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Nonequilibrium solvation for vertical photoemission and photoabsorption
processes using the symmetry-adapted cluster–configuration interaction
method in the polarizable continuum model
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In this paper, we present the theory and implementation of a nonequilibrium solvation model for the
symmetry-adapted cluster (SAC) and symmetry-adapted cluster–configuration interaction (SAC–CI)
method in the polarizable continuum model. For nonequilibrium solvation, we adopted the Pekar
partition scheme in which solvent charges are divided into dynamical and inertial components. With
this nonequilibrium solvation scheme, a vertical transition from an initial state to a final state may
be described as follows: the initial state is described by equilibrium solvation, while in the final
state, the inertial component remains in the solvation for the initial state; the dynamical component
will be calculated self-consistently for the final state. The present method was applied to the ver-
tical photoemission and absorption of s-trans acrolein and methylenecyclopropene. The effect of
nonequilibrium solvation was significant for a polar solvent. © 2011 American Institute of Physics.
[doi:10.1063/1.3562211]

I. INTRODUCTION

Transitions between electronic states of molecules in so-
lution are important subjects in theoretical and computational
chemistry. That is associated with the recent priority issues
of molecular science, such as improving the efficiency of
light–energy conversion or development of molecular-scale
devices. In a previous paper1 (hereafter we refer to it as paper
I), we developed a theory for electronic excitations in solution
by generalizing the polarizable continuum model (PCM)2, 3

to molecular solutes described at the level of the symmetry-
adapted cluster (SAC) and the SAC–configuration interaction
(SAC–CI) methods.4, 5 The basic formulations and the imple-
mentations of the SAC/SAC–CI in PCM have been developed
in paper I. The analytical energy gradient has already been
developed for the SAC/SAC–CI theory, and the equilibrium
molecular geometry can be optimized by SAC and SAC–CI
in both the ground and excited states.6 Based on this, an an-
alytical energy gradient for SAC/SAC–CI in PCM has been
developed; therefore, the PCM SAC–CI method enables us
to study photoabsorption and photoemission processes and
chemical reactions of molecules in solution. The SAC–CI
method has already been successfully applied to study the
photochemistry of various types of systems,7–9 and there-
fore, its adaptation to the PCM promises to extend further
the applicability of the SAC–CI method. To study the vertical
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photoabsorption and photoemission processes, however, we
have to develop the nonequilibrium solvation model for the
SAC/SAC–CI method. This study reports the nonequilibrium
solvation model of PCM that has been combined with the
SAC and SAC–CI methods.

The concept of nonequilibrium solvation10–18 has been
introduced to describe the solvent polarization in processes
involving sudden variation of the solute charge distribution.
It takes into account that during the time scale of these
processes, not all the degrees of freedoms of the solvent
determining the solvent polarization are able to respond
to the variations of the solute charge distribution. In the
continuum–cavity model for the solvent, the dielectric
medium polarization vector field is partitioned into two
components; namely, the fast and slow components. The fast
component is associated with all the degrees of freedom of
the solvent molecules having characteristic times faster than
the time scale of the sudden process of the solute, while the
slow component collects all the other contributions from the
degrees of freedom having slower characteristic times.

In the case of vertical photoabsorption and photoemis-
sion processes (whose time scale is about 10−15 s), only the
electronic degrees of freedom (10−15 s) of the solvent are
able to determine the fast components of the solvent po-
larization, which will be equilibrated with the charge dis-
tribution of the solute in the final electronic state. All the
other degrees of freedom of the solvent molecules (transla-
tional, rotational, and vibrational) have much slower relax-
ation time scales (10−12–10−8 s), and they determine the slow
component of the solvent polarization, which will remain
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equilibrated with the charge distribution of the solute in the
initial electronic state.

There have been several studies of electronic transi-
tions including the concept of nonequilibrium solvation in
quantum mechanical continuum–cavity models, both in the
Onsager-like framework and in the PCM-like framework.19–28

These studies are mainly based on the variational principle
of Hartree–Fock self-consistent reaction field (SCF), multi-
configuration SCF, or density functional theory, except for
the studies by Christiansen et al., where the nonvariational
coupled-cluster response theory was used to evaluate elec-
tronic excitation energies.24 In the present method, we used
the free-energy formulation of the SAC/SAC–CI electron cor-
relation theory with a state-specific solvation model. This
method can consider any electronic transitions between elec-
tronic states that can be treated by the SAC/SAC–CI method.

By combining the present nonequilibrium solvation the-
ory and the PCM SAC/SAC–CI analytical energy gradient
method, one can study not only vertical photoabsorptions
but also vertical photoemissions in solution. The energy of
the emitted photon or the wavelength of luminescence corre-
sponds to the energy difference between route 3 and route 4 in
Fig. 1; that is, the energy difference between the ground and
excited states in the equilibrium geometry of the excited state.
For molecules in solution, we should consider the dynamics of
solvent circumstance during the electronic transition between
the excited and ground states. The nonequilibrium solvation
of PCM has been developed to describe such phenomena.

In this study, the scheme of nonequilibrium solvation was
adapted for our recently developed and implemented theory
of the SAC/SAC–CI in PCM. For molecules in a vacuum, the
transition between route 3 and route 4 is reversible; therefore,
we may calculate it as the transition from route 4 to route
3. Namely, we can calculate route 4 by the SAC and cal-
culate route 3 as the SAC–CI state excited from the route 4
SAC state. Obviously, this is a single job for the SAC/SAC–
CI calculation. For molecules in solution, the initial and final
states are distinguished. The computational strategies for the
transition from route 3 to route 4 and for the transition from
route 4 to route 3 are different. The final state calculation uses
the results of the initial state calculation. Consequently, the
transition from route 3 to route 4 requires a two-step process:

FIG. 1. Computational routes and transitions.

a SAC/SAC–CI calculation for route 3 and a SAC calculation
for route 4.

In this paper, we will present the formulation and im-
plementation of nonequilibrium theory for the SAC/SAC–CI
in PCM for vertical absorption and vertical emission pro-
cesses in the framework of the Pekar partition approach. Here,
we will explain only the representative electronic transitions,
but our formulation and implementation apply generally to
any electronic transitions. As typical test cases, vertical tran-
sitions of s-trans acrolein and methylenecyclopropene have
been studied. The effects of nonequilibrium solvation were
significant for a polar solvent. The present study would be
particularly useful in studying the photoemission process in
solution, such as in designing luminescent molecules.

II. NONEQUILIBRIUM SOLVATION MODEL

Within the PCM procedure the dielectric medium polar-
ization is represented in terms of an apparent surface charge
(ASC) spread on the cavity surface. To adapt the procedure to
the nonequilibrium scheme, one introduces a partition of the
ASC into fast and slow components. The operative partition of
the ASC can be performed using two alternative, but equiva-
lent, approaches called the Marcus and Pekar approaches. We
will follow the Pekar approach, in which the fast and slow
components are called dynamical (d) and inertial (in), and de-
noted as Qd

m and Qin
m , respectively.3, 21, 26, 27, 29, 30 They can be

determined using the standard PCM equations for the ASC.
The dynamical charge Qd

x determined by a generic charge
distribution x of the molecular solute may be obtained from
the PCM linear system of equations in which the PCM
solvent-response matrix is determined using the optical di-
electric constant (ε∞) of the bulk solvent31 instead of its static
dielectric constant ε0:

Qd
x = T (ε∞) Vx , (1)

where T (ε∞) is the response matrix of PCM in the so-
called integral equation formulation (IEFPCM)32 and Vx is
a vector collecting the electrostatic potential produced by the
charge distribution x at the location of the ASC. The iner-
tial charge Qin

y determined by a generic charge distribution y
of the molecular solute may be expressed as a difference be-
tween the equilibrium solvation charges Qy and dynamical
charges Qd

y associated with the charge distribution y:

Qin
y = Qy − Qd

y, (2)

with

Qy = T (ε0) Vy, (3)

where T (ε0) is the IEFPCM response matrix, which is evalu-
ated with the static dielectric constant of the solvent, and Vy

is a vector collecting the electrostatic potential produced by
the charge distribution y at the location of the ASC.

III. PCM SAC–CI VERTICAL EMISSION WITH
NONEQUILIBRIUM SOLVATION

Let us consider the case of a vertical photoemission pro-
cess from an excited state |SAC–CI, eq〉, which we assume is
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equilibrated with all the degrees of freedom of the solvent, to
the ground state |SAC, neq〉, which will be in a nonequilib-
rium solvation regime:

|SAC–CI, eq〉 −hν−→ |SAC, neq〉. (4)

The total (equilibrium) polarization charges for the initial
state |SAC–CI, eq〉 will be given by

Q|SAC–CI,eq〉 = Qd
|SAC–CI,eq〉 + Qin

|SAC–CI,eq〉, (5)

while in the final ground state |SAC, neq〉, the total (nonequi-
librium) polarization charges will be given by the sum of
the dynamical charges Qd

|SAC,neq〉 and the inertial charges,
Qin

|SAC–CI,eq〉, namely

Q|SAC,neq〉 = Qd
|SAC,neq〉 + Qin

|SAC–CI,eq〉. (6)

The scheme to evaluate these polarization charges is
arranged by reflecting the specific functional form of the
electron-correlated SAC and SAC–CI wavefunctions, which
involve a suitable Hartree–Fock reference state. Because of
this specific form, the electrostatic potential vector for the
SAC or SAC–CI state is partitioned into a contribution of the
Hartree–Fock reference state and that of the electron correla-
tion. This electrostatic potential determines the PCM polar-
ization charges; therefore, the polarization charges have the
appropriate partition.

For the excited state |SAC–CI, eq〉, the electrostatic po-
tential vector V|SAC–CI,eq〉 is given by

V|SAC–CI,eq〉 = VHF,eq + �VSAC–CI,eq, (7)

where VHF,eq is the contribution of the Hartree–Fock refer-
ence state |HF, eq〉 and �VSAC–CI,eq is the SAC–CI contri-
bution. The components of the PCM SAC–CI polarization
charges will be partitioned as follows:

Q|SAC–CI,eq〉 = QHF,eq + �QSAC–CI,eq, (8)

Qd
|SAC–CI,eq〉 = Qd

HF,eq + �Qd
SAC–CI,eq, (9)

Qin
|SAC–CI,eq〉 = Qin

HF,eq + �Qin
SAC–CI,eq. (10)

In a similar way, the electrostatic potential vector
V|SAC,neq〉 for the nonequilibrium ground state is given by

V|SAC,neq〉 = VHF,neq + �VSAC, (11)

where VHF,neq is the contribution of the nonequilibrium
Hartree–Fock reference state |HF, neq〉 and �VSAC is the
contribution of the nonequilibrium SAC state. Then the to-
tal nonequilibrium PCM SAC charges will be given by
Eq. (6) and

Qd
|SAC,neq〉 = Qd

HF,neq + �Qd
SAC,neq. (12)

The computation method for determining the equilib-
rium excited state |SAC–CI, eq〉 has been described in pa-
per I. In Secs. III A and III B, we will describe how to
determine the nonequilibrium PCM SAC state |SAC, neq〉
= exp

(
Sneq

) |HF, neq〉.

A. PCM Hartree–Fock equation for nonequilibrium
solvation

We first consider the nonequilibrium Hartree–Fock refer-
ence state |HF, neq〉 associated with the vertical emission pro-
cess from the excited state |SAC–CI, eq〉 to the ground state
|SAC, neq〉. Within the Pekar formalism,21, 30 the nonequilib-
rium Hartree–Fock state |HF, neq〉 can be obtained by the sta-
tionary condition of the free-energy functional GHF,neq, which
is written as follows:3

GHF,neq = 〈
HF, neq

∣∣H 0
∣∣ HF, neq

〉 + 1
2 Qd

HF,neq · VHF,neq

+ 1
2 Qd

HF,neq · Vnuc + 1
2 Qd

nuc · VHF,neq

+ (Qin
nuc + Qin

|SAC−CI,eq〉) · VHF,neq + 1
2 Qd

nuc · Vnuc

− 1
2 Qin

nuc · V|SAC−CI,eq〉 + 1
2 Qin

|SAC−CI,eq〉 · Vnuc

− 1
2 Qin

|SAC−CI,eq〉 · V|SAC−CI,eq〉 + 1
2 Qin

nuc · Vnuc,

(13)

where

Qd
HF,neq = 〈

HF, neq
∣∣Qd

∣∣ HF, neq
〉
, (14)

VHF,neq = 〈HF, neq |V| HF, neq〉 . (15)

Here, we have introduced, for convenience, the d/in par-
tition of the polarization charges because of the electrostatic
potential Vnuc that is generated by the nuclear charges of the
solute, namely

Qnuc = Qd
nuc + Qin

nuc. (16)

In an N-electron system with spin-orbitals, which are ex-
panded over a set of atomic orbital (AO) bases {χμ, χν, ...},
GHF,neq may be written as

GHF,neq =
∑
μν

PHF,neq
μν

[
hμν + 1

2

(
jd
μν + yd

μν

) + j in
μν + X in

μν

]

+ 1
2

∑
μνλσ

PHF,neq
μν PHF,neq

λσ

[〈μλ ‖νσ 〉 + Bd
μν.λσ

]

+ 1
2 Qd

nuc ·Vnuc− 1
2 Qin

nuc ·V|SAC−CI,eq〉+ 1
2 Qin

|SAC−CI,eq〉

× Vnuc− 1
2 Qin

|SAC−CI,eq〉 ·V|SAC−CI,eq〉+ 1
2 Qin

nuc ·Vnuc,

(17)

where hμν is the one-electron part of the Hamiltonian in AO
basis, 〈μλ ‖νσ 〉 is an antisymmetrized combination of the
two-electron repulsion integrals (ERIs), and PHF,neq

μν denotes
the elements of the Hartree–Fock density matrix. The ma-
trix elements jd/in

μν , yd
μν , X in

μν , and Bd
μν.λσ represent the solute

–solvent interactions within the PCM Fock operator. More
specifically, the one-particle AO integrals jd/in

μν and yd
μν repre-

sent the interaction with the nuclear component of the ASCs.
The pseudo-two-electron integrals X in

μν and Bd
μν.λσ represent

the interactions with the electronic component of the ASCs.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



104109-4 Fukuda et al. J. Chem. Phys. 134, 104109 (2011)

The interaction integrals may be expressed in the follow-
ing form:

jd
μν = Vμν · Qd

nuc, (18)

yd
μν = Vnuc · Qd

μν, (19)

j in
μν = Vμν · Qin

nuc, (20)

X in
μν = Vμν · Qin

|SAC–CI,eq〉, (21)

Bd
μν.λσ = Vμν · Qd

λσ . (22)

The dynamical charges in the AO basis are given by

Qd
λσ = T (ε∞) Vλσ , (23)

where Vλσ is a vector collecting the AO integrals of the
electrostatic potential operator associated with the elementary
charge distributions spanned by the AO basis χ∗

λ (r) χσ (r).
Requiring that GHF,neq be stationary with respect to the

variation of MO coefficients, we obtain the PCM Hartree
–Fock equations for nonequilibrium solvation as∑

ν

(
f PCM,neq
μν − εp Sμν

)
cνp = 0, (24)

where Sμν and f PCM,neq
μν are the elements of the overlap and of

the PCM Fock matrices in the AO basis, respectively and εp

and cνp are the orbital energy and the expansion coefficients
of the pth MO, respectively. The PCM Fock matrix elements
are given by

f PCM,neq
μν = hμν + jd

μν + j in
μν + X in

μν + Gμν

(
PHF,neq

)
+Xd

μν

(
PHF,neq

)
, (25)

where

Gμν

(
PHF,neq

) =
∑
λσ

PHF,neq
λσ 〈μλ ‖νσ 〉 (26)

are the matrix elements of the effective Coulomb-exchange
two-electron operator and

j in
μν + X in

μν = Vμν ·
(

Qin
nuc + Qin

|SAC–CI,neq〉
)

, (27)

jd
μν = Vμν · Qd

nuc, (28)

Xd
μν

(
PHF,neq

)=
∑
λσ

PHF,neq
λσ Bd

μν.λσ =Vμν ·Qd
|HF,neq〉. (29)

B. PCM SAC nonequilibrium free-energy functional
and equations

The ground state PCM SAC wavefunction is defined by
Eq. (30) using the Hartree–Fock wavefunction of the solute

molecule as the reference state:

|�SAC, neq〉 = exp
(
Sneq

) |HF, neq〉

= exp

(∑
I

CI S†
I

)
|HF, neq〉 , (30)

〈	′, neq| = 〈HF, neq|
∑

L

ZSAC
L SL , (31)

where |HF, neq〉 is obtained as the solution of the PCM
Hartree–Fock equations in the nonequilibrium regime of
Eq. (24).

The nonequilibrium PCM SAC free-energy functional
may be written as

LPCM
SAC,neq =〈	|H HF,neq

N |�SAC,neq〉−〈	′|�SAC,neq〉
×〈0|H HF,neq

N |�SAC,neq〉+ 1
2�Qd

SAC,neq ·�VSAC,neq,

(32)

where H HF,neq
N is the Hamiltonian for the solute in the

presence of the Hartree–Fock polarization charges for
the nonequilibrium solvation regime and �Qd

SAC,neq and
�VSAC,neq are the SAC contribution of the nonequilibrium po-
larization charge and the electrostatic potential of the molec-
ular solute, respectively. The nonequilibrium Hamiltonian
H HF,neq

N is given by

H HF,neq
N = HN +(Qd

|HF,neq〉+Qin
|SAC–CI,eq〉+Qnuc)VN , (33)

where HN is the normal ordered Hamiltonian of the isolated
molecule. A vector correcting the Hartree–Fock polarization
charges Qd

|HF,neq〉 is defined by Eq. (14), where the Hartree–
Fock contribution is limited to the dynamical component of
the polarization response of the medium. The remaining elec-
tronic component Qin

|SAC–CI,eq〉 is a vector collecting the inertial
polarization charges of the excited state. The operator VN is
a vector collecting the normal ordered electrostatic potential
operator at the position of the polarization charges. The SAC
expectation values �Qd

SAC,neq and �VSAC,neq in the last term
of LPCM

SAC,neq in Eq. (32) may be written as

�Qd
SAC,neq = 〈	, neq|Qd

N |�SAC,neq〉 − 〈	′, neq|�SAC,neq.〉
× 〈HF, neq|Qd

N |�SAC,neq〉, (34)

�Vd
SAC,neq = 〈	, neq|V d

N |�SAC,neq〉 − 〈	′, neq|�SAC,neq.〉
× 〈HF, neq|V d

N |�SAC,neq〉,
(35)

where Qd
N and V d

N are, respectively, the normal ordered form
of the dynamical apparent charge operator and of the electro-
static potential operator

Qd
N = Qd − Qd

|HF,neq〉, (36)

V d
N = Vd − Vd

|HF,neq〉. (37)
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The equations for the SAC wavefunction (right vector)
|�SAC,neq〉 are given by

〈HF, neq|SL (H PCM,neq
N − �EPCM

SAC,neq)|�SAC,neq〉 = 0,

(38)
where H PCM,neq

N is the PCM SAC Hamiltonian for the solute
and �EPCM

SAC,neq is the corresponding correlation energy. Equa-
tion (38) corresponds to the left projection of the Schrödinger
equation of the SAC wavefunction

H PCM,neq
N |�SAC,neq〉 = �EPCM

SAC,neq|�SAC,neq〉 (39)

with

H PCM,neq
N = H HF,neq

N + �QSAC,neq · VN = H HF,neq
N

+(Qd
SAC,neq + Qin

|SAC–CI,eq〉 + �Qd
SAC,neq) · VN ,

(40)

�EPCM
SAC,neq = 〈HF, neq|H PCM,neq

N |�SAC,neq〉. (41)

The Z-SAC equations for the left vector 〈	′, neq| are
given by

〈	, neq|H PCM,neq
N S†

L |�SAC,neq〉 − 〈	′, neq|S†
L |�SAC,neq〉

−〈HF, neq|H PCM,neq
N |�SAC,neq〉 + 〈	′, neq|�SAC,neq〉

−〈HF, neq|H PCM,neq
N S†

L |�SAC,neq〉=0.

(42)

IV. PCM SAC–CI VERTICAL ABSORPTION
WITH NONEQUILIBRIUM SOLVATION

Next, we consider the case of a vertical photoabsorp-
tion process from an equilibrium ground state |SAC, eq〉 to
a nonequilibrium excited state |SAC–CI, neq〉:

|SAC, eq〉 +hν−→|SAC–CI, neq〉. (43)

The total (equilibrium) polarization charges for the initial
state |SAC, eq〉 will be given by

Q|SAC,eq〉 = Qd
|SAC,eq〉 + Qin

|SAC,eq〉, (44)

while in the final excited state |SAC–CI, neq〉, the total
(nonequilibrium) polarization charges will be given by

Q|SAC–CI,neq〉 = Qd
|SAC–CI,neq〉 + Qin

|SAC,eq〉. (45)

For the equilibrium ground state |SAC, eq〉, the electro-
static potential vector V|SAC,eq〉 is given by

V|SAC,eq〉 = VHF,eq + �VSAC,eq, (46)

where VHF,eq is the contribution of the Hartree–Fock refer-
ence state |HF, eq〉 and �VSAC,eq is the SAC contribution.
The components of the PCM SAC polarization charges will
be given as follows:

Q|SAC,eq〉 = QHF,eq + �QSAC,eq, (47)

Qd
|SAC,eq〉 = Qd

HF,eq + �Qd
SAC,eq, (48)

Qin
|SAC,eq〉 = Qin

HF,eq + �Qin
SAC,eq. (49)

In a similar way, the electrostatic potential vector for the
nonequilibrium excited state is given by

V|SAC–CI,neq〉 = VHF,neq + �VSAC–CI,neq, (50)

where VHF,neq is the contribution of the nonequilibrium
Hartree–Fock reference state and �VSAC–CI,neq is the con-
tribution of the nonequilibrium SAC–CI state. Then the to-
tal nonequilibrium PCM SAC–CI charges will be given by
Eq. (45) and

Qd
|SAC–CI,neq〉 = Qd

HF,neq + �Qd
SAC–CI,neq. (51)

The computation method for the equilibrium ground state
|SAC, eq〉 has been described in paper I. The nonequilibrium
excited state |SAC–CI, neq〉 is determined in a similar way to
that for |SAC, neq〉 described in Sec. III.

A. PCM Hartree–Fock equation for the nonequilibrium
reference state

Here we consider the nonequilibrium Hartree–Fock ref-
erence state |HF, neq〉 associated with the vertical absorption
process from the ground state |SAC, eq〉 to the excited state
|SAC–CI, neq〉 within the Pekar formalism.21, 30 The free-
energy functional is given as3

GHF,neq = 〈HF, neq|H 0|HF, neq〉 + 1
2 Qd

HF,neq · VHF,neq

+ 1
2 Qd

HF,neq · Vnuc + 1
2 Qd

nuc · VHF,neq

+ (Qin
nuc + Qin

|SAC,eq〉) · VHF,neq + 1
2 Qd

nuc · Vnuc

− 1
2 Qin

nuc · V|SAC,eq〉 + 1
2 Qin

|SAC,eq〉 · Vnuc

− 1
2 Qin

|SAC,eq〉 · V|SAC,eq〉 + 1
2 Qin

nuc · Vnuc. (52)

This can be obtained from Eq. (13) by replacing
Qin

|SAC–CI,eq〉 and V|SAC–CI,eq〉 by |SAC, eq〉 correspondences.
The AO representation of GHF,neq may be written as

GHF,neq =
∑
μν

PHF,neq
μν [hμν + 1

2 ( jd
μν + yd

μν) + j in
μν + X in

μν]

+ 1
2

∑
μνλσ

PHF,neq
μν PHF,neq

λσ [〈μλ‖νσ .〉 + Bd
μν.λσ ]

+ 1
2 Qd

nuc ·Vnuc− 1
2 Qin

nuc ·V|SAC,eq〉+ 1
2 Qin

|SAC,eq〉 ·Vnuc

− 1
2 Qin

|SAC,eq〉 · V|SAC,eq〉 + 1
2 Qin

nuc · Vnuc, (53)

where

X in
μν = Vμν · Qin

|SAC,eq〉, (54)

and other matrix elements have already been defined in
Sec. III. The MO coefficients that define the reference state
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|HF, neq〉 will be obtained by the PCM Hartree–Fock equa-
tions derived by the stationary conditions for GHF,neq of
Eq. (53).

B. PCM SAC–CI nonequilibrium free-energy
functional and equations

The PCM SAC–CI vectors for the nonequilibrium (pth)
excited state are defined by

|�SAC–CI,neq〉= R p|�SAC,neq〉=
∑

M

d p
M R†

M |�SAC,neq〉,
(55)

〈�L
SAC–CI,neq| = 〈HF, neq|L p = 〈HF, neq|

∑
M

d Lp
M RM ,

(56)

〈	′′| =
∑

K

ZSAC–CI
K 〈HF, neq|SK , (57)

where |HF, neq〉 is the nonequilibrium Hartree–Fock state of
the molecular solute and |SAC, neq〉 is the SAC wavefunction
that satisfies the SAC equation

〈HF, neq|SK H HF,neq
N |�SAC,neq〉 − 〈HF, neq|SK |�SAC,neq〉

× 〈HF, neq|H HF,neq
N |�SAC,neq〉 = 0, (58)

where H HF,neq
N is the Hamiltonian given by

H HF,neq
N = HN + (Qd

HF,neq + Qin
|SAC,eq〉 + Qnuc)VN . (59)

The PCM SAC–CI nonequilibrium free-energy func-
tional may be written as

LPCM
SAC–CI,neq = 〈�L

SAC–CI,neq|H HF,neq
N |�SAC–CI,neq〉

− 〈	′′|H HF,neq
N |�SAC,neq〉

− 〈	′′|�SAC,neq.〉〈HF, neq|H HF,neq
N |�SAC,neq〉

+ 1
2�Qd

SAC–CI,neq�VSAC–CI,neq, (60)

where �Qd
SAC–CI,neq and �VSAC–CI,neq are, respectively, the

SAC–CI expectation value of the dynamical polarization
charges and the electrostatic potential operator

�Qd
SAC–CI,neq = 〈�L

SAC–CI,neq|Qd
N |�SAC–CI,neq〉, (61)

�VSAC–CI,neq = 〈�L
SAC–CI,neq|V d

N |�SAC–CI,neq〉, (62)

FIG. 2. Molecular coordinate system of (a) s-trans acrolein and (b)
methylenecyclopropene.

with

Qd
N = Qd − Qd

HF,neq. (63)

The PCM SAC–CI equations may be obtained from the
stationary condition of the free-energy functional LPCM

SAC–CI,neq.
The stationarity of LPCM

SAC–CI,neq with respect to the R p and L p

amplitudes leads, respectively, to the left and right projections
of the Schrödinger equation of the SAC–CI wavefunction

H PCM,neq
N |�SAC–CI,neq〉 = �EPCM

SAC–CI,neq|�SAC–CI,neq〉,
(64)

〈�L
SAC–CI,neq|H PCM,neq

N = 〈�L
SAC–CI,neq|�EPCM

SAC–CI,neq,

(65)
where the PCM SAC–CI energy is given by

�EPCM
SAC–CI,neq = 〈�L

SAC–CI,neq|H PCM,neq
N |�SAC–CI,neq〉,

(66)
and H PCM,neq

N is the PCM SAC–CI Hamiltonian for the solute
for the excited state of interest:

H PCM,neq
N = H HF,neq

N + �Qd
SAC–CI,neqVN . (67)

V. TEST CALCULATIONS

As typical test cases of solvatochromic shifts of vertical
transition energies, we chose the lowest transition of s-trans
acrolein (C3H4O) and methylenecyclopropene (C4H4) in
nonpolar and polar solvents because their equilibrium
molecular geometries have already been studied by the PCM
SAC/SAC–CI method.1 For s-trans acrolein both the ground
and the lowest excited states (n → π*) have planar structures.
The lowest excited states (π → π*) of methylenecyclo-
propene is not planar; however, here we used the optimized
geometry restricted to a planar conformation. The optimized
geometries by the PCM SAC/SAC–CI with cc-pVDZ basis33

have been reported in paper I. Using these geometries,

TABLE I. Vertical emission energy (VEE) and its solvent shift (shift) for s-trans acrolein.

SAC–CI nonequilibrium SAC–CI equilibrium Experimenta

Solvent VEE (eV) Shift (eV) VEE (eV) Shift (eV) VEE (eV)

Vacuum 2.915 0.000 2.915 0.000
n-hexane 2.896 −0.019 2.895 −0.020 3.31, 3.16, 3.00
Aqueous 2.774 −0.141 2.854 −0.061

aObserved fluorescence in 2-methyl-THF at 77 K (Ref. 36).
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TABLE II. Vertical absorption energy (VAE) and its solvent shift (shift) for s-trans acrolein.

SAC–CI nonequilibrium SAC–CI equilibrium Experiment

Solvent VAE (eV) Shift (eV) VAE (eV) Shift (eV) VAE (eV) Shift (eV)

Vacuum 3.838 0.000 3.838 0.000 3.75a, 3.69b

n-hexane 3.829 − 0.009 3.829 − 0.009
Aqueous 3.913 + 0.075 3.809 − 0.029 + 0.2c

aReference 36.
bReference 37.
cReferences 38–41.

transition energies were calculated with the cc-pVDZ basis,
except where noted otherwise. The coordinate systems of
molecule used in the present calculations are shown in
Fig. 2. For s-trans acrolein, the molecule was set in the
x-y plane where the C1C2 bond was set to the y-axis. For
methylenecyclopropene, the molecule was set in the y-z plane
where C1C2 bond was set to the z-axis.

The perturbation-selection technique was not used in the
present calculations. The PCM SAC–CI program was im-
plemented based on the latest version of the direct SAC–CI
program34 combined with GAUSSIAN 09.35 The default pa-
rameters of IEFPCM in GAUSSIAN 09 were used.

A. s-trans acrolein

The vertical emission energies are shown in Table I using
the nonequilibrium and equilibrium solvation schemes. The
fluorescence spectrum of s-trans acrolein in 2-methyl-THF at
77 K has been reported in Ref. 36. The observed spectrum has
poorly resolved peaks at 375, 392, and 413 nm (3.31, 3.16,
and 3.00 eV). The position of the peak maximum is 3.16 or
3.00 eV; thus, the present calculation seems to underestimate
the emission energy by about 0.1–0.3 eV.

The solvent effect in n-hexane is small, and the effect
of nonequilibrium solvation is negligible. The effect of wa-
ter is significant; the calculated solvent shift was −0.141 eV
(22 nm) by the nonequilibrium solvation model. Nonequilib-
rium solvation is very important for aqueous solutions. The
equilibrium solvation model greatly underestimated the sol-
vent effect because the equilibrium model overestimated the
relaxation of the degree of freedom of the solvent.

The vertical absorption energies are shown in Table II
using the nonequilibrium and equilibrium solvation schemes.
The solvent shift for n-hexane is small, and the effect of
nonequilibrium solvation is negligible. The solvent shift for
water is significant; moreover, the direction of the solvent
shift is different between the equilibrium and the nonequilib-
rium solvation schemes. If we use equilibrium solvation, the
calculated shift was negative and the result contradicted the
experimental findings. Nonequilibrium solvation reproduced
the observed higher energy shift (blueshift) in aqueous solu-
tion. The present PCM SAC–CI calculation with nonequilib-
rium solvation still underestimated the observed solvent shift
by more than 0.1 eV. This underestimation would be attributed
to the lack of explicit hydrogen bonds.

Table III shows the dipole moments in the ground and
the n → π* excited states in vacuum with the ground and the

excited state geometries. The dipole moment in the ground
state is larger than that in the excited state. For the verti-
cal absorption process, the ground state is stabilized by sol-
vation. Consequently, the vertical absorption energy shows
blueshift in polar solvent. For the vertical emission process,
the final (ground) state has larger dipole moment and this
state is destabilized by the nonequilibrium solvation, where
the inertial component of solvation charges remains in the sol-
vation for the less-polar initial state. As a result, the vertical
emission energy shows lower energy shift (redshift) in polar
solvent.

The results of nonequilibrium calculations with larger ba-
sis, aug-cc-pVDZ (Ref. 42) and cc-pVTZ (Ref. 33), are shown
in Table IV. Here we used the same molecular geometry as the
cc-pVDZ calculations. We also calculated the vertical excita-
tion (absorption) energy of the lowest π → π* state because
the experimental data are available. For the absorption energy
of lowest n → π* transition, basis set effects were small in
vacuum and in n-hexane; they were about 0.01 eV or less.
Using larger basis sets, the excitation energy in aqueous solu-
tion was increased. Consequently, the calculated solvent shift
became large with using larger basis sets. The solute polariza-
tion can be properly described by flexible basis set.

The basis set dependence was large for the lowest
π → π* state; particularly, the effect of diffuse function was
significant. This indicates the mixing of Rydberg character
in this state. The solvent shifts calculated with augmented
diffuse functions were small in comparison with the results
without diffuse functions. The excited state is confined in a
solvent cavity and is destabilized. This would suggest that
the interaction between the tail of solute wavefunction and

TABLE III. Dipole moment (debye) of s-trans acrolein in vacuum with the
ground and the lowest n → π* state geometries. The dipole moment |d| and
its Cartesian components are shown.

Component

State x y z |d|

Ground state geometry

Ground 1.961 1.938 0.000 2.757
n→π* 0.959 0.096 0.000 0.964

n → π* state geometry

Ground 2.329 2.315 0.000 3.284
n → π* 1.116 0.462 0.000 1.208
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TABLE IV. Basis set dependence of vertical excitation energy (VAE) and vertical emission energy (VEE) for s-trans acrolein with nonequilibrium solvation
model. The solvent shifts from vacuum are given in parentheses (in eV).

SAC–CI nonequilibrium

Solvent cc-pVDZ aug-cc-pVDZ cc-pVTZ Experiment

VAE (n → π*)

Vacuum 3.838 3.832 3.849 3.75,a 3.69b

n-hexane 3.829 (−0.009) 3.826 (−0.006) 3.833 (−0.016)
Aqueous 3.913 (+0.075) 3.939 (+0107) 3.948 (+0.099) (+0.2)c

VAE (π→π*)

Vacuum 7.187 6.749 6.941 6.41,d 6.42e

n-hexane 7.098 (−0.089) 6.716 (−0.033) 6.851 (−0.090)
Aqueous 6.992 (−0.195) 6.611 (−0.138) 6.733 (−0.208) (−0.4)f

VEE (n → π*)

Vacuum 2.915 2.969 2.960
n-hexane 2.896 (−0.019) 2.962 (−0.007) 2.949 (−0.011) 3.31, 3,16, 3.00g

Aqueous 2.774 (−0.141) 2.844 (−0.125) 2.827 (−0.133)

aReference 36.
bReference 37.
cReferences 38–41.
dReference 43.
eReference 44.
fReferences 38–41, 43, and 44.
gObserved fluorescence in 2-methyl-THF at 77 K (Ref. 36).

solvent molecules are significant. The PCM may be insuffi-
cient to describe this kind of interaction; therefore, our cal-
culation underestimated the solvent shift of excitation energy.
Similar discussion has been given by the quantum mechanics/
molecular mechanics (QM/MM) calculations,37, 45 in which
the excitation energy strongly depends on the number of ex-
plicit solvent molecules. Furthermore, we need to discuss the
radii of molecular cavity of the PCM for using diffuse basis
function. However, it is beyond the purpose of this study.

For the vertical emission energy, larger basis sets increase
the emission energies about 0.05 eV and the agreement with
experiment was improved. The basis set dependences are sim-
ilar both in vacuum and in solution; therefore, the basis set
dependence of solvent shift is small.

B. Methylenecyclopropene

The vertical emission energies are shown in Table V
using the nonequilibrium and equilibrium solvation schemes.
We restricted the excited state geometry to being planar;
therefore, the present results cannot be compared to experi-
mental findings. In the π → π* excited state, the molecule

TABLE V. Vertical emission energy (VEE) and its solvent shift (shift) for
methylenecyclopropene.

SAC–CI nonequilibrium SAC–CI equilibrium

Solvent VEE (eV) Shift (eV) VEE (eV) Shift (eV)

Vacuum 2.165 0.000 2.165 0.000
n-hexane 2.136 − 0.029 2.135 − 0.030
Aqueous 1.885 − 0.280 2.102 − 0.063

becomes twisted conformation and intersystem crossing
might be possible. Investigating such a possibility is beyond
the purpose of the present study. Here, we are only interested
in “sudden polarization”47 of this molecule: the significant
difference in the dipole moment in the ground and the first ex-
cited states. Thus, we used the optimized geometry restricted
to being planar.

The solvent effect in n-hexane is about −0.03 eV and the
effect of nonequilibrium solvation is negligible. The effect of
water is significant; the calculated solvent shift was −0.28 eV
(22 nm) by the nonequilibrium solvation model. Nonequilib-
rium solvation is very important for aqueous solutions. The
relaxation of solvent degrees of freedom in the final ground
state considered by the equilibrium solvation model is signif-
icant; that effect is about 0.22 eV because the directions of
the dipole moment for this molecule is different between the
ground and the first excited states.

The transition energies for the vertical absorption process
are shown in Table VI using the nonequilibrium and equi-
librium solvation schemes. The solvent shift for n-hexane is

TABLE VI. Vertical absorption energy (VAE) and its solvent shift (shift)
for methylenecyclopropene.

SAC–CI nonequilibrium SAC–CI equilibrium Experiment

Solvent VAE (eV) Shift (eV) VAE (eV) Shift (eV) VAE (eV)

Vacuum 4.734 0.000 4.734 0.000
n-hexane 4.669 −0.065 4.670 −0.064 4.01a

Aqueous 4.832 +0.098 4.572 −0.162 4.49b

aIn n-pentane −78◦C (Ref. 46).
bIn methanol −78◦C (Ref. 46).
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TABLE VII. Dipole moment (debye) of methylenecyclopropene in vacuum
with the ground and π → π* excited state geometries. The dipole moment
|d| and its Cartesian components are shown.

Component

State x y z |d|

Ground state geometry

Ground 0.000 0.000 − 1.859 1.859
π → π* 0.000 0.000 1.980 1.980

π → π* state geometry

Ground 0.000 0.000 − 2.716 2.716
π → π* 0.000 0.000 1.192 1.192

not negligible, although the nonequilibrium and equilibrium
solvation schemes gave almost the same transition energies.
A large positive solvent shift was obtained for water in the
nonequilibrium solvation model. The relaxation of solvent
considered by the equilibrium model is very large; the energy
shift is about 0.26 eV. Such a large relaxation effect of solvent
degree of freedom was attributed to the sudden polarization.

Table VII shows the dipole moments in the ground and
the π → π* excited states in vacuum with the ground and the
excited state geometries. The direction of the dipole moment
is alternated by the electronic excitation. This drastic change
of molecular dipole moment causes significant solvent effects.

A diagram of the relative energies of methylenecyclo-
propene is shown in Fig. 3. We took the energy standard as
the ground state of absorption (the ground state geometry) in
vacuum. In this figure, vac, hex, and aq denote the results in
vacuum, in n-hexane, and in water, respectively. The energy
of the initial states (the ground state for absorption and
the excited state for emission) is stabilized by solvent. The
final state energies were also stabilized in the equilibrium
solvation. However, for the nonequilibrium solvation, the
final state energies were destabilized by polar solvent because

FIG. 3. Relative energies of methylenecyclopropene in the ground and first
excited states, where the ground state geometry was used for absorption and
the excited state geometry with a planar constraint was used for emission.
Solid horizontal lines denote nonequilibrium solvation results and broken
lines denote equilibrium solvation results.

of the repulsive interaction between the solute dipole moment
and the inertial part of the solvent charges.

The results of nonequilibrium calculations with larger
basis sets are shown in Table VIII. Here we used the same
molecular geometry as the cc-pVDZ calculations. In particu-
lar, the effect of diffuse function was significant; it was about
0.25 eV. The agreement between calculation and experiment
was improved by adding diffuse functions. For the vertical
emission energy, basis set dependence was small.

TABLE VIII. Basis set dependence of vertical excitation energy (VAE) and vertical emission energy (VEE)
for methylenecyclopropene with nonequilibrium solvation model. The solvent shifts from vacuum are given in
parentheses (in eV).

SAC–CI nonequilibrium

Solvent cc-pVDZ aug-cc-pVDZ cc-pVTZ Experiment

VAE (π → π*)

Vacuum 4.734 4.471 4.635
n-hexane 4.669 (−0.065) 4.412 (−0.059) 4.567 (−0.068) 4.01a

Aqueous 4.832 (+0.098) 4.601 (+0.130) 4.747 (+0.112) 4.49b

VEE (n → π*)

Vacuum 2.165 2.123 2.160
n-hexane 2.136 (−0.065) 2.104 (−0.108) 2.130 (−0.030)
Aqueous 1.885 (−0.280) 1.856 (−0.356) 1.864 (−0.296)

aIn n-pentane −78◦C (Ref. 46).
bIn methanol −78◦C (Ref. 46).
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The present results for the vertical absorption energy with
the nonequilibrium solvation scheme are almost the same as
our previous results reported in paper I, in which the nonequi-
librium solvation charges in the initial ground state were ap-
proximated by the Hartree–Fock contribution only. In particu-
lar, the �SAC contributions in Eqs. (46)–(49) were neglected
in the results reported in paper I. This approximation may
work if the polarization charges in the ground state are well
described by the Hartree–Fock level. This assumption is valid
for the present test case of vertical absorption. For vertical
emission, however, the Hartree–Fock state is not an approxi-
mation for the initial state. Neglecting the �SAC–CI contri-
butions in Eqs. (7)–(10) is inadequate.

VI. CONCLUSIONS

In this paper, we presented the theory and implementa-
tion of a nonequilibrium solvation model for the SAC/SAC
–CI method in PCM to describe the vertical photoabsorp-
tion and emission processes of molecules in solution. In the
PCM, nonequilibrium solvation is modeled by the partition
of solvent charges into fast and slow components. In this
study, we adopted the Pekar partition, which divides the sol-
vation contribution into dynamical (fast) and inertial (slow)
parts. In this scheme, the nonequilibrium solvation of a tran-
sition from an initial state to a final state may be described
as follows: the initial state is described by the usual equi-
librium solvation that was described in the previous paper,
while in the final state, the inertial part remains in the sol-
vation for the initial state; the dynamical part will change
into the solvation for the final state. In the PCM SAC/SAC–
CI method, the solvent affects both the SAC/SAC–CI am-
plitudes and the reference Hartree–Fock state; therefore, our
formulation changes the PCM Hartree–Fock equation for
the final state, in which the contributions from the initial
SAC/SAC–CI wavefunction appear.

The nonequilibrium solvation model was implemented in
the recently developed PCM SAC–CI program incorporated
with the GAUSSIAN development version. The initial and fi-
nal states were calculated as a multistep job in GAUSSIAN.
We have already implemented the analytical energy gradi-
ents of excited states in the solvent with the PCM SAC–CI
method, and the present study gives a scheme to calculate ver-
tical transition energies. Then, one can calculate the vertical
photoemission process in solution using the PCM SAC/SAC–
CI method.

Test calculations for s-trans acrolein and methylenecy-
clopropene were presented. The effect of nonequilibrium
solvation is significant for a polar solvent, particularly for
methylenecyclopropene. The present scheme would be par-
ticularly useful in the study of photoemission processes. For
absorption, solute–solvent interaction using the Hartree–Fock
state is usually a good approximation for the initial state. Un-
der such an approximation, the nonequilibrium scheme be-
comes quite simple. For emission, however, the initial state
should be the SAC–CI correlated wavefunction. Thus, the
present scheme is essential. The PCM SAC/SAC–CI will
provide a useful method for studying and designing light-
emitting compounds by ab initio calculations.
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APPENDIX: COMPUTATIONAL STEPS

Evaluation of the nonequilibrium vertical emission en-
ergy involves the following steps:

1. The PCM SAC–CI energy calculation for the equilib-
rium excited state |SAC–CI, eq〉; these steps are essen-
tially the same as the method described in paper I, but
terms necessary for the next steps are saved.

1-1. The PCM Hartree–Fock calculation for |HF, eq〉 is
performed. At the end, compute and save the inertial
charges Qin

HF,eq and Qin
nuc and the potentials Vin

HF,eq.
1-2. The PCM SAC equations (equilibrium) for |SAC, eq〉

are solved.
1-3. The PCM SAC–CI equations (equilibrium) are solved

for |SAC–CI, eq〉. At the end, compute the inertial
charges �Qin

SAC–CI,eq and the potentials �Vin
SAC–CI,eq

and incrementally add them to Qin
HF,eq and Vin

HF,eq. The
resulting total inertial charges Qin

SAC–CI,eq and total po-
tential Vin

SAC–CI,eq are saved.
2. The PCM SAC energy calculation for the nonequilib-

rium ground state |SAC, neq〉.
2-1. The PCM Hartree–Fock nonequilibrium state equa-

tions (24) are solved for |HF, neq〉.
2-2. The PCM SAC equations (38) are solved for

|SAC, neq〉.
The programs have been implemented for GAUSSIAN 09;

|SAC–CI, eq〉 and |SAC, neq〉 are calculates as a multistep
job. The information is transferred by a common checkpoint
file.
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