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Abstract

Ž .The density equation DE method was utilized for calculations of the potential energy curves of the molecules HF, CH ,4

BH , NH , and H O. The equilibrium geometries and the vibrational force constants of these molecules were determined by3 3 2

the DE method without any use of the wavefunction. The calculated values are in close agreement with the results of the
Ž .symmetry-adapted cluster SAC and full-CI methods. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Recently, a revival of interest has been invoked
on the direct determination of the density matrix
Ž . w xDM without any use of the wavefunction 1–12 .
The density matrix approach is straightforward in
comparison with the wavefunction approach, since
all the elemental physical quantities can be calcu-

Ž .lated using second-order density matrices 2-DMs .
The basic equation for the DMs exists in an explicit

w xform 1 , in contrast to Hohenberg–Kohn’s existing
w x w xtheorem 13 in the density functional approach 14 .

In 1976, Nakatsuji derived a basic equation, called
Ž .density equation DE , for a direct determination of

w xthe DM 1 . Recently, time-dependent DE and the
perturbation theory for both time-independent and

w xtime-dependent DEs were published 2 . He showed
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that the DE is equiÕalent to the Schrodinger equa-¨
Ž .tion by the necessary and sufficient condition in

the domain of the N-representable DMs. Unfortu-
nately, the N-representability condition on the DM is

w xstill not completely known 15 , and under such a
Žsituation, the nth-order DE, containing the nth, nq

. Ž .1 th, and nq2 th-order DMs is formally insoluble,
for the number of the unknown variables exceeds the
number of conditions.

Valdemoro and co-workers reported an interesting
w xapproach for solving the density equation 6–10 .

ŽThey referred to the DE as the contracted Schrodi-¨
nger equation, but this naming does not well repre-
sent the sufficiency nature of the DE, which is a

.primary feature of the DE. They suggested a decou-
pling approximation of higher-order reduced density

Ž .matrices RDMs in terms of the lower-order ones
based on the fermion’s anticommutation relation. We

Žcall this approximation the IPH approximation the
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approximation identifying independently the particle
.and hole parts separately . Nakatsuji and Yasuda

proposed a more accurate decoupling approximation
w xon the basis of the Green’s function method 3,4 . It

was called the DE2 method since the approximation
is correct essentially to the second order in the
correlation perturbation. The method was applied to
the calculations of the second-order RDMs of Be,
Ne, H O, NH , H Oq, CH , BHy, NHq, CH F,2 3 3 4 4 4 3

HF, N , CO, C H , CH OH, CH NH , and C H2 2 2 3 3 2 2 6
w x3,4 . The RDMs of the molecules were determined
directly, for the first time, and without any use of
wavefunctions. Recently, the method has been refor-
mulated for spin-dependent DMs and has been ap-

w xplied to some open-shell systems 5 . Mazziotti
w x11,12 recently reported a fresh reformulation of the
DE method and applied it to the Lipkin model.

In this Letter, the DE2 method is applied to the
calculations of the potential energy curves of some
small molecules. We want to calculate their equilib-
rium geometries and force constants by the DE
method.

2. Computational method

The DE2 method proposed in previous papers
w x3,4 is applied to the calculations of the potential
curves of HF, CH , BH , NH , and H O. The4 3 3 2

calculational procedure was discussed in detail else-
w xwhere 4 . We did not include the term given by Eq.

Ž . w x2.24 of Ref. 4 . The multidimensional nonlinear
equation was solved by Newton’s method. The Her-
miticity and the symmetry properties of the 2-RDM
were imposed in solving the DE.

w xThe valence double-zeta basis, 3s2pr2s set
w x16,17 , was used for HF and the minimal STO-6G

w xbasis 18 was used for CH , BH , NH , and H O.4 3 3 2

The potential energy curves of HF, CH , BH , and4 3

NH were calculated for the totally-symmetric3

stretching mode. The potential energy surface of
H O was calculated along the three normal modes2

around the equilibrium geometry. The spectroscopic
constants of the potential curves were calculated
numerically. The full-CI and symmetry-adapted-clus-

Ž . w xter SAC 19 methods were performed, at the same
time, to examine the accuracy of the present DE2

w xresults. The HONDO8 program 20 was used for the

Hartree–Fock and full-CI calculations and the SAC-
w xCI96 program 21 for SAC calculations.

In all calculations, the 1s orbitals of the first-row
atoms were frozen as cores. This was effective to get
a good convergence in the present algorithm of
solving the DE. When these 1s orbitals were in-
cluded, the breakdown of the N-representability of
the 1-RDM occurred even at the geometries rela-
tively close to the equilibrium geometry. The origin
of this non-convergence is not clear, but we have
observed that the occupation number of the 1s or-
bitals slightly exceeds two, when the molecular ge-
ometry is apart from the equilibrium geometry. By
adopting the 1s orbitals as a frozen core, the present
DE2 calculations have converged in wide regions
around the equilibrium geometry.

3. Stretching potential for HF, CH , BH , and4 3

NH3

Fig. 1a shows a comparison of the ground-state
potential energy curves of HF molecule calculated
by the Hartree–Fock, DE2, SAC, and full-CI meth-

˚ods in the nuclear distance of 0.8–1.2 A. The DE2
method well reproduces the full-CI curve, showing
that the DE2 method includes electron correlations
accurately: the errors range from 4.1 to 9.2% in these
internuclear distances. The deviations from the full-
CI are larger at the large internuclear distance, while
a weight of the Hartree–Fock configuration is almost

˚constant, 0.96–0.95, in the distance of 0.8–1.2 A.
The SAC almost reproduces the full-CI curve: the
deviations are within 1.8 mhartree.

The potential curves for the totally-symmetric
stretching mode of CH are shown in Fig. 1b. Again,4

the DE2 method simulates well the full-CI curve: for
CH , the errors in the correlation energy are 3.3–4

˚13.1% in the range of R s0.95–1.40 A, whereC – H

the weight of the Hartree–Fock configuration
changes from 0.97 to 0.88, the last figure being very
small. Since the present DE2 method is based on the
perturbation expansion by the Green’s function

w xmethod 3,4 , a better agreement is obtained at a
shorter internuclear distance where the Hartree–Fock
approximation becomes better. The SAC curve is
almost superposed with the full-CI one. The DE2
method is correct to the second order in the correla-
tion perturbation, but still is a subject of improve-
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Ž . Ž .Fig. 1. Potential energy curves of a HF and b CH , calculated by the Hartree–Fock, DE2, SAC, and full-CI methods.4

ment and at this moment, it is more expensive than a
wavefunction approach like SAC.

The potential curves of BH and NH are de-3 3

picted in Fig. 2 for the totally-symmetric stretching
mode. The stretching potential of BH was obtained3

by restricting the planer structure of D , while for3h

NH the geometry was optimized along the mode by3

each method. The weight of the Hartree–Fock con-
˚figuration is 0.98–0.93 for R s1.0–1.45 A ofB – H
˚BH and 0.97–0.93 for R s0.948–1.185 A of3 N – H

NH . The DE2 method describes 96.7–89.0% of the3

electron correlations of BH and 92.6–89.8% for3

NH , though the geometry of NH is different for3 3

each method.
The spectroscopic constants were numerically

evaluated from the potential energy curves of the
Hartree–Fock, DE2, SAC, and full-CI methods. The
equilibrium distance R and the harmonic vibrationale

frequency v are summarized in Table 1 for HF,e

CH , and BH and the optimized geometry and the4 3

harmonic frequency of NH are given in Table 2.3

The equilibrium geometry calculated by the DE2
method is very close to the full-CI result for all the
molecules, and the harmonic vibrational frequency of

Ž . Ž .Fig. 2. Potential energy curves for the totally-symmetric stretching modes of a BH and b NH , calculated by the Hartree–Fock, DE2,3 3

SAC, and full-CI methods.
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Table 1
The equilibrium length R and totally-symmetric harmonic vibra-e

tional frequency v calculated for HF, CH , and BHe 4 3

R ve e
y1˚Ž . Ž .A cm

aHF :

Hartree–Fock 0.9195 4233
DE2 0.9416 3969
SAC 0.9487 3826
Full-CI 0.9495 3808

bCH :4

Hartree–Fock 1.0783 3535
DE2 1.0998 3306
SAC 1.1035 3245
Full-CI 1.1038 3240

BH :3

Hartree–Fock 1.1539 3114
DE2 1.1743 2929
SAC 1.1774 2879
Full-CI 1.1778 2884

a ˚ y1Experimental values are R s0.9168 A and v s4138 cme e
w x22 .
b ˚ w xExperimental values are R s1.0936 A 23 and v s2915e e

y1 w xcm 24 .

the DE2 method is much closer to the full-CI result
than to the Hartree–Fock result. The SAC and full-CI
results are almost the same.

It is important to examine not only the energy but
also the details of the density. Fig. 3 shows the
dipole moment of HF along the internuclear distance
calculated by the Hartree–Fock, DE2, and full-CI

Table 2
Optimized geometry and vibrational frequency of the totally sym-
metric stretching mode of NH3

Hartree–Fock DE2 SAC Full-CI
aOptimized geometry :

˚Ž .r A 1.0281 1.0580 1.0662 1.0664NH
Ž .u 8 104.46 101.07 100.28 100.29HN H

bVibrational frequency :

Ž .n a 3832 3496 3358 33501 1
y1Ž .cm

a ˚Experimental values are r s1.0116 A and u s106.688NH HNH
w x23 .
b Ž . y1 w xExperimental value is n a s3336 cm 24 .1 1

Fig. 3. Dipole moment vs. internuclear distance of HF calculated
by the Hartree–Fock, DE2, and full-CI methods.

methods. The DE2 method reproduces well the full-
CI result, which is reasonable since the DE2 method
directly calculates the density matrix.

In the present DE2 calculation, the N-representa-
bility condition for the 1-RDM was satisfied for all
the calculated geometries shown here: the eigenval-
ues of the 1-RDM, i.e. the occupation numbers, were
all positive and less than two. As for the 2-RDM, the

w xP, Q, and G conditions 3,4 for the N-representabil-
ity were examined. Fig. 4 shows the lowest value
and the sums of the negative eigenvalues of the P,
Q, and G matrix of CH along the internuclear4

distances shown in Fig. 1b. These values should be

Fig. 4. Lowest values and the sums of the negative eigenvalues of
the P, Q, and G matrices along the totally-symmetric vibrational
mode of CH .4
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non-negative for the N-representative 2-RDM, but
the lowest values are slightly negative from y1=

y4 ˚ y3 ˚10 at Rs0.95 A to y6=10 at Rs1.4 A. It
should be noted that only 3 to 7 eigenvalues are
negative out of the 336 independent variables and
the sums of the negative values range from y3=

10y4 to y1.6=10y2 . The calculated 2-RDM are
not completely N-representable, but the deviation
seems to be small. These conditions are satisfied
better at shorter internuclear distances, as expected
from the weight of the Hartree–Fock configuration.

We note here that at larger internuclear distances
than those shown in this Letter, where the Hartree–
Fock approximation becomes worse, the DE2 equa-
tion was rather unstable and sometimes failed to
converge. When we examine the occupation numbers
of the 1-RDM at such a geometry, some of them
were negative showing that the N-representability
condition was broken. This behavior of the DE
implies that it is stable only for the N-representable
or almost N-representable DMs.

4. Full vibrational potential of H O2

Finally, the DE2 method was used to calculate the
potential energy surface of the ground state of H O2

Ž . Ž . Ž .along the normal modes, Õ a , Õ a , and Õ b ,1 1 2 1 3 1

totally-symmetric stretching, bending, and anti-sym-
metric stretching modes, respectively. Fig. 5 com-

Table 3
Ž y1 .Optimized geometry and vibrational frequencies cm for the

Ž . Ž . Ž .n a , n a , and n b modes of H O1 1 2 1 3 2 2

Hartree–Fock DE2 SAC Full-CI
aOptimized geometry :

˚Ž .r A 0.9862 1.0146 1.0262 1.0264OH
Ž .u 8 100.01 97.47 96.68 96.68HO H

bVibrational frequency :

Ž .n a 4102 3761 3515 35121 1
Ž .n a 2161 2078 2031 20272 1
Ž .n b 4352 4001 3758 37563 2

a ˚Experimental values are r s0.9575 A and u s104.518OH HOH
w x23 .
b Ž . y1 Ž .Experimental values are n a s3657 cm , n a s15951 1 2 1

y1 Ž . y1 w xcm , and n b s3756 cm 24 .3 2

pares the potential energy curves along these three
modes around the equilibrium geometry determined
by each method. The error in the electron correlation
energy is relatively large for H O in comparison2

with other molecules. The errors were from 10.0 to
15.9% in the geometries examined here, although the
weight of the Hartree–Fock configuration was as
large as 0.95–0.97. The vibrational analysis was
performed for these three modes and the results are
given in Table 3 together with the optimized geome-
try. The DE2 method well reproduces the equilib-
rium geometry. The vibrational frequencies calcu-

Ž . Ž . Ž . Ž . Ž . Ž .Fig. 5. Potential energy curves of H O for: a n a ; b n a ; and c n b modes, calculated by the Hartree–Fock, DE2, SAC, and2 1 1 2 1 3 1

full-CI methods. Each curve is around the equilibrium geometry determined by each method.
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lated by the DE2 method are closer to the full-CI
values than to the Hartree–Fock ones.

5. Conclusions

The density equation method has been applied
successfully, for the first time, to the calculation of
the potential energy curves, equilibrium geometries,
and vibrational force constants of molecules without
using the wavefunctions. The results for HF, CH ,4

BH , NH , and H O reproduced well the SAC and3 3 2

full-CI results. It was effective in the present algo-
rithm to adopt the 1s orbital of the first-row atoms as
frozen core. The resultant density matrices were
almost N-representable, in the region reported in this
Letter.

A note may be necessary about the Hartree–Fock
method. When we introduce the independent particle
approximation, we can derive the Hartree–Fock
equation from the density equation as shown in Ref.
w x1 . In other words, the Hartree–Fock equation is a
kind of density equation. We used the Hartree–Fock
orbital which is obtained by diagonalizing the first-
order density matrix, as reference functions in the
second-quantized formulation. So, we never used
any wavefunction.
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