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ABSTRACT

The free complement method for solving the Schrödinger and Dirac equations has been applied to the hydrogen
atom in extremely strong magnetic fields. For very strong fields such as those observed on the surfaces of white
dwarf and neutron stars, we calculate the highly accurate non-relativistic and relativistic energies of the hydrogen
atom. We extended the calculations up to field strengths that exceed the strongest magnetic field (∼1015 G) ever
observed in the universe on a magnetar surface. These are the first reported accurate quantum mechanical calcu-
lations ever to include such strong fields. Certain excited state bands in extremely strong fields showed perfect
diamagnetism with an infinite number of degenerate states with the same energies as for a hydrogen atom in the
absence of a field. Our method of solving the Schrödinger and Dirac equations provides an accurate theoretical
methodology for studying phenomena that occur under strong magnetic fields.
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1. INTRODUCTION

Since Zeeman (1897) first observed the splitting of an
atomic spectral line under a magnetic field in 1896, atoms and
molecules in magnetic fields have been extensively studied both
theoretically and experimentally. Several new sciences have
been born from such research (Ruder et al. 1994). For astronomy,
magnetic fields play an important role in various situations in
space, for example, white dwarf, neutron star, interstellar space,
the Sun, and even on the Earth. Interstellar magnetic fields were
already discovered by Jansky (1932) who first detected the radio
emission from the Milky Way. In this region, the dominant
species should be hydrogen and the Zeeman splitting related
to the hyperfine structure of a neutral hydrogen atom has been
studied extensively with radio spectroscopy (Bolton & Wild
1957; Smith 1968). Magnetic fields may even have a crucial role
in star evolution. Chemical and material sciences based on the
quantum mechanical principle in strong magnetic fields would
be very important for understanding material compositions in
interstellar regions and binary systems. In compact objects, very
strong magnetic fields have been observed on the surfaces of
white dwarfs (106∼109 G) and neutron stars (∼1013 G; Ruder
et al. 1994; Schmidt et al. 1996; Lai 2001; Mori & Ho 2007).
Recently, even stronger fields (∼1015 G) were observed on
the surface of a magnetar, an object that was predicted by
a theoretical simulation by Duncan & Thompson (1992) and
experimentally observed by Kouveliotou et al. (1998). These
are the strongest magnetic fields ever observed in the universe.

In such a strong magnetic field, unknown interesting chem-
istry and phenomena may be found in the studies of atoms
and molecules because spin–magnetic interactions are common
in the interstellar space and may even become dominant over
the ordinary Coulomb forces. New concepts may be derived
from the super-strong interactions between spin and magnetic
field. The present study is a first step for us in this direction.
Since humans cannot generate such strong magnetic fields be-
yond 107 G in the laboratory on the Earth yet, we have to rely
on observations in space and highly reliable theoretical studies
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of quantum molecular science. In other words, for the science
of the super-strong magnetic fields, only “space” is a real ex-
perimental field: it is very interesting for quantum molecular
science to demonstrate the relativistic and quantum electrody-
namic (QED) effects interacting with the super-strong magnetic
fields. Such strong fields exist only in space. Combining the the-
oretical considerations with the real observations in astronomy
would open an important interdisciplinary field of astronomy
and molecular science. However, in spite of their importance,
there are almost no accurate quantum mechanical studies for
the atomic and molecular systems under super strong magnetic
fields over neutron star class.

As a first step of such studies, in the present paper we solve
the Schrödinger equation (SE) and the relativistic Dirac equation
(DE) very accurately for the hydrogen atom in extremely strong
magnetic fields. In spite of its apparent simplicity, we have
never known its exact solutions. Many theoretical studies have
been reported for the hydrogen atom (Ruder et al. 1994; Chen
& Goldman 1992; Kravchenko et al. 1996; Stubbins et al.
2004; Thirumalai & Heyl 2009) and for the hydrogen molecular
ion (Vincke & Baye 2006), but several obstacles prevented
the solutions since the strong vector potential of the magnetic
field competes with the scalar Coulomb potential (Ruder et al.
1994). Chen & Goldman (Chen & Goldman 1992) first provided
accurate solutions of both the SE and DE using the variational
approach. Stubbins et al. (Stubbins et al. 2004) introduced
parabolic coordinates in the SE to represent a highly distorted
wave function in strong fields. This approach provided accurate
and stable solutions for the very strong fields found in neutron
stars (5 × 103 atomic units (a.u.) = ∼1013 G, where 1 a.u. ≈
2.35 × 109 G).

We introduce a free complement (FC) method that provides
a fast converging series to the exact wave function of the
SE and DE in an analytical expansion form (Nakatsuji 2000,
2004, 2005; Nakatsuji et al. 2007; Nakashima & Nakatsuji
2007, 2008). We increase the magnetic field strength to ∼5 ×
105 a.u. (∼1015 G), corresponding to the universe’s strongest
level (Duncan & Thompson 1992; Kouveliotou et al. 1998),
and finally up to ∼5 × 109 a.u. (∼1019 G) for the SE and
∼5 × 106 a.u. (∼1016 G) for the DE. To our knowledge,
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No. 1, 2010 SOLVING THE SCHRÖDINGER AND DIRAC EQUATIONS FOR A HYDROGEN ATOM 529

accurate quantum mechanical calculations of the hydrogen atom
in magnetic fields beyond 5 × 103 a.u. have not been previously
performed. This should also be the first time very accurate
calculations are performed considering the relativistic effects:
we found that the relativistic corrections and the effect of nuclear
magnetic moment are significant in super strong magnetic fields.
These data would be helpful, for example, when we want to
investigate the magnetic field strength of a star by comparing
the real observations to the theoretical values.

In the present paper, our aim is twofold: to show the accuracy
and reliability of our theory and to provide physical consider-
ations which are important for space physics and chemistry in
strong magnetic fields. Highly accurate calculations of atoms in
their ground and excited states are useful not only for under-
standing spectroscopic observations in astronomy (Ruder et al.
1994; Schmidt et al. 1996; Lai 2001; Mori & Ho 2007; Dun-
can & Thompson 1992; Kouveliotou et al. 1998), but also for
condensed-matter physics (Praddaude 1972) and chaos studies
(Delande & Gay 1986).

2. THEORY AND FORMULA

2.1. Hamiltonian in Magnetic Fields

The electronic Hamiltonian of the SE of the hydrogen atom
in a magnetic field can be written in atomic units as

H = 1

2
p2 +

1

2
A2 + A · p +

1

2
σ · rotA − 1

r
, (1)

where p and A are the momentum operator and vector potential,
respectively, and σ is the Pauli spin matrix. For a uniform
magnetic field B, A = B/2× r with the Coulomb gauge. We fix
the direction of the magnetic field to the z-axis, B = (0, 0, B),
without losing generality. The last term represents the scalar
Coulomb potential, where r is the nucleus–electron distance.

The Dirac Hamiltonian of the system under consideration is
given by

H =
([− 1

r
+ c2

]
I(2) c [σ · (p + A)]

c [σ · (p + A)]
[− 1

r
− c2

]
I(2)

)
, (2)

where I(2) is a two-dimensional unit matrix and c is the speed of
light or the inverse of the fine structure constant in atomic units:
c = 137.0359987652 is used in this work (Kinoshita & Nio
2003; Karshenboim & Ivanov 2003). We furthermore examine
the effect of the nuclear magnetic moment μ mainly derived
from nuclear spin, although it should be much smaller than
the very strong external field. The additional vector potential is
represented by Aμ = 1/c2 · (μ × r) /r3, where the point-charge
nucleus model is employed.

2.2. Free Complement Wave Function and Variation Method

The FC method (originally referred to as the free itera-
tive complement interaction method; Nakatsuji 2000, 2004;
Nakatsuji 2005; Nakatsuji & Nakashima 2005) has been de-
veloped by the present authors to solve the SE and the DE of
atoms and molecules very accurately (Nakatsuji et al. 2007;
Nakashima & Nakatsuji 2007, 2008). One of the authors pro-
posed a recurrence formula which is guaranteed to converge to
the exact solution of the SE (Nakatsuji 2000, 2004). This series
explicitly includes the Hamiltonian of the system,

ψ (n+1) = [1 + C(n)g(H − E(n))]ψ (n), (3)

where n is iteration number, C(n) is a variational parameter, g
is a scaling function which is necessary to scale the Coulomb
singularity in the Hamiltonian (Nakatsuji 2004), and E(n) is
the expectation energy of ψ (n). To accelerate convergence, we
may expand the right-hand side of Equation (3) and collect the
independent functions {φ(n)

i } with the independent coefficients
{c(n)

i } and we get the FC wave function defined by

ψ =
Mn∑
i=1

c
(n)
i φ

(n)
i . (4)

Here, we call the iteration number “order n” and the number of
independent functions “dimension Mn”. The unknown coeffi-
cients {c(n)

i } are determined by applying the variational principle.
This method is also applicable to the relativistic case without
significant modifications except for an introduction of the in-
verse variational method (Nakatsuji 2005; Hill & Krauthauser
1994).

In the FC method, the wave function appropriate to the given
system is automatically generated by its Hamiltonian given by
Equations (1) or (2) (Nakatsuji 2000, 2004, 2005; Nakatsuji
et al. 2007; Nakashima & Nakatsuji 2007, 2008). This brings a
remarkable advantage that the FC method is easily applicable to
the systems under an extreme environment. The non-relativistic
wave function of the SE obtained by the FC method is

ψ =
∑

j

∑
i

ci,j ξ
ai ηbi exp(−κj ξ − λjη − ωjξη)

· (ξη)
|m|
2 exp(imϕ) ± (ξ ↔ η), (5)

where ai and bi are nonnegative integers and κj , λj , and ωj

are the exponential parameters. We use parabolic coordinates,
ξ = r + z, η = r − z, ϕ = tan−1(y/x), appropriate for
atoms in a very strong magnetic field. This wave function
was generated from the starting initial function ψ0, which
is the Slater orbital with the Landau exponent (Landau &
Lifschitz 1977) (ai = bi = 0 in Equation (5)), using the g
function of g = r = (ξ + η) /2, which is necessary to scale
the Coulomb singularity in the Hamiltonian (Nakatsuji 2004).
For calculations of higher excited states, we used several sets
of exponents. The quantum number m denotes the angular
momentum around the z-axis. The last term of Equation (5)
represents the parity in exchanging ξ and η. The coefficients
ci,j are determined by the variational principle.

For the relativistic case, the FC wave function for the
DE is represented by the four spinor wave functions ψ =
(ψ1, ψ2, ψ3, ψ4)T with

ψk =
∑

i

c
(k)
i ξ a

(k)
i ηb

(k)
i / (ξ + η)d

(k)
i +δ · exp(−κξ − λη − ωξη)

· (ξη)
|mk |

2 exp(imkϕ) ± (−1)k (ξ ↔ η), (6)

where k = 1, . . ., 4. a
(k)
i , b

(k)
i , and d

(k)
i represent nonnegative

integers satisfying the inequality a
(k)
i +b

(k)
i −d

(k)
i � 0. This wave

function was generated from ψ0, for which a
(k)
i = b

(k)
i = 0 and

d
(k)
i = 0 for k = 1, 2 and d

(k)
i = 1 for k = 3, 4, and the g function,

g = 1 + r = 1 + (ξ + η) /2. mk = Jz + (−1)k · 1/2, where Jz
represents the quantum number of the total angular momentum
in the z-direction. δ is a noninteger value that describes a weak
singularity at the nucleus–electron coalescence region.
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Table 1
Nonrelativistic Energies of the Ground State of a Hydrogen Atom in Different Magnetic Fields

B (a.u.) κ λ Energy (a.u.) Ref. (1)

1 1.15 1.15 −0.8311688967331580356102982345035597056110045777170022093881843002956996
5693593435084785614674151332753482933652976

−0.8311688967331580356102

5 × 102 7 3.5 −6.2570876746805618940101023676815452117772052096401992672 −6.2570876746805618940
5 × 103 20 5 −11.8734182826812097445465728150860101504772037798 −11.873418282681209744
5 × 104 35 6 −20.580180557741971432410795124707830767
5 × 105 76 8.5 −32.9152521647235189764462672277
5 × 106 126 11 −49.242560527567087014413
5 × 107 207 14 −69.80569222088335336
5 × 108 311 19 −94.775387598676842
5 × 109 394 22 −124.277796777099

Reference. (1) Stubbins et al. 2004.

An important feature of the relativistic FC method is
that the balancing among different spinors is automatically
taken care of in the generation step of the wave function
(Nakatsuji 2005). The coefficients c

(k)
i are determined by the in-

verse Hamiltonian variation method (Hill & Krauthauser 1994)
that avoids the variational collapse problem in relativistic calcu-
lations. A noninteger power of δ makes analytical integrations
difficult to evaluate in the case when κ and λ are different.
We cannot neglect a weak singularity, which is an essential
feature of the relativistic wave function, and therefore, we intro-
duced a variation method on the scaled DE, g(δ) (H − E) ψ = 0
(Nakatsuji 2004), where g(δ) = (ξ + η)−δ . Then, the resultant
integrals are almost the same as in the SE case and can be
analytically evaluated. A similar idea was used by Sundholm
& Pyykkö to avoid a similar integration difficulty (Sundholm
et al. 1987). This method is also applicable to other systems that
involve similar difficulties in solving the DE.

3. RESUTS AND DISCUSSION

3.1. Schrödinger Non-relativistic Case

First, we deal with the ground state (m = 0, beta spin,
and gerade parity) of a hydrogen atom in the magnetic field
of B = 1 (a.u.) with the FC wave function of Equation (5).
κ and λ are set equal and roughly optimized, and ω = B/4
since the Landau orbital is used for every calculation described
in this paper. At the FC order n = 100 with the number
of complement functions Mn = 5151, we obtain the energy
−0.83116889673315803561029823450355970561100457771
70022093881843002956996569359343508478561467415133
27534829336 529768079476 a.u., whose precision exceeds 100
digits. The number of significant digits was judged from the en-
ergy convergence behavior upon increasing the order of the FC
calculations. To our knowledge, this is the highest number of
significant digits calculated by the variation method to date.
Throughout this paper, bold face is used to indicate figures ex-
pected to be correct.

Table 1 shows the energies of the ground state in different
magnetic fields up to B = 5×109 (a.u.) with the roughly
optimized κ and λ; κ �= λ due to the highly distorted wave
function (Stubbins et al. 2004). The calculations, except for B =
1 (a.u.), were performed at n = 70 and Mn = 5040. With B =
5 × 103 (a.u.), the calculated energy has a precision exceeding
45 digits. We achieve a precision of 25–26 digits for B = 5 ×
105 (a.u.) (the universe’s strongest field level) and 10–11 digits
for B = 5 × 109 (a.u.). For B > 1 (a.u.), the magnetic–spin
interaction eclipses the Coulomb interaction. The stabilization
energies by the magnetic field from zero-field solution were

11.37 a.u. (309.48 eV) for B = 5 × 103 (a.u.) and 69.31 a.u.
(1885.90 eV) for B = 5 × 107 (a.u.), already reaching KeV
order.

We calculated the expectation values of length of the ground
state using the most accurate wave functions. For B = 1, 5 ×
105, and 5 × 109 (a.u.), the expectation value 〈r〉 was 1.19196,
7.00223 × 10−2, and 3.38197 × 10−2, respectively, and the
expectation value

〈
z2

〉
was 7.44660 × 10−1, 9.36398 × 10−3 and

2.23840 × 10−3, respectively. The electron approaches closer
to the nucleus with increasing B, but not so much on the z-axis
even in ultra-strong fields. On the other hand, the expectation
value

〈
(x2 + y2)/2

〉
was 5.35833 × 10−1, 1.999950378 × 10−6,

and 1.999999988951 × 10−10 for B = 1, 5 × 105, and 5 ×
109 (a.u.), respectively. This quantity drastically decreases with
increasing B and approaches the value, 1/B, corresponding to
the expectation value of the pure Landau orbital (Landau &
Lifschitz 1977). The remaining difference from the value 1/B
indicates that the Coulomb potential still affects the shape of
the wave function even in very strong magnetic fields. The
ratio

〈
z2

〉1/2
/
〈
(x2 + y2)/2

〉1/2
, which represents the extent of

distortion in the z-direction, was 1.17887, 6.84259 × 101,
and 3.34544 × 103 for B = 1, 5 × 105, and 5 × 109 (a.u.),
respectively. As B increases, the shape of the wave function
becomes highly distorted and spindling along the z-axis.

3.2. Energy Spectral Curves of the Ground and Excited
States Against the Strength of Magnetic Field

Understanding the behavior of the ground and excited state
energy levels as a function of magnetic field strength would
enable us to identify the magnitude of the magnetic field strength
of a star under investigation for which one has the observed
spectra of the hydrogen atom on the star. Alternatively, one
may also predict the existence of hydrogen on a given star. We
therefore calculated the energy spectra of the ground and many
excited states of the hydrogen atom as a function of the applied
magnetic field.

We calculated the FC wave functions of the hydrogen atom
in their ground and excited states in the order n = 15. To
describe several states, we included five different exponents
in ψ0 for every different symmetry. Figure 1 shows the plots
of the energies of the 186 states in B = 0.01 to 106 (a.u.) on a
logarithmic scale with m = 0 to −30 of both parities (only beta
spin state). In Figure 1(a), a small plot for B < 0.5 (a.u.) includes
higher-excited states with alpha spin solutions and describes
complicated state-repulsions due to the competitions between
the magnetic vector potential and the Coulomb potential from
the nucleus. This certainly may produce a quantum chaotic
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Figure 1. (a) Energy spectra curves for many excited states as a function of B. (b) Enlarged view of the energy region from −0.6 to 0.0 a.u.

phenomenon (Delande & Gay 1986). For B > 1 (a.u.), however,
the chaotic behaviors disappear for the lower-level excited
states, and some sets of the state curves begin to create band
structure for B > 100 (a.u.). The lowest energy band consists
of the lowest states on each m with gerade parity. The third and
fifth lowest bands are also composed of gerade states. Similarly,
the second, fourth, and sixth bands consist of ungerade states.
The energies of the most stable band become drastically lower
with increasing B, but the other bands are not so much stabilized
by the strong magnetic field. Surprisingly, as B increases, the
ungerade bands converge to −0.5, −0.125, and −0.0555 a.u.,
the energy eigenvalues of the free hydrogen atom, with perfect
diamagnetism arising from an infinite number of degenerate
states composed of m = 0, −1, −2, . . .. Moreover, the energy
curves starting from 2p, 3p, . . . states in the zero field make
up the lowest ungerade band converging to −0.5 a.u. This is
equivalent to the 1 s state energy in the zero field.

These phenomena can be explained using the adiabatic
approximation that separates the z-directional motion from the
high-speed rotations on the x, y plane in a very strong magnetic
field. In this treatment, the wave function on the x, y plane is
exactly represented by the Landau orbital (Landau & Lifschitz
1977) and the motion along the z-axis is solved in the mean
field potential after integration over the x, y plane. Since the
Landau orbital approaches the Dirac-δ function as B becomes
very strong, the mean field potential approaches −1/|z| but the
value at z = 0 is not infinite. This finite value is proportional
to

√
B. The one-dimensional SE with potential −1/|z| is the

same as the radial SE of the free hydrogen atom. The ungerade
solutions are not affected by the potential at z = 0 because their
wave functions are always zero at z = 0. In contrast, the gerade
solutions are largely affected by the potential around z = 0. The
component states of the most stable band always have a non-zero
wave function at z = 0 and become very low as B increases.
Thus, the gerade solutions behave more intricately than the
ungerade ones. For the ungerade states, the same energies as
those of the free hydrogen atom are derived from the mean field
potential on the z-direction and their infinite degeneracy comes
from the degenerate Landau levels of m = 0, −1, −2, . . . on
the x,y plane (Landau & Lifschitz 1977). If electron correlations
exist as in hydrogen clusters or solids, this macro degeneracy
may be removed and some interesting phenomena may appear.

3.3. Dirac Relativistic Case

Let us solve the DE of the present system. We performed the
calculations for the ground state (Jz =−1/2) and the first excited

state (Jz = −3/2) in magnetic fields up to B = 5 × 106 (a.u.). As
far as we know, as in the non-relativistic SE case, no solutions
of the DE of the hydrogen atom in a field exceeding B = 5 ×
103 (a.u.) have been reported. The same exponents κ , λ, and ω
were used as in the non-relativistic case, except for B = 1 (a.u.)
where κ = λ = 1. δ = 1 −

√
l2 − (1/c)2 was used with l = −1

and l = −2 for Jz = −1/2 and Jz = −3/2 states, respectively. In
the B = 1 (a.u.) case, the calculations were performed with the
ordinary energy variation method on n = 15 (Mn = 1326) for
Jz = −1/2 and on n = 15 (Mn = 1411) for Jz = −3/2. For the
other fields, the energy variation for the scaled DE was done on
n = 11 (Mn = 1405) for Jz = −1/2 and on n = 11 (Mn = 1495)
for Jz = −3/2. For these states, the wave functions have odd
parities for the first and fourth components and even parities for
the second and third components.

Table 2 shows the calculated energies of the DE in different
magnetic fields from B = 1 to 5 × 106 (a.u.) The values are
precise to about 20–21 digits and 13 digits for the cases of B =
1 and 5 × 103 (a.u.), respectively. These seem to represent the
highest precision reported to date. Even for B = 5 × 106 (a.u.),
the accuracy retains eight digits. The excitation energy to Jz =
−3/2 becomes larger as B grows, since the ground state is
greatly stabilized by the strong magnetic field. The value ΔErel
shown in Table 2 is the energy difference between the relativistic
and the non-relativistic energies. For B = 1 (a.u.) only, ΔErel was
negative. However, as B increases, the relativistic effect mainly
influences the kinetic part because of the high-speed rotation on
the x, y plane and ΔErel changes to be positive and larger. For
B = 5 × 106 (a.u.), the relativistic correction reached 10−2 a.u.
order (10 mH order) even for the lightest hydrogen atom.

3.4. Effect of the Nuclear Magnetic Moment
in the Relativistic Level

Finally, we examined the effect of the nuclear magnetic mo-
ment and its interaction with external fields. The calculations
were performed with the energy variation on the regular Hamil-
tonian with Aμ, as the integration does not diverge for Aμ pro-
portional to 1/r2. Table 2 shows the absolute energy E+μ and
the hyperfine splitting ΔEμ = E−μ − E+μ. E−μ is the energy
for μ = (0, 0,−μ) and E+μ is the one for μ = (0, 0, +μ),
where the proton magnetic moment μ in a.u. is calculated
from NIST 2006 data2 by dividing μp = 1.410606662 × 10−26

(J/T) by 1.854801830 × 10−23 (J/T). Figure 2 illustrates the
energy diagrams of the ground state with the total energies for

2 NIST 2006, see http://physics.nist.gov/cuu/Constants/.

http://physics.nist.gov/cuu/Constants/
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Table 2
Relativistic Energies Without and With Aμ and Hyperfine Splitting of the Ground (Jz = −1/2) and First Excited (Jz = −3/2) States in Different Magnetic Fields

B (a.u.) Jz Energy (a.u.) Without Aμ Energy (a.u.) With Aμ: E+μ ΔErel (a.u.) ΔEμ (a.u.) Ref. (1)

1 −1/2 −0.831173225931949858604898 −0.83117328917637599 −4.32919 × 10−6 1.2648878243 × 10−7 −0.831173226
−3/2 −0.456597236750456531701 −0.45659724051900429035 −1.78326 × 10−7 7.53709524950 × 10−9 −0.45659724

5 × 102 −1/2 −6.25703258758415206 −6.25703499760355 5.50870 × 10−5 4.82001558 × 10−6 −6.2570326
−3/2 −4.53121620696889230 −4.531216558765117 3.01738 × 10−5 7.03592119 × 10−7

5 × 103 −1/2 −11.87308840114975 −11.873099906426 3.29881 × 10−4 2.3010220 × 10−5 −11.87308
−3/2 −9.0412182349798 −9.041220036253 1.80428 × 10−4 3.602538 × 10−6

5 × 104 −1/2 −20.57885494676216 −20.57890691136 1.32561 × 10−3 1.0392480 × 10−4

−3/2 −16.34774466727414 −16.34775317894 7.83333 × 10−4 1.702330 × 10−5

5 × 105 −1/2 −32.911133514717 −32.91135488 4.118650 × 10−3 4.4274 × 10−4

−3/2 −27.066308151761 −27.066345642 2.633807 × 10−3 7.4831 × 10−5

5 × 106 −1/2 −49.231972282 −49.2328679 1.058824 × 10−2 1.7948 × 10−3

−3/2 −41.62849255 −41.6286432 7.238773 × 10−3 3.109 × 10−4

Reference. (1) Chen & Goldman 1992.

Figure 2. Energy diagrams and splitting in the SE and DE without and with Aμ.

B = 1 and 5 × 106 (a.u.) from the SE, DE, and DE with Aμ

(μ = (0, 0,±μ)). As B increases, ΔEμ becomes larger and
reaches 1.8 × 10−3 a.u. in B = 5 × 106 (a.u.). ΔEμ is only 1–1.5
orders of magnitude smaller than the relativistic effect |ΔErel|
in every case and its amplitude becomes relatively higher with
increasing B. For direct comparison with accurate experimen-
tal observations, therefore, this effect is not negligible in very
strong fields. As shown in Figure 2, we can discuss not only
the relative splitting but also the very accurate absolute energies
from the DE including spin, angular momentum, and spin–orbit
interactions with an external strong magnetic field and nuclear
magnetic moment.

4. CONCLUSIONS

In this paper, the SE and the DE of the hydrogen atom
in extremely strong magnetic fields, which even exceed the
strongest field observed in the universe, were solved quite
accurately with the FC method developed in our laboratory.
We have provided the estimate of the accuracy of the relativistic
corrections in super strong magnetic fields. This observation
should be very valuable and physically important for space
chemistry in an extreme environment, where relativity can be
very important. Hyperfine splitting due to the nuclear magnetic

moment was also evaluated very accurately at the relativistic
level.

We have demonstrated the exotic behaviors of the energy
of the excited states against the strength of the magnetic
fields. In an ultra-strong magnetic field, the macro degener-
ate bands of ungerade symmetry converged to the field-free
energy levels of the hydrogen atom. This phenomenon may
result from the symmetry coupled with the ultra-strong mag-
netic field. These would help us to understand unusual spectro-
scopic phenomena on the surface of a star or the interstellar
region in strong magnetic fields. We believe that these nu-
merical observations are highly original. Since the chaotic
behavior in a magnetic field may prevent simple theoretical
expectations, we may have to rely on the quantum mechanical
simulations.

In strong magnetic fields, the finite mass corrections and
the QED corrections to the vacuum polarization on the ultra-
magnetized vacuum are important (Herold et al. 1981; Vincke
& Baye 1988; van Adelsberg & Lai 2006). We did not introduce
any of these corrections here, but they will be evaluated in
a future study using the highly accurate zeroth-order wave
functions obtained here at both the Schrödinger and Dirac
equation levels. The very highly accurate numerical results
we provide in this paper should become very important when
one has to compare theory and experimental observation to
fine details in the future when experimental accuracy is much
improved.

The present work may advance our ability to study the nature
of substances on space objects or in interstellar regions under
very strong magnetic fields (Ruder et al. 1994; Schmidt et al.
1996; Lai 2001; Mori & Ho 2007; Duncan & Thompson 1992;
Kouveliotou et al. 1998). Our global purpose is to make our
methodology based on the quantum mechanical principle a more
reliable theoretical tool to predict and explain real phenomena
in space. The present paper is a step toward this purpose
on astronomical topics and we could provide very accurate
fundamental data to address it. We believe that combining
the theoretical quantum mechanical studies in molecular science
with the observations in astronomy should provide a powerful
method for understanding space. We hope this study has also
introduced an accurate predictive science to several fields related
to strong magnetic fields.

This study has been partially supported by KAKENHI
22750027.
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