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Our previous paper [J. Chem. Phys. 127, 224104 (2007)] revealed that the Schrodinger equation in
the fixed-nucleus approximation could be very accurately solved for helium atom and its
isoelectronic ions (Z=1-10) with the free iterative-complement-interaction (ICI) method combined
with the variation principle. In this report, the quantum effect of nuclear motion has further been
variationally considered by the free ICI formalism for the Hamiltonian including mass-polarization
operator. We obtained —2.903 304 557 729 580 294 733 816 943 892 697 752 659 273 965 a.u. for
helium atom, which is over 40 digits in accuracy, similarly to the previous result for the
fixed-nucleus level. Similar accuracy was also obtained for the helium isoelectronic ions. The
present results may be regarded to be the nonrelativistic limits. We have further analyzed the physics
of the free ICI wave function by applying it to an imaginary atom called “eneon,” [e"e'%*e~]**, in
which both of the quantum effect of nuclear motion and the three-particle collisions are differently
important from the helium and its isoelectronic ions. This revealed the accurate physics

automatically generated by the free ICI formalism. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2904562]

I. INTRODUCTION

Schrodinger equation (SE) provides a governing prin-
ciple for atomic and molecular quantum physics and chem-
istry, but it has long been thought not to be soluble except for
some simple systems such as hydrogen atom. Two-electron
helium atom is the next simplest atom and from Hylleraas’
pioneering work in 1929, many studies”™” have been de-
voted to solve its SE as accurately as possible. There the
basic principle, was the variation principle and the wave
function was constructed mostly with the intuitions. Re-
cently, we have proposed the free iterative-complement-
interaction (ICI) method,'"™"® which gives a series of analyti-
cal functions that describe the exact wave function at
convergence. The variable parameters there were determined
either by the variation principle or by the local SE (LSE)
method.'® We have applied the free ICI method to helium
and obtained very accurate result: The energy was correct
over 40 digits.11 It was practically exact and numerically
proven that one could obtain the solutions of the SE with the
free ICI method as accurately as one desires.

For the real helium atom, however, there are still many
other physical effects that are not contained in the SE we
solved previously. The first correction would be the quantum
effect of nuclear motion:'” The previous solution was in the
fixed-nucleus (Born—Oppenheimer) approximation. The pur-
pose of the present paper is to consider further the quantum
effect of nuclear motion, i.e., to perform the calculations at
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moving-nucleus level. Then, the result may be considered to
be the nonrelativistic limit. The next correction would be to
include the relativistic effects and we have actually already
solved the Dirac—-Coulomb equation (DCE) of the helium
atom by the free ICI formalism in the fixed-nucleus
approximation.17 The further corrections would then be the
combined relativistic and moving-nucleus level and further
to introduced the QED effect.”>** These studies are impor-
tant for the precise physics to determine the fundamental
physical constants. They are also useful in some model stud-
ies of photonic crystals, quantum dots, etc.”?* For accu-
rately calculating these higher-order corrections by the per-
turbation method, one needs highly accurate zeroth order
wave functions of the nonrelativistic limit.

In this paper, we perform highly accurate nonrelativistic
free ICI calculations for the ground states of helium atom
and its isoelectronic ions at moving-nucleus level. We per-
form fully variational calculations for the Hamiltonian in-
cluding the so-called mass-polarization term. Although this
term is often perturbatively treated, the higher order terms
become significant for the calculations of the QED
corrections.” The calculations for the excited states will be
given in the forthcoming paper.26

Il. DEFINITION, FORMULATION,
AND COMPUTATIONAL DETAILS

We want to solve the SE of helium atom and its isoelec-
tronic ions, dealing not only electrons but also nuclei quan-
tum mechanically in the Hamiltonian. It corresponds to the
non-Born-Oppenheimer (non-BO) calculations of atoms and
molecules and its Hamiltonian is written as

© 2008 American Institute of Physics
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TABLE I. The specific index ranges of the free ICI wave functions given by Egs. (7) and (8) as a function of
the order n of the free ICI calculations. The free ICI formulation generates all combinations of the indices

satisfying the equalities and the inequalities in the table.

Eq. (7) (Elaborate free ICI wave function)®
(i) 2n<[;<-n, 0<l+m+n;<2n+l;, j;=0,1
(i) —n<l;=-1,0<[+m;+n;<n, j=0,1
(i) 0=<l;=n, 0<l+m;+n;<n, j;=0,1

(iv) m=0, 0<pL+m—-d,<n-1, 0<[L+m<n

Eq. (8) (Simplified free ICI wave function)®

(i) 2n<[;<-n, 0=<n;<2n+l, 0<Il+m;+n;<2n+l;—n;, j;=0,1

In case n;=n, m;=0 and j;=0.

(i) —n<L;<-1,0<m<n, 0<l+m;+n;<min(n,2n+1,-n,), j;=0,1

In case n;=n, m;=0 and j;=0.
(iii) 0<;<n, 0<[l+m;+n;<n, j;=0,1

‘At n=1, the functions in the index representations [l;,m;,n;,j;]=[-1,0,1,1],[-2,2,0,1],[-2,0,2,1]

and [1,my,n,d;]=[-1,2,0,1] were eliminated.

YAt n=1, the function in the index representation [[;,m;,n;,j;]=[-2,2,0,1] was eliminated.

1 1 z,7 Z,Z
H==2 V-2 o= Vi+ 2 X =4 3 ==
i 2m, A 2my i A Tia > Ty
Z\Z
+ — (1)
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where i and A denote electrons and nuclei, respectively, m,
and m, are their masses, and Z, and Z, are their charges,
respectively. We call this level of Hamiltonian as moving-
nuclei level or non-BO level in contrast to the fixed-nuclei or
BO approximation. Eliminating the motion of the center of
mass, the Hamiltonians for helium and its isoelectronic ions
are expressed in atomic unit as

2z 1

2
1 1
XV -2 T+ — =V, V,, (2)
2pis =t Vi Tz My

H=-

where u is the effective mass defined by wu=m,my
/(m,+my) in which m, is equal to unity in atomic unit and
my is the nuclear mass. The last term represents the so-called
mass-polarization operator: The nucleus with finite mass has
finite momentum together with the electrons and the center
of mass polarizes from the position of the nucleus. However,
this term is miner in the total Hamiltonian because it is mul-
tiplied by a very small factor 1/my compared with 1/m,. In
the fixed-nucleus approximation (my=c0), this term is
neglected and the effective mass u becomes unity.

Since we are dealing with the ground state of S symme-
try, our wave functions are expressed only with the interpar-
ticle coordinate {r,,r,r;;} (Ref. 11) or the {s,t,u}
coordinate’!"! given by

S=ri+ry, [=r—r) U=T. (3)
The Hamiltonians of many-electron atoms in the fixed-
nucleus level were formulated extensively by Ruiz”’ and the
Hamiltonians for general three-body problems in the
moving-nuclei level were explicitly written down by
Harris.”® The above electron-nuclear Hamiltonian can be
rewritten in the {s,#,u} coordinate as

1 ( F P ds 9 Mt (7) F 29
—\—=+—+ —— — == -=—
)2 ds* o sP—-tds sP—1ot u*  udu
s?-1) & (s> —u?) & 4s7 1
_ _ 2 _ i
u(s> =) dsou " u(s* =12 oudt -1 u
Ls2+t2—2u2<ﬁ i) @
my s? -1 os> o)’

where the last term is the mass-polarization operator.

The ICI wave function is defined by a recursion formula
and first we have to fix the g function and the initial function
1/;0.13’14 Here, we used the functions that showed the best
performance in the previous calculations of helium and its

isoelectronic ions,11 namely,
1 1
=+ —, 5
8 VNe Vee ( )
Yo=[1+In(s + u)lexp(- as), (6)

in which Vy, and V,, are the nuclear attraction and electron
repulsion potentials, respectively. In the free ICI calculations,
the recurrence number is redefined as “order” n and the
number of the independent functions at order » is called as
“dimension” M,,. The free ICI wave functions generated with
the use of the g and ¢, given by Egs. (5) and (6) are
expressed as

W, = 2 cistitm ™[ In(s + Bu) Vi exp(— as)

+ e t™a" 1/(s + Bu)® exp(— as), (7)
k

where [; and /, run positive and negative integers including 0,
{m;,n;} and {my,n;} run non-negative integers (m; and m; are
even integers for singlet and odd integers for triplet), d; runs
positive integers, and j; and j, are either O or 1. The condi-
tions [;+m;+n;=0 and [;+m;+n;,—d, =0 must be satisfied
for the square integrability of the wave function. The ranges
of these integers included in Eq. (7) are the functions of the
order n of the free ICI calculations. Table I shows their spe-
cific relations which apply to any orders n except for unity
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for which the relations are summarized in the footnotes. The
ranges of these indices are characterized by the special
choices of the g and , functions used in the free ICI calcu-
lations. They are usually different from the ordering of the
basis functions used in the ordinary variational calculations.
The variables {c;,c;} in the free ICI wave function given by
Eq. (7) are calculated here with the variation principle.

The second term of Eq. (7) was newly generated in the
present free ICI formalism by applying the mass-polarization
operator V-V, to the logarithm function that is important in
the three-particle collision area,11 and so this second term
represents the multiple effect of mass-polarization and three-
particle collision. We expect such multiple effect to be small
for the present helium and its isoelectronic atoms. However,
if one can imagine the system in which the quantum effect of
nuclear motion is significant, i.e., with light nuclear mass,
and the three-particle coalescence region is important, i.e.,
with large nuclear charge, then the second term of Eq. (7)
would become important. As such system, we will examine
the imaginary three-body system with my=m,=1 and Z
=10: We call this system as “eneon” (electron weight neon)
[ee'™e™]3*. The exotic atom with my=m,=1 and Z=1 is
positronium negative ion (Ps”).

However, since the mass-polarization term is small in
the Hamiltonian of helium and its isoelectronic ions, we may
neglect the mass-polarization term in the functional genera-
tion step of the free ICI formalism, and we obtain the wave
function

W, = E sl In(s + Bu) Vi exp(— as), (8)

which is of the same functional form as that extensively used
in our previous study of helium and its isoelectronic jons."!
Table I also shows the specific ranges of the integers in-
cluded in Eq. (8) as the function of the order n of the free ICI
calculations. (For n=1, see footnote.) The variables {c;} in
the free ICI wave function given by Eq. (8) were variation-
ally calculated using the Hamiltonian given by Eq. (4) that
includes the mass-polarization term. We call this function as
simplified free ICI wave function.

Before entering into calculations, we must fix the
nuclear mass data from the available experimental database.
Table II summarizes the results in atomic unit (a.u.). For the
mass of helium nucleus, we used the alpha particle mass
given by CODATA 2006 in NIST.?’ For H, we used the
proton mass also given by CODATA 2006. For each isoelec-
tronic ions of Z=3, we first selected the isotope having the
highest natural probability and searched the atomic mass
from NIST, which was provided in the atomic mass unit
(amu) based on the mass of the carbon nucleus '°C as 12.
The electron mass have to be excluded from the atomic
mass, where we used 0.000 548 579 909 43 amu as the mass
of one electron, also given by CODATA. Then, they were
converted from amu to a.u., in which we used the proton
mass as a standard.

Electron-nuclear Schrédinger equation of the helium atom

J. Chem. Phys. 128, 154107 (2008)

TABLE II. The nuclear mass data of helium and its isoelectronic ions
(Z=1-10) used in the present paper.

Z Atom my (a.u.)

1 '"H- 1 836.152 672 47*
2 “He 7294.299 536 5°
3 Lit 12 786.393 087 3
4 ‘Be?* 16424203212 4
5 g3+ 20 063.736 514 0
6 12c4+ 21 868.662 136 3
7 TN 25519.042 727 8
8 1605+ 29 148.946 104 8
9 197+ 34 622.970 927 5

10 20Nt 36 433.989 510 7

“Proton mass given by CODATA 2006 in Ref. 29.
bAlpha particle mass given by CODATA 2006 in Ref. 29.

lll. RESULTS

A. Convergence of the free ICI calculations of helium

We first examine the convergence behavior of the
moving-nucleus free ICI calculations of helium atom. We
first use the simplified wave function given by Eq. (8). Table
IIT shows a nice convergence of the calculated energy up to
the order n=27. There, we used the same values of the opti-
mal « that were given in our previous paper of Ref. I11.
Actually, we also optimized this nonlinear parameter in the
present moving-nucleus case but we got almost the same
a values as those of the fixed-nucleus case.'' The most
accurate energy we obtained was -2.903 304 557 729
580 294 733 816 943 892 697 752 659 273 965 a.u. at n=27
with the dimension M, =22 709. In spite of the presence of
the mass-polarization term in the Hamiltonian, the accuracy
was over 40 digits similarly to the previous fixed-nucleus
case."! Although the results cannot be directly compared to
the previous reference data because of the difference in the
nuclear mass data, Cox e al.'’ obtained the energy of
-2.903 304 555 au.  with my=7294.299 537 a.u. and
Korobov and Yelkhovsky21 —2.903 304 557 727
94023 (1) a.u. with my=7294.299 508 (16) a.u. The latter
agrees with ours to 12 digits. To examine the effect due to
the difference in the nuclear mass data, we performed the
calculations using the same nuclear mass data as that used by
Korobov and Yelkhovsky,21 which is different from ours
(my=7294.299 536 5) at 107 digit. At n=7 (M,=569), we
obtained the energy of —2.903 304 557 727 940 258 852 a.u.
which accorded with the Korobov’s energy up to 107!7: It
was lower and so variationally better than theirs even with
the quite smaller dimension than theirs, 1200.** Compared to
the energy obtained with the present nuclear mass data
(my=7294.299 536 5), the difference appeared at 10712,

Thus, the free ICI calculations showed very good con-
vergence to the exact solution of the SE also for the moving-
nucleus case. However, regrettably, the numerical accuracy
is limited by the experimental precision of the nuclear mass
data of helium atom, which is “only” 11 decimal figures. In
contrast, as described above, the theory has already achieved
40 digits of accuracy.
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TABLE III. Energy of the electron-nuclear ground state of helium atom calculated with the free ICI wave

function given by Eq. (8) with B=1.

n® M, Optimal a° Energy (a.u.)’
0 2 1.827 -2.864 969
1 10 1.475 -2.903117
2 34 1.627 -2.903 304188
3 77 1.679 —2.903 304 555 789
4 146 1.683 -2.903 304 557 717 808
5 247 1.679 —2.903 304 557 729 510 966
6 386 1.693 —2.903 304 557 729 579 708
7 569 1.704 —2.903 304 557 729 580 28 9 281
8 802 1.707 —2.903 304 557 729 580 294 664 340
9 1091 1.713 —2.903 304 557 729 580 294 732 636
10 1442 1.724 —2.903 304 557 729 580 294 733 794 158
11 1861 1.738 —2.903 304 557 729 580 294 733 816 463
12 2354 1.757 —2.903 304 557 729 580 294 733 816 933 146
13 2927 1.779 —2.903 304 557 729 580 294 733 816 943 638
14 3586 1.806 —2.903 304 557 729 580 294 733 816 943 886 051
15 4337 1.837 —2.903 304 557 729 580 294 733 816 943 892 477
16 5186 1.866 —2.903 304 557 729 580 294 733 816 943 892 686 467
17 6139 1.899 —2.903 304 557 729 580 294 733 816 943 892 696 832
18 7202 1.93 —2.903 304 557 729 580 294 733 816 943 892 697 652 304
19 8381 1.96 —2.903 304 557 729 580 294 733 816 943 892 697 739 769
20 9682 1.99 —2.903 304 557 729 580 294 733 816 943 892 697 750 806
21 11111 2.02 —2.903 304 557 729 580 294 733 816 943 892 697 752 366
22 12674 2.05 —2.903 304 557 729 580 294 733 816 943 892 697 752 609 223
23 14377 2.08 —2.903 304 557 729 580 294 733 816 943 892 697 752 650 058
24 16226 2.11 —2.903 304 557 729 580 294 733 816 943 892 697 752 657 471
25 18227 2.14 —2.903 304 557 729 580 294 733 816 943 892 697 752 658 911
26 20386 2.17 —2.903 304 557 729 580 294 733 816 943 892 697 752 659 208 852
27 22709 2.20 —2.903 304 557 729 580 294 733 816 943 892 697 752 659 273 965
Ref.21¢ —2.903 304 557 727 940 23(1)

“Number of iteration, or order.
"Number of basis functions at order 7.
“We used the same values of « as those in Ref. 11.

“The bold digits are those that are believed to be converged.
“The nuclear mass data is different from in our calculations.

Next, we examine the difference between the wave func-
tions given by Egs. (7) and (8). The better wave function of
Eq. (7) gave at order n=8, for example, the energy of
—2.903 304 557 729 580 24 6994 a.u. with M,=1782 with
the optimal value of «=1.681, while the simplified
function given by Eq. (8) gave the energy
—2.903 304 557 729 580 29 664 a.u. with M, =802, as shown
in Table III. At the same order n, these two functions gave
almost the same energies, although the numbers of the inde-
pendent functions are very small in the latter case. Exactly,
the same trend continues up to a large order n, which nu-
merically indicates that the simplified function of Eq. (8) is
sufficient at least for helium atom.

B. Multiple effects of nuclear motion and three-particle
collisions: Eneon

As stated in the previous section, the second terms of
Eq. (7) arose from the free ICI formulation by the application
of the mass-polarization operator to the logarithmic form of
the wave function. This means that this second terms repre-
sent the multiple effects of the nuclear motion and the three-
particle collision. This effect was shown above to be small

for the helium atom. Here, we examine how large is this
effect for the imaginary “atom,” eneon [e”e!'%*e~]%*, intro-
duced in the previous section.

For eneon, the elaborated wave function given by Eq. (7)
gave the energy of —49.227 218 040 961 842 410 436 a.u. at
order n=8 with M,=1782 and the optimal value of
a=5.139, while the simpler function given by Eq. (8)
gave the substantially higher energy of
—49.227 218 040 961 602 822 840 a.u. at order n=8 with
M, =802 and the optimal value of a=5.314. This result may
be compared to the more accurate energy of
—49.227 218 040 961 842 410 731 a.u. that we obtained at
the order n=10 (M,=3267) with the former wave function
given by Eq. (7). In contrast to the helium case, the latter
simpler wave function of eneon showed the worse conver-
gence to the exact energy: It gave the energy of
—49.227 218 040 961 842 409 423 a.u. at the order n=11
with M, =1861 and optimal a=4.976, which was still higher
than the energy at n=8 (M, =1782) with the former elaborate
function in spite of the larger number of independent func-
tions. This indicates, as expected, that the elaborate wave
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TABLE IV. Ground-state energies and the expectation values of (r;) and (r|,) of helium atom and its isoelectronic ions (Z=1-10) at n=20 (M, =9682) except
for helium (Z=2) at n=27 (M, =22709). For each atom, the upper and lower values correspond to the fixed-nucleus and moving-nucleus levels, respectively.
The bold digits are those that are believed to be converged.

Z  Atom  Optimal " Energy (a.u.)° Ref. 19° (a.u.) (ry) (ri)

1 'H- 0.4 —0.527 751 016 544 377 196 590 814 566 747 511 383 045 02 -0.5277510164 3.992 642 036 44 4.412 694 497 99
—0.527 445 881 109 440 729 069 818 738 420 952 436 230 10 —-0.527 445 8809 3.995 676 55389 4.415 692 603 55

2 “He 22 —2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37 —2.903 724 377 1.256 58517095  1.422 070 25553
—2.903 304 557 729 580 294 733 816 943 892 697 752 659 273 96  —-2.903 304 558 1.256 772599 55  1.422 247 512 60

3 Lit 32 —7.279 913 412 669 305 964 919 459 221 006 611 682 572 35 -7.279913 413 0.765 035 334 02  0.862 315 375 45
—7.279 321 519 805 463 947 061 498 356 313 505 544 193 59 —7.279 321 520 0.765 098 340 78  0.862 373 348 72

4  °Be* 4.5 —13.655 566 238 423 586 702 081 730 194 612 159 391 360 60 —13.655 566 24 0.550 56129388 0.618 756 314 06
—13.654 709 268 249 465 622 206 337 643 805 570 003 859 73 —13.654709 27 0.550 596 09271 0.618 787 842 79

5l 5.8 —22.030 971 580 242 781 541 655 702 043 566 870 379 775 99 -22.030971 58 0.430 121204 12 0.482 435 849 68
—22.029 846 048 811 936 755 417 986 955 963 130 743 257 20 —22.029 846 05 0.430 143279 64  0.482 455 656 48

6 ¢t 7.1 —32.406 246 601 898 530 310 557 357 969 530 254 566 016 97 —-32.406 246 60 0.352949 031 11 0.395 316 907 59
—32.404 733 488 948 165 850 769 986 535 624 649 761 861 04 —32.404 73349 0.352 965 564 42 0.395 331 642 57

7 AN 8.4 —44.781 445 148 772 704 645 185 760 848 954 056 776 028 12 —44.781 445 15 0.299 268 269 53  0.334 839 661 69
—44.779 658 349 447 581 412 368 317 194 804 403 691 821 04 —44.779 658 35 0.299 280 23936  0.334 850 277 51

g Q% 9.7 —59.156 595 122 757 925 558 549 892 445 559 527 700 907 85 -59.156 595 12 0.259 765 87535  0.290 406 415 38
—59.154 533 122 409 840 900 830 556 999 577 998 463 093 42 -59.154 533 12 0.259 774 946 99  0.290 414 430 99

9 DF* 11.0 —75.531712 363 959 491 104 878 015 579 533 576 560 909 77 -75.53171236 0.229 47840179  0.256 381 544 52
—75.529 499 582 511 856 906 176 189 003 800 362 267 854 27 —75.529 499 58 0.229 48513481 0.256 387 476 36

10 2ONeb* 12.3 —93.906 806 515 037 549 421 469 184 180 000 241 066 651 70 -93.906 806 51 0.205 517 57051  0.229 491 873 88
-93.904 195 745 865 722 002 761 072 767 810 774 255 305 93 -93.904 19575 0.205 52329142 0.229 496 902 17

“We used the same values of « as those in Ref. 11.
"The energy at the fixed-nucleus level is from Ref. 11.
“The nuclear mass data are different from those used in our calculations.

function given by Eq. (7) becomes essential for the system,
such as eneon, that has a light nuclear mass and a large
nuclear charge.

C. Helium isoelectronic ions

We applied the same free ICI scheme to the calculations
of the moving-nucleus level for helium isoelectronic ions
from Z=1 (H") to Z=10 (Ne®*) using the simplified wave
function given by Eq. (8). Table IV shows the summary of
the calculated energies at n=20 (M, =9682) for all the ions
except for the neutral helium atom for which the data at
n=27 (M,=22709) were given. The energies with the fixed-
nucleus approximation were summarized from the previous
paper11 for comparison. In the table, the upper row for each
atom or ion shows the energy with the fixed-nucleus approxi-
mation (Egy) and the lower row the energy with the moving-
nucleus level (Eypy). Table IV also shows the energies
reported by Cox et al. 1o

For all the iso-electronic ions, the present energies seem
to be the best ones reported so far at the moving-nucleus
level. For Z=1 (H™), the energy obtained at n=20
(M, =9682) seems to be slightly worse in quality than other
ions because in H™ two electrons are rather weakly bound so
that the logarithm singularity does not improve the result so
dramatically.

Table IV also shows the expectation values (r;) and (r;,)
of the wave functions with the fixed (the upper row) and
moving (the lower row) nucleus levels. These values for H™
(Z=1) are very large and of the order of about 4 a.u. This
fact corresponds well with the small electron affinity of hy-
drogen atom and indicates that one electron is almost disso-
ciative. As Z increases, these expectation values become

smaller and smaller: (r;) of Ne®* was 0.206 a.u. in contrast
to that of H™, 4.00 a.u. in the moving-nucleus level. The
differences of (r) and (r;,) between the fixed and moving-
nucleus levels become small as Z increases, because the ef-
fects of moving nucleus become smaller as the mass of the
nucleus becomes heavier. The difference in (r;) was 1073
order for H™, 10~ order for He, and 107> order for the other
ions and that of (r,) was 10> order for H-, 10~* order for
He, 1072 order for Z=3-8, and 107° order for F'* and Ne%*.
To analyze the quantum effect of nuclear motion in some
detail, we introduced the energy differences defined by

AEgy = mEpN — Epx, 9)
AEyin-rn = Evin — Epxs (10)
AEMP = AEMN-FN - AERM' (1 1)

AERy; represents the effect of reduced mass because wEpy
means the energy for the Hamiltonian that does not include
the mass-polarization term in comparison with Eq. (2) but
includes the reduced mass effect in the kinetic operator, i.e.,

2 2 7 |

1
HRM=__2 VIZ—E_'F_
2p50 i=t i T2

(12)
The wave function gy (r;,r;) for the Hamiltonian of Eq.
(12) is related to the wave function ¢gy(r,,r,) for the fixed-
nucleus Hamiltonian,
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TABLE V. The energy differences AEgy;, AEyn.pn, and AEyp defined by Egs. (9)-(11), respectively, and the expectation value (—1/myV,-V,), of the
mass-polarization operator for the wave functions of the Hamiltonian given by Eq. (12). The last column shows the difference between (~1/myV,-V,), and
AEyp. The data for helium are at n=27 (M,=22709) and the data for the isoelectronic ions (except for Z=2) are at n=20 (M, =9682).

AEyp=AEynpn—AEgy (a.u.)

(=1/myV -V,

(=1/myV,- Vo) =AEyp

1.786 969 787 9 X 103
2.1792552861x 1073
2.258 891244 5% 107
2.559 1343562107
2.753 686 8849 X 107
3.1322952882 X 107
3.204 344 064 4 X 1075
3.261 0828458 X 1073
3.129 5317054 X 1073
3.3389357090 X 1073

1.788 739999 8 X 1073
2.180 139004 7 X 1073
2.2596723658X 1073
2.560057 8322 X 1073
2.754708 903 3 X 107
3.1335805767X 1073
3.205 663 003 0 X 1075
3.262429457 6 X 107
3.1307583293 %X 107
3.3403200770 X 107

1.7702119597 X 1078
8.837 1870792 %107
7.8112134418x 107
9.234760720 1 X107
1.022018 3887 X 1078
1.2852885558x 1078
1.318938 6873 x 1078
1.346 6118797 x 1078
1.226 6239650 X 1078
1.384 368 004 6 X 1078

Z  Atom  ALpy=pEpn—Epy (@0)  AEynpn=Eun—Epy (a0.)
1 'H 2.8726573706X 10~ 3.051 3543494 X 107
2 “He 3.9802675168 % 1074 4.198 1930454 X 1074
3 Lt 5.693039514 0% 107 5.918928 6384 X 107
4  “Be*  8.3137883056X% 10~ 8.569701 7412 % 10~
5 1.097 994 562 0 X 1073 1.1255314308 X 1073
6 It 1.4817899975x 1073 1.5131129504 % 1073
7 NSt 1.754 755 884 5 X 103 1.7867993251 X 1073
8 1%0%  2.0293895196x% 1073 2062000348 1 X 1073
9 g 2.181486 130 6x 1073 2.212781447 6 1073
10 2Ne®* 25773798147 107 2610769171 8 X 1073
2 2
1 Z 1
HFNz—EZV?—Z;+r—, (13)
i=1 i=1"i 12

which is obtained from Eq. (12) at the limit of my=%0, i.e.,
=1, by

Prm(r1,12) = (/. ro/ ) . (14)

Next, the term AEyn gy represents all the effects of the mov-
ing nucleus in comparison with the fixed-nucleus approxima-
tion. This is the difference of the energies given in the upper
and lower rows of Table IV. Finally, the term AE\;p means
the effects of the mass-polarization term itself in the total
effect of the moving nucleus, AEyn_pn-

Table V shows these energy differences, AEgy,
AEynrn. and AEyp for helium and its isoelectronic ions.
Comparing AERy with AEyn.gn. One understands that the
reduced mass effect is dominant within AEyn_pn. We note
that AFyn.px 18 always positive: The energies with moving
nucleus are always higher than those with fixed nucleus.
AFEpy and AEynpy increase as the nuclear mass increases:
Of the order of 10~ for Z=1-4 and 1073 for Z=5-10. How-
ever, the ratio of AEy gy against the total energy becomes
small as the nuclear mass increases. For helium, AEgy; was
3.980267 516 8 X 10~* a.u. and AEyNEN was
4.198 193 045 4 X 107 a.u. In contrast, for Ne®*, AEg\; was
2.577379 814 7x 1073 a.u. and AEyNEN was
2.610769 171 81073 a.u. The mass-polarization effect
AEy\;p also slightly increases as the nuclear mass increases
and its order is 107 for all the atom and ions (Z=1-10).

Table V also summarizes the expectation value
(=1/myV,-V,), of the mass polarization operator for the
wave functions of the reduced mass Hamiltonian given by
Eq. (12). When the effect of the mass polarization is calcu-
lated by the perturbation theory, this is the first order term.
Since AEy;p in Table V is the variational result, the differ-
ence between AEyp and (—1/myV,-V,), represents the
higher-order effect, which was also shown in the last column
of Table V. We see that the most part of the mass polariza-
tion effect is represented by the first order term and the
higher order effect is very small. For helium, AEy;p was
2.179255286 1 X105 a.u.  and (=1/myV,-V,), was
2.180 139 004 7 X 1075 a.u., and the difference of them was
only 8.8371870792X 107 au. For Neb*, AE,, was

3.3389357090x 10 au.  and (=1/myV,-V,); was
3.3403200770X 1075 a.u., and the difference was
1.384 368 004 6 X 1078 a.u. The higher-order effect was
slightly larger for Ne®* than for helium. Since the present
free ICI wave function is quite accurate, even this order of
quite small difference is able to be distinguished
and discussed.

IV. CONCLUSION

In this report, we applied the free ICI method to solve
the electron-nuclear SE of helium atom and its isoelectronic
ions. We have obtained very accurate and essentially exact
wave functions whose energies are correct over 40 digits for
helium atom, about 30 digits for H-, and 35 digits for the
other ions: These accuracies are similar to those previously
obtained with the fixed-nucleus applroximation.11 The present
accurate solutions may be considered to be the nonrelativis-
tic limit.

The largest part of the moving-nucleus effect came from
the introduction of the reduced mass and its order was within
1073—~107* a.u.: It was larger for the heavier atom than for
the light atom. The energy contribution from the mass polar-
ization operator was in 107 a.u. We compared the fully
variational mass-polarization effect with the perturbative first
order term calculated with the wave function for the
Hamiltonian of Eq. (12) in the fixed-nucleus approximation.
The first order perturbation energy was dominant within the
total mass-polarization effect. The higher-order effect on the
energy arose in the order of 1078—10~° a.u. However, for the
expectation values of (r;) and (r;,), the corresponding differ-
ences were of the order of 1073 for H-, 10~* for helium, and
107 for the other ions, which indicated that the wave func-
tion was not sufficiently correct if we do not include the
higher-order effects. Since the free ICI wave functions ob-
tained in this article are fully variational and essentially exact
for the nonrelativistic Hamiltonian, our wave functions
would become quite reasonable zeroth order wave functions
when we study the relativistic and QED corrections
perturbatively.

The free ICI formalism generated the elaborate wave
function given by Eq. (7), but for the present cases of helium
and its isoelectronic ions, the simplified wave function given
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by Eq. (8) was mostly satisfactory. However, to examine the
role of the second term of the elaborate wave function of
Eq. (7), which appeared as a result of applying the mass-
polarization operator to the logarithmic three-particle colli-
sion part of the wave function, we introduced the imaginary
atom, eneon, [e"e!%*¢™]¥*. Eneon is characterized by the fact
that the quantum effect of nuclear motion should be large
and the three-particle collisions are also important. As a re-
sult, the second term of the elaborate wave function of
Eq. (7) became very important, indicating that the free ICI
formalism certainly reflects the basic physics of the system.
More details of these exotic three-body atoms including Ps™
will be discussed elsewhere.

Since the present free ICI theory can be applied to any
system when its Hamiltonian is clearly defined, one can
theoretically describe the nature of the system to any accu-
racy one wants to have without any uncertainty of numerical
errors. If one solves the SE and the DCE including various
physical effects, one can analyze the detailed physics in-
volved in the real nature. Further, when we have to consider
other effects, such as QED, nuclear size effects, and so on,
the perturbation method based on the accurate zeroth order
free ICI wave function will become useful and will be
considered in the near future.
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