,78 . Using this basis2

set and the experimental geometries, we previously
calculated the singlet–triplet energy separation for
the ground and excited states by the SAC method,
and obtained a reasonable value of 11.8 kcalrmol
w x Ž .75 . The second basis set Basis II is the same as

w xthat used by Bearda et al. 80 , and is larger than¨
Basis I. The basis set for SiH is the same as the f2

basis referred to by Balasubramanian and McLean
w x81 .

For CH , the results for Basis I and II are shown2

in Table 3. No perturbation selection was performed
in these calculations. For Basis I, we perform the
SAC-A, SAC-Q and SAC-C calculations and the
corresponding SAC–CI-NV calculations. The differ-
ent SACrSAC–CI calculations give similar geome-
tries, dipole moments, and singlet–triplet energy sep-
arations. The SAC–CI-V and -NV results based on
SAC-A are again very close to each other.

Here, we want to see how well-balanced the
SACrSAC–CI results for the singlet and triplet
states are in comparison with the results of the
UHF-based CC method. The UHF-based CC result is
spin-contaminated, while the SACrSAC–CI result is

w xspin-pure. Comparable QCISD calculations 83 were
performed, using the same basis sets, by the

w xGAUSSIAN 94 program 63 as a UHF-based CC
method. For the geometric parameters, the results
obtained by the SACrSAC–CI method are similar to
those obtained by the UHF-based QCISD method.
However, the singlet–triplet energy separation dif-
fers by more than 1 kcalrmol, and the SACrSAC–
CI result is closer than the UHF-based QCISD result

Table 3
Ž .Total energies, geometries, singlet–triplet energy separation, and dipole moments of CH Basis I and II2

State Method Total energy CH HCH Separation Dipole moment
˚Ž . Ž . Ž . Ž . Ž .a.u. A deg. kcalrmol D

Basis I
11 A SAC-A y39.038193 1.118 101.66 0.0 y1.8581

SAC-Q y39.038267 1.118 101.55 0.0 y1.856
SAC-C y39.038244 1.118 101.66 0.0 y1.856

3 Ž .1 B SAC–CI-NV SAC-A y39.057491 1.082 132.21 y12.11 y0.6601
Ž .SAC–CI-V SAC-A y39.057620 1.082 132.25 y12.19 y0.659
Ž .SAC–CI-NV SAC-Q y39.057500 1.082 132.24 y12.07 y0.660

Ž .SAC–CI-V SAC-C y39.057492 1.082 132.24 y12.08 y0.660
aQCISD y39.059454 1.082 132.42 y13.30 y0.669

bexperimental 1.0766"0.0014 134.037"0.045 y9.272"0.03
Basis II

11 A SAC-A y39.048908 1.112 101.36 0.0 y1.6891

SAC-Q y39.049002 1.112 101.28 0.0 y1.686
31 B SAC–CI-NV y39.065057 1.082 132.21 y10.13 y0.5871

SAC–CI-V y39.065212 1.082 132.21 y10.23 y0.586
aQCISD y39.067297 1.082 132.29 y11.48 y0.593

bexperimental 1.0766"0.0014 134.037"0.045 y9.272"0.03

a ² 2:Present UHF-based calculation by GAUSSIAN 94. S s2.015 for both Basis I and II.
b w xRef. 82 .
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Table 4
Total energies, geometries, singlet–triplet energy separation, and dipole moments of SiH2

State Method Total energy SiH HSiH Separation Dipole moment
˚Ž . Ž . Ž . Ž . Ž .a.u. A deg. kcalrmol D

31 B SAC–CI-NV y290.2 26602 1.489 117.43 0.0 q0.0071
11 A SAC-A y290.2 62293 1.513 93.83 y22.40 y0.3841

cexperi mental 1.516 92.8 y21.0" 0.7, y18.0" 0.73

a w xRef. 82 .

w xto the experimental value 73,74 . This result is
common to both basis sets and shows that the
SACrSAC–CI method gives well-balanced descrip-
tions for different spin–multiplet states because it is
free from spin-contamination.

The result for SiH is shown in Table 4. Perturba-2

tion selections with energy thresholds of 1=10y5

and 1=10y6 hartree were performed for the ground
and excited states, respectively. The configuration
spaces throughout the geometry optimization were
fixed to those selected at the 1A and 3B HF1 1

optimized geometries. The results for the geometric
parameters agree well with the experimental find-
ings. The singlet–triplet energy separation calculated
by the SACrSAC–CI method is y22.40 kcalrmol,
which is consistent with the experimental value of

Ž . w xy21.0 "0.7 kcalrmol 82 as well as with previ-
w xous theoretical results 78,81 .

3.4. C H2 4

Molecular ethylene in the ground and excited
states has been extensively studied both experimen-

w x w xtally and theoretically 84 . We previously 84,85
calculated the electronic spectrum of ethylene by the
SACrSAC–CI method, and the results agreed very
well with experimental findings. Here, we calculate
the equilibrium geometries for ethylene in the ground
and excited states by the SACrSAC–CI energy
gradient method.

w xForesman et al. 86 calculated the CIS optimized
U w xgeometries at the 6-31qG basis 87–89 for the

1B , 3B , and 1B states. We used the same basis1u 1u 3u

set for the sake of comparison. Energy thresholds of
1=10y5 and 1=10y7 hartree are used for the
ground and excited states, respectively, in the pertur-
bation selection scheme. Selection is performed at
the CIS optimized geometries reported by Foresman

w xet al. 86 , and these selected spaces are fixed

throughout the geometry optimization. For compari-
son, optimization was performed for the 1B state3u

using the GSUM space of those selected at the
w xexperimental 90 and CIS optimized geometries.

Table 5 shows the result for the optimized geome-
tries in the ground and excited states of ethylene.
Although the differences between the HFrCIS and
SACrSAC–CI methods are small, the results ob-
tained by the SACrSAC–CI method are closer to

w x 1the experimental findings 90,91 . For the B state,3u
w xwhich is the 3s Rydberg state, both the CIS 86 and

SAC–CI methods predict a planar D geometry,2h
Ž .while a D structure azimuthal angle of 37.08 has2

w x Žbeen reported experimentally 90 . The MR multi-

Table 5
Equilibrium geometries in the ground and excited states of ethy-
lene

State Method Point CC CH CCH
˚ ˚Ž . Ž . Ž .group A A deg.

Ground HF D 1.321 1.076 121.732h

SAC D 1.334 1.083 121.812h
aexperimental D 1.337 1.084 121.252h

1 bŽ .B V CIS D 1.376 1.090 123.741u 2d

SAC–CI D 1.364 1.101 124.462d
3 bŽ .B T CIS D 1.461 1.076 121.301u 2d

SAC–CI D 1.462 1.085 121.162d
1 bŽ .B 3s CIS D 1.413 1.071 120.363u 2h

cSAC–CI D 1.411 1.082 120.522h
dSAC–CI D 1.413 1.083 120.582h

e fexperimental D 1.41 1.08 117.82

a w xRef. 91 .
b w xRef. 86 .
cConfiguration selection was performed with the CIS optimized
geometry.
dConfiguration selection was performed by the GSUM method for
the CIS optimized and experimental geometries.
e w xRef. 90 .
f The azimuthal angle is 37.08.
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Fig. 1.

.reference D–CI result reported by Petrongolo et al.
w x92 , which was obtained by optimizing only the
azimuthal angle, predicted a non-planar D geome-2

try. This implies that further examination is neces-
sary from both theoretical and experimental perspec-
tives. Furthermore, we see for this state that the
difference due to the difference in the selection
procedure is very small. This confirms the usefulness
of the GSUM method.

3.5. Methylenecyclopropene

Ž .In the ultraviolet UV spectrum of methylenecy-
Ž . w xclopropene Fig. 1 , Staley and Norden 93 observed

three peaks which they assigned using the semi-em-
w xpirical INDOrS–CI method 94 . The first peak at

206 nm, which shows strong solvent-dependence,
1 Žwas assigned to the B transition, and the second at2

. Ž .242 nm and third at 309 nm peaks were assigned
to the 1B and 1A transitions, respectively. The CIS1 1

w xcalculation 95 also supports these assignments.
w xNorden et al. 96 also reported the experimental and

theoretical structures and dipole moment for the
ground state. We calculate here the equilibrium ge-

ometries and the dipole moments of methylenecyclo-
propene in the ground and excited states using the
SACrSAC–CI energy gradient method.

U w xThe 6-31G basis 68,69 used in the previous
w xMP2 calculation 96 is adopted for the sake of

comparison. Energy thresholds of 1=10y5 and 1=

10y7 hartree were used for the ground and excited
states, respectively, in the perturbation selection
scheme. Perturbation selections were performed at
the following geometries: the MP2 optimized geome-

w xtry 96 for the ground state, the CIS optimized
geometries for the singlet and triplet excited states,
and the UHF optimized geometries for the cationic
and anionic states. These CIS and UHF geometries
are shown for comparison in Table 6. The vertical
excitation energies and dipole moments were calcu-
lated using the SAC optimized geometries in the
ground state with a better-quality 6-31qqGUU ba-

w xsis 87–89 .
Table 6 shows the SACrSAC–CI optimized ge-

ometries for the ground, singlet and triplet excited,
ionized, and electron-attached states. The previous
theoretically optimized and experimental geometries
w x96 are also shown for comparison. The SAC result
for the ground state is very similar to the MP2 and

w xexperimental results 96 . All of the excited, ionized
and electron-attached states calculated in Table 6

Ž .mainly involve the highest-occupied HO and low-
Ž .est-unoccupied LU MOs. The HOMO has its largest

amplitude at C and shows C C p-bonding and4 1 2

C C p-bonding nature, and a node exists between3 4

Table 6
Equilibrium geometries in the ground, excited, ionized, and anionized states of methylenecyclopropene

Ground Singlet Triplet Cation Anion
a a,bSAC MP2 Experimental SAC–CI CIS SAC–CI CIS SAC–CI UHF SAC–CI UHF

C C 1.320 1.326 1.323 1.501 1.481 1.511 1.501 1.352 1.341 1.434 1.4181 2

C C 1.445 1.445 1.441 1.352 1.350 1.405 1.416 1.381 1.364 1.421 1.4071 3

C C 1.329 1.330 1.332 1.426 1.397 1.354 1.325 1.413 1.421 1.365 1.3633 4
Ž .C H 1.077 1.080 1.080 1.071 1.062 1.070 1.063 1.073 1.071 1.068 1.0671
Ž .C H 1.076 1.083 1.085 1.081 1.071 1.075 1.074 1.075 1.072 1.078 1.0784

Ž .C C H 148.20 148.1 147.5 152.18 151.66 151.07 151.00 149.47 149.45 151.51 151.212 1
Ž .HC H 118.86 118.0 118.0 116.98 118.73 117.39 117.60 120.44 120.54 117.61 117.914

a w xRef. 96 .
b Experimental geometries were obtained under the assumption that the geometric parameters involving the hydrogen atoms were fixed at the
values given in parentheses.
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Table 7
Excitation energies and dipole moments of methylenecyclopropene

Ž . Ž .State Excitation energy eV Dipole moment D
a b a cHFrCIS SACrSAC–CI Experimental HFrCIS SACrSAC–CI Experimental

Ground 0.0 0.0 0.0 y2.391 y1.988 y1.90"0.2
1B 5.508 4.810 4.01 q2.598 q2.344 –2
1B 5.462 5.365 5.12 y3.155 y0.957 –1
1A 6.031 5.924 – y1.205 q1.916 –2
1B 6.128 5.957 – q3.858 q0.175 –1
1A 6.416 6.311 6.02 y1.369 y1.506 –1

a Present calculation.
b w xRef. 93 .
c w xRef. 96 .

these bonds. The LUMO has C C p-antibonding1 2

nature. The structural changes in all of the calculated
states are well interpreted by these natures of the
HOMO and LUMO.

The excitation energies and dipole moments cal-
culated by the SACrSAC–CI method are listed in
Table 7, and are compared with those obtained by
the HFrCIS method and experimentally. The excita-
tion energies calculated by the SACrSAC–CI
method are closer to the experimental values. For the
lowest 1B excited state, the deviation is still as large2

as 0.8 eV. The reason for this may lie in the strong
solvent-dependence mentioned above, which is cer-
tainly caused by a large change in the dipole moment
between the ground and excited states. The dipole
moment of the ground state calculated by the SAC
method is improved, and close to the experimental
value. Furthermore, we note that the dipole moments
of the two 1B and 1A excited states are quite1 2

different between the SAC–CI and CIS calculations,
in comparison with those in the 1B and 1A states.2 1

4. Conclusions

An analytical energy gradient method for the
ground, excited, ionized, and electron-attached states
calculated by the SACrSAC–CI method was formu-

w xlated and implemented in the SAC85 61 and SAC–
w xCI96 62 programs. This method adapts to the per-

turbation selection technique used in our
SACrSAC–CI code. This is the first such imple-

mentation for the excited states and is easily applied
to the MR–CI code. The reliability and usefulness of
the present method were confirmed, based on its
application to various molecules in the ground and
excited states. We are currently combining the pre-
sent code with the HF SCF program to make it more
efficient for studying the dynamics and properties of
molecules in the ground, excited, ionized, and elec-
tron-attached states.

The present SACrSAC–CI energy gradient
method can be easily extended to the high-spin

w x w xSAC–CI 6 and general-R SAC–CI 10 methods,
and we are currently performing such implementa-
tions.
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