
Solving the Schrödinger equation of helium and its isoelectronic ions with

the exponential integral (Ei) function in the free iterative complement

interaction methodw

Yusaku I. Kurokawa, Hiroyuki Nakashima and Hiroshi Nakatsuji*

Received 24th April 2008, Accepted 19th May 2008

First published as an Advance Article on the web 19th June 2008

DOI: 10.1039/b806979b

We introduce here the exponential integral (Ei) function for variationally solving the Schrödinger

equation of helium and its isoelectronic ions with the free iterative complement interaction (ICI)

method. In our previous study [J. Chem. Phys., 2007, 127, 224104], we could calculate very

accurate energies of these atoms by using the logarithmic function as the starting function of the

free ICI calculation. The Ei function has a weak singularity at the origin, similarly to the

logarithmic function, which is important for accurately describing the three-particle coalescence

region. The logarithmic function, however, has a node and a maximum along the radial

coordinate which may be physically meaningless. In contrast, the Ei function does not have such

unphysical behaviors and so would provide an improvement over the logarithmic function.

Actually, using the Ei function, instead of the logarithmic function, we obtained the energy,

E = �2.903 724 377 034 119 598 311 159 245 194 404 446 696 924 865 a.u. for the helium ground

state with 21 035 functions, which is a slight improvement over our previous result (the bold face

shows the digits that are believed to have converged). This result supports the suggestion that the

Ei function is better than the logarithmic function for describing the three-particle coalescence

region.

1. Introduction

As Dirac noted in 1929,1 the Schrödinger equation (SE),

Hc = Ec, (1)

provides a governing principle of chemistry. Therefore, if a

general solution of the SE were possible, very accurate pre-

diction of chemical phenomena would become possible. How-

ever, it was simply a dream for over 80 years.

Helium atom was the simplest realistic unsolved system and

many studies have been done to obtain essentially exact

solutions of the SE. The first important achievement was by

Hylleraas2 as early as 1929. He employed a function of

the form

cHylleraas ¼
X6 terms

ðabcÞ
Cabc expð�asÞsatbuc; ð2Þ

where s� r1 + r2, t� r1� r2 and u� r12. The indices a, b and c

are all nonnegative integers and a is a nonlinear parameter.

The coefficients Cabc were determined by the variational

principle and the calculated energy was E = �2.903 329 354
a.u., which was different from the essentially exact solution

now available by less than 1 kcal mol�1. Kinoshita3 improved

the Hylleraas wave function by introducing negative powers of

s in eqn (2). Thakkar and Koga4 even introduced real numbers

for a, b and c and obtained the energy of E =

�2.903 724 377 034 03 a.u. with only 100 basis functions.

Several studies pointed out the importance of the logarith-

mic functions for describing the boundary condition at the

three-particle coalescence region.5–7 Frankowski and Pekeris

performed the variational calculations using the logarithmic

functions and showed a good convergence of the energies of

the two-electron atoms as a support to the existence of the

logarithmic terms in the exact wave function.8 Freund et al.

applied the logarithm basis to the helium isoelectronic ions

and obtained quite accurate energies.9 They concluded the

importance of using the basis functions that have the same

analytic structure as the exact wave function. More recently,

Schwartz10 performed quite extensive variational calculations

based on the wave functions written as

cSchwartz ¼
X10 259 terms

ðabcdÞ
Cabcd expð�asÞ½lnðsÞ�dsatbuc; ð3Þ

where d is 0 or 1, and obtained a very accurate energy correct

up to 36 digits. There are many other important studies on the

helium and isoelectronic ions11–17 and one may refer to our

recent paper.16

In our laboratory, since 2000 we have studied the structure

of the exact wave function and investigated the general

method of solving the SE.18 Overcoming the singularity

problem caused by the Coulomb potentials of atomic and
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molecular Hamiltonians, we could have established the gen-

eral method of solving the SE and proposed the free ICI

(iterative complement interaction) method.19 It was proved

that the ICI wave function becomes exact at convergence.18–20

Several applications have been reported since then.21–23 In

particular, we have applied the free ICI method to helium and

its isoelectronic ions.16 We have shown that the free ICI

method generates a wave function of the form,

c ¼
X22 709 terms

ðabcdÞ
Cabcd expð�asÞ½lnðsþ uÞ�dsatbuc; ð4Þ

when we start from the initial wave function of the logarithmic

form, exp(�as)ln(s + u). We have shown that the use of the

logarithmic function as the initial function of the free ICI

formalism gives fast convergence, and obtained the energy E=

�2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37
a.u. that is correct to over 40 digits, which was the world’s best

within the published literature. Similar accuracy was also

obtained with the calculations that include the effect of nuclear

motion as well as the electronic ones.24 Excited states of the

two-electron atoms were also calculated quite accurately with

the free ICI formalism.25 These data may be regarded as a

numerical proof of the fact that one can obtain the energy and

the wave function to any desired accuracy by using the free ICI

methodology.

Let us examine several functions that were used to describe

the wave function. Fig. 1 shows the plots of the Slater-type

function, exp(�s), Kinoshita function, exp(�s)s�1, and the

logarithmic function, �exp(�s)ln(s). At the limit of s = 0, the

Slater-type function has a finite cusp value but the Kinoshita

function and the logarithmic function become infinite. These

divergences are the essential behaviors from the three-particle

coalescence boundary conditions.5–7 However, the logarithmic

function has the following two strange behaviors: a node at

s = 1 and a maximum (minimum with minus sign) around

s = 1.763, as shown in Fig. 1. These properties look unphy-

sical for the ground state of the helium atom because the 1s

orbital smoothly decreases to zero as s - N with neither a

node nor a maximum. Therefore, the logarithmic functions

must be improved, at least, for these unphysical behaviors.

In the present paper, we introduce the exponential integral

(Ei) function as a new type of function that improves these

behaviors of the logarithmic function. In the next section, we

summarize the properties of the Ei function and in section 3

the free ICI method is briefly explained. In section 4, the

applications of the free ICI method starting from the Ei

function are described for helium and its isoelectronic ions

and the concluding remarks are given in the last section.

2. The exponential integral function, Ei

In this section, the mathematical definition and some formulas

about the Ei function are summarized very briefly. For more

details, one may refer to mathematical books.26–28

The Ei function is defined for real x by an integral form as

Eið�xÞ �
Z �x
�1

expðtÞ
t

dt: ð5Þ

We treat only positive x in the present study, and so the

evaluation of the Ei function is straightforward. In the region

of x being negative, which does not occur in our case, eqn (5)

must be evaluated in terms of the Cauchy principal value. The

plot of the Ei function is shown in Fig. 1. It is similar to the

logarithmic function, but does not have the strange behaviors

of the logarithmic function as described in the introduction.

The Ei function can be generalized and extended to an entire

complex plane as

Eiðm; zÞ �
Z 1
1

expð�ztÞ
tm

dt; ð6Þ

wherem is an integer and z is a complex number. This function

is named the m-argument Ei function. In the case of x4 0 and

m = 1, eqn (6) is related to eqn (5) by

Ei(�x) = �Ei(1,x). (7)

The Ei functions with m= 2, 3, . . . have finite values at x= 0.

Since their behaviors are very similar to the exponential

function, we do not treat them in the present study. Hereafter

we deal with the Ei function given by eqn (5) alone.

The Ei function is expandable in a power series as

Eið�xÞ ¼ gþ lnðxÞ � expð�xÞ
X1
n¼1

Cnx
n ð8Þ

with

Cn ¼
1

n!

Xn
r¼1

1

r

 !
; ð9Þ

where g = 0.5772. . . is the Gamma constant.28 Eqn (8) is

called Bessel’s expansion formula. According to eqn (8),

Ei(�x) contains ln(x), which becomes dominant at the region

of x being very small. Ei(�x) diverges at x = 0 to minus

infinity:

lim
x!þ0

Eið�xÞ ¼ �1; ð10Þ

Fig. 1 Graphs of (A) Slater-type (dot line), (B) Kinoshita-type

(dashed line), (C) logarithm-type (dash and dot line) and (D) Ei-type

(solid line) functions. The logarithm-type function has a node at s= 1

and a maximum (minimum with minus sign) at s = 1.763. . ..
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but the following integrals exist:Z 1
0

Eið�xÞdx ¼ �1; ð11Þ

Z 1
0

Eið�xÞ2dx ¼ 2 lnð2Þ: ð12Þ

Further, the difference between the two Ei functions at x = 0

is finite as

lim
x!þ0
½Eið�axÞ � Eið�bxÞ� ¼ lnðaÞ � lnðbÞ; ð13Þ

where a 4 0 and b 4 0. Similarly, the difference between

the Ei function and the logarithmic function at x = 0 is

finite as

lim
x!þ0
½Eið�axÞ � expð�axÞ lnðbxÞ� ¼ gþ ln

a
b

� �
: ð14Þ

The differentiation of both sides of eqn (14) leads to

lim
x!þ0

d

dx
Eið�axÞ

� �
¼ lim

x!þ0

d

dx
expð�axÞ lnðbxÞ

� �
; ð15Þ

which indicates that the derivatives of the Ei and the logarith-

mic functions at x = 0 are identical. On the other hand, the

limit of Ei(�x) at x = N is zero:

lim
x!1

Eið�xÞ ¼ 0: ð16Þ

The differentials of the Ei function are possible as follows:

d

dx
Eið�xÞ ¼ expð�xÞ

x
ð17Þ

and

d2

dx2
Eið�xÞ ¼ � expð�xÞ

x
� expð�xÞ

x2
: ð18Þ

Eqn (17) is confirmed from eqn (5). Since the first derivative of

Ei(�x) is always positive and becomes zero at x = N, it has

no maximum and no nodes. These are the differences from the

logarithmic function, ln(x)exp(�x), as seen from Fig. 1. The

indefinite integral of Ei(�x) is derived from eqn (5) by

integration by parts as:R
Ei(�x)dx = xEi(�x) + exp(�x). (19)

3. Free ICI (iterative complement interaction)

method

In this section, we briefly explain the free ICI method19,20

which is pertinent to the present study. The simplest form of

the ICI wave function is defined by the recursion formula

given by

cn+1 = [1 + Cng(H � En)]cn, (20)

where n is an iteration number, Cn the variational parameter,

and En the energy defined by

En �
hcnjHjcni
hcnjcni

: ð21Þ

The g function is the scaling function that was introduced to

eliminate the singularity problem caused by the integrals of the

higher powers of the Hamiltonian including Coulomb singu-

larities.19,20 The initial function c0 can be chosen freely if it

satisfies the given conditions such as the spatial symmetry, spin

multiplicity etc. Once g and c0 are given, the ICI calculations

proceed automatically and the wave function is improved

systematically toward the exact wave function.

The free ICI method was proposed19,20 to accelerate the

convergence to the exact solution and to increase the freedom

of the ICI calculations. The r.h.s. of eqn (20) consists of a sum

of the analytical functions. We gather from them all the

independent functions as {f(n)
i }, (i = 1,2,. . .Mn) and make

up our wave function by a linear combination of them as

cnþ1 ¼
XMn

i¼1
c
ðnÞ
i fðnÞi ; ð22Þ

where c(n)i is the variational parameter assigned to f(n)
i . This is

the free ICI wave function. Because of the increased freedom,

the free ICI wave function converges faster than the original

ICI wave function to the exact one. The variational para-

meters, c(n)i , are determined by solving the generalized eigen-

value problem:

H(n)C(n) = EnS
(n)C(n) (23)

where H(n) and S(n) are the Hamiltonian and the overlap

matrices, respectively, given by H(n)
ij � hf(n)

i |H|f(n)
j i and

S(n)
ij � hf(n)

i |f(n)
j i. In the free ICI method, we call n ‘‘order’’

instead of ‘‘iteration number’’, since cn does not depend on the

former coefficients {c(n�1)i } etc. The key point of the ICI

formalism is that the exact wave function of a system is

constructed by the Hamiltonian itself of the system, i.e. c =

f(H)c0, and eqn (20) or (22) gives an expression of this

equation in an analytical expansion form.

4. Applications to helium and its isoelectronic ions

4.1 Free ICI formalism

Our goal is to solve the SE of the ground state of the helium

atom and its isoelectronic ions with the free ICI method. The

Hamiltonian is represented in the Hylleraas coordinate as

Ĥ ¼� @2

@s2
þ @2

@t2
þ @2

@u2

� �
� 2

sðu2 � t2Þ
uðs2 � t2Þ

@2

@s@u
� 2

tðs2 � u2Þ
uðs2 � t2Þ

@2

@u@t

� 4s

s2 � t2
@

@s
� 2

u

@

@u
þ 4t

s2 � t2
@

@t
� 4sZ

s2 � t2
þ 1

u
;

ð24Þ

where Z is the nuclear charge. As the g function, we used

g ¼ 1þ s2 � t2

s
þ u; ð25Þ

which showed the best performance in our previous study.16

The choice of the initial function c0 is important since it

determines the functional form of the free ICI wave function

and this is our major concern in the present paper. First, we

propose here to choose the Ei function, i.e.

c0 = Ei(�as), (26)

4488 | Phys. Chem. Chem. Phys., 2008, 10, 4486–4494 This journal is �c the Owner Societies 2008



where a is a kind of screening parameter. Our second choice is

c0 = Ei(�as)[1 + ln(u)], (27)

which includes the ln(u) function as an explicitly correlated

factor that was introduced to accelerate the convergence. The

ln(u) function was first introduced in our previous paper16 and

showed very good performance in spite of its simplicity. To

compare the performance of the Ei function, we referred to the

four different types of calculations that were taken from the

previous paper:16 (i) starting from the standard Slater-type

function given by

c0 = exp(�as), (28)

(ii) starting from the logarithmic function of the s coordinate

with exponential function,

c0 = exp(�as)[1 + ln(s)], (29)

(iii) starting from the logarithmic function of s and correlated

u coordinates with exponential function,

c0 = exp(�as)[1 + ln(s) + ln(u)], (30)

and (iv) finally, starting from the function that includes s and u

coordinates in the same logarithm function as

c0 = exp(�as)[1 + ln(s + u)]. (31)

The last one produced the best energy in our previous study.16

The wave functions that are generated by the free ICI

formalism using the above g and the Ei-type initial functions

c0 [eqn (26) and (27)] are represented by

c ¼
X
ðmnlmnÞ

Cmnlmn½n expð�asÞ þ ð1� nÞEið�asÞ�½lnðuÞ�msatbuc;

ð32Þ

where n, m, a, b and c are integers, n and m take either 0 or 1.

For the c0 of eqn (26), m is always zero. As seen from eqn (17),

the exponential-type function is automatically generated from

the differentiation of the Ei function. On the other hand, when

one performs the free ICI calculations with the usual expo-

nential and logarithmic c0 given by eqn (28), (29) and (30), one

obtains the wave functions that are represented by

c ¼
X
ðmnlmnÞ

Cmnlmn expð�asÞ½lnðuÞ�m½lnðsÞ�nsatbuc; ð33Þ

where n, m, a, b and c are integers and the quantity n+ m takes

the value 0 or 1. The wave function generated with c0 of

eqn (31) was already given in eqn (4). The Ei part of eqn (32)

can be expanded using the Bessel’s expansion formula given by

eqn (8), and then the wave function given by eqn (33) can be

reformulated into the same forms as eqn (32), though the

details are different at finite order of the free ICI. When the

order reaches infinity, the quantities n, m, a, b and c take all the

patterns in both cases of eqn (32) and (33), and therefore these

two wave functions will become identical. The Kinoshita-type

terms (including negative powers of s) are also automatically

generated in both types of the wave functions.19,20 In Fig. 2,

we summarized the function generation schemes of the free

ICI method starting from different initial functions c0.

4.2 Computational details

The generations of the free ICI functions and the evaluations

of the matrix elements for eqn (23) were performed with an

algebraic mathematical package,Maple 10.29 The diagonaliza-

tion of the secular equation represented by eqn (23) was

performed by our original solver using the GMP library.30

Both enabled us to perform the calculations to any precision.

In most calculations, we set the precision of the calculations to

be 60 digits. However, in section 4.6 we will perform extensive

calculations to a very large order n of the free ICI and there we

set the precision to be 160 digits to avoid numerical instability.

4.3 Lower-order calculations of the helium atom starting from

the Ei function

The energy of the initial function of eqn (26) with a= 1.6 is E0

= �2.425 758 617 410 142 390 a.u. This value was improved

toward the exact one in the subsequent increased order n, as

shown in Table 1. We performed the same calculations with

a = 1.5 and 1.7 and estimated the optimal a value as shown in

Table 1. We also calculated approximately the derivatives

qE/qa and q2E/qa2, which indicate the sensitivity of the energy

with respect to the parameter a. From these quantities, we

calculated the estimated best values of a, though all the

calculations were done with the fixed value of a = 1.6. For

comparison, Table 2 shows the energies of the free ICI

calculations starting from the ordinary Slater-type function

of eqn (28) and from the one including the logarithmic

function of eqn (29): these data are taken from our previous

paper, ref. 16. Note that the screening parameter, a, in Table 2

was optimized at each order.

At order 9 (n = 9), 919 complement functions were gener-

ated from the Ei-type initial function given by eqn (26) and the

corresponding energy was E9 = �2.903 724 377 034 119 147
a.u., which has 16 digits accuracy. On the other hand, at n =

9, 541 functions were generated from the initial function of

eqn (28) and 9 digits’ accuracy was obtained: almost the same

accuracy was obtained already at n = 5 (M5 = 188) with the

Ei case. In comparison with the calculations using the loga-

rithmic initial function of eqn (29), the energy of the Ei case

was almost the same at each order but the number of the

complement functions was always smaller in the Ei case than

in the logarithmic case. As seen in Table 1, the energy

derivatives with respect to the screening parameter a
approached zero as the order increases, and therefore at large

Fig. 2 Schemes of the basis function generations in the ICI method

starting from different types of {c0}. {exp}-type basis function repre-

sents exp(�as)satbuc with a being positive or zero; {Kinoshita}-type

basis function represents exp(�as)satbuc with a being negative; {log}-

type basis function represents exp(�as)ln(s)satbuc; and {Ei}-type basis

function represents Ei(�as)satbuc.
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n a small change in a influenced the energy very little. The

estimated best value of a seemed to converge to the constant

around 1.55. This suggests that only linear parameters must be

optimized as variational parameters and that the scaling

parameter a may not really be the variational parameter but

a quantity related to a physical property like ionization

energy.31 In principle, the free ICI formalism does not require

the optimization of the nonlinear parameters.19,20 On the other

hand, the optimal a of the exponential-type function [eqn (28)]

shown in Table 2 increased as the order increased and did not

yet show a sign of the convergence.

At first order, seven complement functions were generated

and they are listed in Table 3 together with their optimized

coefficients. There, the function, f(1)
1 = exp(�as), that is iden-

tical to eqn (28), is included. Therefore, afterwards the free ICI

method generates from this function the same series of comple-

ment functions as those that are generated from the starting

function of eqn (28). This implies that the difference between the

nth order result of Table 1 and the (n � 1)th order result of

Table 2 are the improvement due to the Ei-type functions.

As shown above, the Slater-type function is generated from

the Ei function by applying the Hamiltonian operator accord-

ing to eqn (20). This suggests that conversely the Ei function is

generated by applying the inverse operator, H�1, to the Slater-

type function. In Fig. 2, the inverse operation corresponds to

generating functions from right to left. According to the linear

algebraic formalism, quadratic convergence may be obtained

with the inverse iteration method. Previously, one of the

authors32 applied the inverse Hamiltonian method to solve

the SE of hydrogen atom and obtained a faster convergence

than the regular Hamiltonian case. If we regard the Ei func-

tions and the logarithmic functions to be generated by apply-

ing the inverse Hamiltonian operator to the exponential

function, we may be able to understand an aspect of the origin

of their fast convergence.

Table 4 shows the free ICI energy starting from the Ei

function with the explicitly correlated term given by eqn (27)

with a = 1.6. We performed the same calculation with a = 1.5

and a = 1.7 and calculated the approximate first and second

derivatives of the energy with respect to the screening parameter

a and the best estimated a, which are also shown in Table 4.

Fig. 3 shows the convergence speeds of the free ICI calcula-

tions starting from the four types of the initial functions

given by eqn (26), (27), (28) and (30). The logarithms of

the energy differences from the so-far best value,

E = �2.903 724 377 034 119 598 311 159 245 194 404 446 696 9
a.u.,16 were plotted there. The convergence speed of the free

ICI calculations starting from the Ei-type function, given by

eqn (27), was poor in the initial stage, but as the order

increases, it became similar to that of eqn (30). The energy

Table 1 Energy of helium atom calculated by the free ICI method with the initial function c0 = exp(�as) (eqn (26)), the first and second
derivatives of the energy with respect to the parameter a and the best estimated value of a

na Mn
b a Energy E/a.u. E � Ebest/a.u. qE/qad q2E/qa2e Best af

0 1 1.6 �2.425 758 617 410 142 390 4.78 � 10�1 1.74 � 100 2.04 � 100 1.172
1 7 1.6 �2.900 008 689 031 112 995 3.72 � 10�3 1.01 � 10�3 8.55 � 10�2 1.594
2 22 1.6 �2.903 376 336 198 933 179 3.48 � 10�4 2.05 � 10�3 4.24 � 10�3 1.359
3 61 1.6 �2.903 723 729 740 132 823 6.47 � 10�7 1.06 � 10�6 1.20 � 10�5 1.556
4 111 1.6 �2.903 724 358 079 515 735 1.90 � 10�8 1.34 � 10�8 1.33 � 10�7 1.550
5 188 1.6 �2.903 724 376 475 282 897 5.59 � 10�10 1.23 � 10�10 1.48 � 10�9 1.559
6 310 1.6 �2.903 724 377 017 385 340 1.67 � 10�11 7.49 � 10�13 1.03 � 10�11 1.564
7 505 1.6 �2.903 724 377 033 617 731 5.02 � 10�13 7.52 � 10�15 7.80 � 10�14 1.552
8 697 1.6 �2.903 724 377 034 104 549 1.50 � 10�14 6.54 � 10�17 6.35 � 10�16 1.548
9 919 1.6 �2.903 724 377 034 119 147 4.51 � 10�16 5.37 � 10�19 5.53 � 10�18 1.551
Ebest

c �2.903 724 377 034 119 598

a Order of the free ICI. b Number of the complement functions. c Ref. 16. d The approximate first derivative at a = 1.6 calculated from the

quadratic interpolation of the energies at a = 1.5, 1.6 and 1.7. e The approximate second derivative at a = 1.6 calculated from quadratic

interpolation of the energies at a = 1.5, 1.6 and 1.7. f Variationally best a estimated from the interpolated quadratic curve.

Table 2 Energy of helium atom calculated by the free ICI method with the initial function c0 = exp(�as) (eqn (28)) and c0 = exp(�a)[1 + ln(s)]
(eqn (29)). This table is taken from ref. 16

na c0 = exp(�as) c0 = exp(�as)[1 + ln(s)]

Mn
b a Energy E/a.u. Mn

b a Energy E/a.u.

0 1 1.688 �2.847 656 250 00 2 1.687 �2.847 656 242 128 24
1 4 1.689 �2.901 337 956 94 10 1.550 �2.902 964 172 868 10
2 16 1.736 �2.903 642 984 26 34 1.561 �2.903 702 734 675 68
3 37 1.779 �2.903 720 264 20 77 1.619 �2.903 723 749 601 90
4 71 1.837 �2.903 724 018 70 146 1.638 �2.903 724 358 395 41
5 121 1.92 �2.903 724 323 45 247 1.641 �2.903 724 376 476 31
6 190 1.995 �2.903 724 364 00 386 1.651 �2.903 724 377 01 739
7 281 2.083 �2.903 724 373 59 569 1.670 �2.903 724 377 033 61
8 397 2.161 �2.903 724 375 90 802 1.683 �2.903 724 377 034 104 549
9 541 2.251 �2.903 724 376 66 1091 1.696 �2.903 724 377 034 119 147

Ebest
c �2.903 724 377 034

a Order of the free ICI. b Number of the complement functions. c Ref. 16.
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derivatives with respect to a approached zero as the order

increased, but the best estimated value slightly increased in a

oscillating manner. Similar behavior was also seen for the case

starting from eqn (30).

We will give below the extensive calculations of helium atom

starting from the Ei function of eqn (26) up to the order n =

27, but before that we give the results for the helium

isoelectronic ions.

4.4 Application to helium isoelectronic ions

Here, we show briefly the results for the helium isoelectronic

ions, represented as M(Z�2)+ (Z = 1,2,3,. . .,10), starting from

the Ei function with the explicitly correlated term given by

eqn (27). The free ICI was done only up to order four (n = 4,

M4 = 222) and the value of a was optimized for each ion. The

results are shown in Table 5, where the energies calculated by

Freund et al.9 using 230 logarithmic basis functions are also

shown. We could obtain more than 11 digits accuracy for all

ions except for the hydride ion H�. More accurate energies of

these ions were published in our previous paper.16

As Freund et al.9 noted, electrons of the hydride ion exist

rather far from the nucleus; however, the logarithmic func-

tions are suited for describing electrons near the nucleus.

Therefore, it would be difficult to describe such electrons to

high accuracy by using the logarithmic functions. This con-

sideration holds true also for the Ei-type wave functions of the

present study.

The optimal a of each ion and the nuclear charge Z have a

linear relation represented by aopt = aZ � b, where a and b

were calculated, by least-squares fitting, to be 0.9254 and

0.2583 respectively. This result is in accordance with the

interpretation of a as the screening parameter that is related

to the ionization potential.

4.5 Fully extensive calculations of the helium atom starting

from the Ei function

Finally, let us report the result of the fully extensive free ICI

calculations of the helium atom with the Ei function given by

eqn (26). Table 6 shows the converging series of energies up to

n = 27 and the convergence indicator Dn at order n, that is the

logarithm of the energy difference from the best energy value,

for which we adopted the best energy we obtained here at n =

Table 3 The free ICI wave function at first order starting from the initial function, c0 = Ei(�as) (eqn (26)), (n = 1, M1 = 7 and a = 1.6)a

Coefficient Complement function Coefficient Complement function

1.000000000 exp(�as) �0.5860458840 Ei(�as)s
�0.1312519886 exp(�as)s�1u 0.0992782326 Ei(�as)s�1t2
�0.0697537604 exp(�as)s�2t2 0.2737850022 Ei(�as)u
�0.0368809315 Ei(�as)s�2t2
a Each complement function is normalized to unity but the total wave function is not normalized. The coefficients are the relative values to the one

of exp(�as).

Table 4 Energy of helium atom calculated by the free ICI method with the initial function c0 = Ei(�as)[1 + ln(u)] (eqn (27)), the derivatives with
respect to a, and the best estimated a

na Mn
b a Energy E/a.u. E � Ebest/a.u. qE/qad q2E/qa2e Best af

0 2 1.6 �2.666 888 282 498 509 506 2.37 � 10�1 1.06 � 100 1.57 � 100 1.262
1 14 1.6 �2.902 295 055 973 125 945 1.43 � 10�3 2.67 � 10�3 1.97 � 10�2 1.532
2 44 1.6 �2.903 640 326 345 850 979 8.41 � 10�5 8.06 � 10�4 2.46 � 10�3 1.436
3 122 1.6 �2.903 724 376 098 371 470 9.36 � 10�10 1.52 � 10�8 1.95 � 10�7 1.561
4 222 1.6 �2.903 724 377 021 228 247 1.29 � 10�11 3.19 � 10�10 3.35 � 10�9 1.552
5 376 1.6 �2.903 724 377 034 097 813 2.18 � 10�14 1.67 � 10�12 1.72 � 10�11 1.551
6 620 1.6 �2.903 724 377 034 119 430 1.68 � 10�16 2.14 � 10�16 3.65 � 10�15 1.571
7 1010 1.6 �2.903 724 377 034 119 595 2.65 � 10�18 �3.82 � 10�20 1.73 � 10�18 1.611

Ebest
c �2.903 724 377 034 119 598

a Order of the free ICI. b Number of the complement functions. c Ref. 16. d The approximate first derivative at a = 1.6 calculated from the

quadratic interpolation of the energies at a = 1.5, 1.6 and 1.7. e The approximate second derivative at a = 1.6 calculated from quadratic

interpolation of the energies at a = 1.5, 1.6 and 1.7. f Variationally best a estimated from the interpolated quadratic curve.

Fig. 3 Energy convergence of the free ICI calculations with different

types of initial functions: c0 = Ei(�as) (solid line) (eqn (26)), c0 =

exp(�as) (dotted line) (eqn (28)), c0 = Ei(�as)[1 + ln(u)] (short

dashed line) (eqn (27)), and c0 = exp(�as)[1 + ln(s) + ln(u)] (long

dashed line) (eqn (30)). Ebest is estimated to be the so-far best value,

E = �2.903 724 377 034 119 598 311 159 245 194 404 446 696 9 a.u.

obtained in ref. 16.
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27. The energy at n = 27 (M27 = 21 035) was E27 =

�2.903 724 377 034 119 598 311 159 245 194 404 446 696 924 865
a.u. which has 43 digits accuracy and variationally improves

the best energy of our previous paper16 by about 2–3 digits in

spite of the smaller dimensions in the present case. The a value
was fully optimized until n = 16 but the change became small

and so from n = 17, a was fixed to 1.6.

Fig. 4 shows the energy convergence behaviors of the free ICI

energies with c0 given by eqn (26), (29) and (31): it is a plot of Dn

against Mn. When we compare the calculations with c0 values

of eqn (26) and (29), one notices that the two energies at the

same order n are almost same, though the number of the

generated functions Mn is slightly smaller in the Ei case than

in the logarithmic case. It suggests that the free ICI functional

spaces generated from these two sets are almost the same but the

Ei case is slightly more efficient because of the smaller dimen-

sion. It also becomes a numerical proof that the three-particle

coalescence behavior is also satisfactory with the Ei function

because the Ei function includes the logarithm property.

Comparing the Ei case to the calculation with c0 given by

eqn (31), the convergence of the latter case is better than the Ei

case at small dimensions until about Mn = 14 000. The speed

Table 5 Energy of the helium isoelectronic ions calculated by the free ICI method with the initial function c0 = Ei(�as)[1 + ln(u)] (eqn (27)) and
a comparison with the energy obtained by Freund et al.c using the logarithm-type functions

Character Z Free ICI results with Ei-type functiona Logarithm-type functionc

ab Energy/a.u. ab Energy/a.u.

H 1 0.4477 �0.527 750 970 358 127 0.390 �0.527 751 015 3
He 2 1.550 �2.903 724 377 026 498 1.600 �2.903 724 377 034 0
Li 3 2.520 �7.279 913 412 662 821 2.820 �7.279 913 412 669 2
Be 4 3.493 �13.655 566 238 414 004 3.840 �13.655 566 238 423 5
B 5 4.365 �22.030 971 580 230 969 4.850 �22.030 971 580 242 7
C 6 5.300 �32.406 246 601 884 841 5.880 �32.406 246 601 898 4
N 7 6.288 �44.781 445 148 757 529 6.930 �44.781 445 148 772 6
O 8 7.162 �59.156 595 122 741 245 8.000 �59.156 595 122 757 8
F 9 7.852 �75.531 712 363 926 577 9.000 �75.531 712 363 959 4
Ne 10 9.116 �93.906 806 515 019 002 10.00 �93.906 806 515 037 4

a The order is four, the number of the complement function is 222, and the initial function is c0 = Ei(�as)[1 + ln(u)] (eqn (27)). b The screening

parameter optimized at each ion. c The results of Freund et al., taken from ref. 9. The wave function has the form of

c ¼
P230 terms

ðabcÞ
Cabc expð�asÞ lnðsÞsatbuc.

Table 6 Energy of helium atom calculated with c0 = Ei(�as) (eqn (26)). Dn shows the convergent digits defined as Dn = log10(En � Eexact)

n Mn a Energy/a.u. Dn

0 1 1.173 �2.797 959 �0.98
1 7 1.612 �2.900 021 �2.43
2 22 1.363 �2.903 607 �3.93
3 61 1.562 �2.903 723 737 �6.19
4 111 1.547 �2.903 724 358 271 �7.73
5 188 1.607 �2.903 724 376 475 �9.25
6 310 1.599 �2.903 724 377 017 385 �10.8
7 505 1.578 �2.903 724 377 033 617 �12.3
8 697 1.576 �2.903 724 377 034 104 549 �13.8
9 919 1.585 �2.903 724 377 034 119 147 �15.3
10 1206 1.585 �2.903 724 377 034 119 584 790 �16.9
11 1589 1.591 �2.903 724 377 034 119 597 905 �18.4
12 2027 1.586 �2.903 724 377 034 119 598 298 978 �19.9
13 2572 1.595 �2.903 724 377 034 119 598 310 792 �21.4
14 3236 1.588 �2.903 724 377 034 119 598 311 148 179 �23.0
15 4081 1.612 �2.903 724 377 034 119 598 311 158 909 �24.5
16 4845 1.636 �2.903 724 377 034 119 598 311 159 234 996 �26.0
17 5647 (1.6) �2.903 724 377 034 119 598 311 159 244 882 �27.5
18 6546 (1.6) �2.903 724 377 034 119 598 311 159 245 184 832 �29.0
19 7573 (1.6) �2.903 724 377 034 119 598 311 159 245 194 108 �30.5
20 8679 (1.6) �2.903 724 377 034 119 598 311 159 245 194 395 279 �32.0
21 9912 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 160 �33.5
22 11 326 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 437 749 �35.0
23 12 994 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 446 415 �36.6
24 14 699 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 446 688 045 �38.1
25 16 552 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 446 696 642 �39.5
26 18 646 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 446 696 915 844 �41.0
27 21 035 (1.6) �2.903 724 377 034 119 598 311 159 245 194 404 446 696 924 865 (�42.5)a

Ref. 16 22 709 �2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 34 �40.7
a The value presumed from the convergent behavior.
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of convergence of the latter case becomes slowed down after

exceeding that dimension; the two cases become almost

equivalent at Mn = 14000 and the Ei case becomes faster at

Mn 4 14 000. The speed of the convergence does not become

worse in the Ei case even at a very large dimension over Mn =

20 000 and its plot of Dn in Fig. 4 is almost linear (slightly

downward convex). Thus, although the most rapid conver-

gence inMn o 14 000 is obtained with c0 given in eqn (31), i.e.

the logarithmic form, the fastest convergence at very high

dimension is obtained with the c0 of the Ei function, eqn (26).

This nice property would be due to the better behaviors of the

Ei function over the logarithmic function as shown in Fig. 1.

5. Conclusion

We introduced the Ei function as a new type of function that

has a physical meaning similar to the logarithmic function,

and yet does not show the unphysical behaviors that the

logarithmic function shows. We have used here the Ei func-

tions as the starting functions of the free ICI formalism to

calculate the accurate wave functions and energies of the

helium and its isoelectronic ions. The free ICI wave functions

generated from the Ei function showed very good convergence

and the speed of the convergence was almost the same as that

with the logarithmic function. Further, when we perform

highly extensive calculations, the free ICI wave function

starting from the Ei function gave a better performance than

the one starting from the logarithmic function, reflecting

the good behavior of the Ei function in comparison with

the logarithmic function. For this reason, we could

improve the variational energy of helium atom: correct up to

about 43 digits.

The natures of these two types of functions are considered

to be very similar and with the free ICI formalism both

functions produce an identical set of complement functions

at infinite orders. The logarithmic function has a node and a

maximum, which seems to be unphysical for the ground state

of the present system, while the Ei function has neither a node

nor a maximum and decreases smoothly to zero. The Ei

functions are considered to be suited for describing the

electrons near the nucleus like those of inner-shell region.

The Ei function may also be understood as the function

generated by operating the inverse Hamiltonian to the

ordinary exponential function and this may be a reason why

the Ei functions lead to a fast convergence. The more general

functions widely used in the correlated methods, like

the Gaussian function with the Jastrow functions33,34 are also

automatically generated from the Ei-type function, such as

c0 = exp(�ar2)Ei(ar/(r + b)) or c0 = Ei(�ar2)exp(ar/
(r + b)). They would be of some value for general atomic

and molecular calculations.

These results may be considered to support the suggestion

that the Ei function is better than the logarithmic function for

describing the three-particle coalescence region.

The use of the Ei functions for larger atoms and molecules is

also very interesting for accurate descriptions of atomic and

molecular electronic structures in which the wave function

must have the freedom that the exact wave function has in the

three-particle coalescence region. Though we used the varia-

tion principle (VP) to calculate the variables in the free ICI

wave function, we have published a method of using the

Schrödinger equation directly instead of the variation princi-

ple.35 This local Schrödinger equation (LSE) method is applic-

able to wider classes of many-electron atoms and molecules

than is the variation principle.
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